
CPSC 340:
Machine Learning and Data Mining

Decision Trees

Fall 2016

Admin

• Assignment 1 is out, due September 23rd.
– You’ll need a CS undergrad account to use Handin:

• https://www.cs.ubc.ca/getacct

– It’s due after the add/drop deadline but START THIS WEEK.
• It will give you an idea of the workload/background expected.

• You can get help on Piazza.
– www.piazza.com/ubc.ca/winterterm12016/cpsc340/home

• Tutorials start today:
– Monday 4-5 and 5-6, Tueday 4:30-5:30, Wednesday 9-10.

• Office hours:
– Tuesdays at 2-3 (ICICS 146) and 3:30-4:30 (DLC Table 4), and Wednesdays

4-5 (ICICS X337).

https://www.cs.ubc.ca/getacct
http://www.piazza.com/ubc.ca/winterterm12016/cpsc340/home

Last Time: Data Representation and Exploration

• We discussed object-feature representation:

– Examples: another name
we’ll use for objects.

• We discussed summary statistics and visualizing data.

http://www.statcrunch.com/5.0/viewresult.php?resid=1024581
http://cdn.okccdn.com/blog/humanexperiments/looks-v-personality.png
http://www.scc.ms.unimelb.edu.au/whatisstatistics/weather.html

Age Job? City Rating Income

23 Yes Van A 22,000.00

23 Yes Bur BBB 21,000.00

22 No Van CC 0.00

25 Yes Sur AAA 57,000.00

Motivating Example: Food Allergies

• You frequently start getting an upset stomach

• You suspect an adult-onset food allergy.

http://www.cliparthut.com/upset-stomach-clipart-cn48e5.html

Motivating Example: Food Allergies

• To solve the mystery, you start a food journal:

• But it’s hard to find the pattern:
– You can’t isolate and only eat one food at a time.

– You may be allergic to more than one food.

– The quantity matters: a small amount may be ok.

– You may be allergic to specific interactions.

Egg Milk Fish Wheat Shellfish Peanuts … Sick?

0 0.7 0 0.3 0 0 1

0.3 0.7 0 0.6 0 0.01 1

0 0 0 0.8 0 0 0

0.3 0.7 1.2 0 0.10 0.01 1

0.3 0 1.2 0.3 0.10 0.01 1

Supervised Learning

• We can formulate this as supervised learning:

• Input for an object (day of the week) is a set of features (quantities of food).

• Output is a desired class label (whether or not we got sick).

• Goal of supervised learning:
– Use data to write a program mapping from features to labels.

– Program predicts whether foods will make you sick (even with new combinations).

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Supervised Learning

• With discrete labels, supervised learning is called classification.
– But we’re not particularly interested in food allergies.

• Instead we’re interested in studying the concept of supervised learning:
– Take features of objects and corresponding labels as inputs.
– Output a program that can predict the label of a generic object.

• This is the most successful machine learning technique:
– Spam filtering, optical character recognition, Microsoft Kinect, speech

recognition, classifying tumours, etc.

• Most useful when:
– You don’t know how to write a program to do the task.
– But you have input/output examples.

• Today we will learn about one approach:
– Decision trees.

But first….
• What types of preprocessing might we do?

– Data cleaning: check for and fix missing/unreasonable values.
– Summary statistics:

• Can help identify “unclean” data.
• Correlation might reveal an obvious dependence (“sick”  “peanuts”).

– Data transformations:
• Convert everything to same scale? (e.g., grams)
• Add foods from day before? (maybe “sick” depends on multiple days)
• Add date? (maybe what makes you “sick” changes over time).

– Data visualization: look at a scatterplot of each feature and the label.
• Maybe the visualization will show something weird in the features.
• Maybe the pattern is really obvious!

• What you do might depend on how much data you have:
– Very little data:

• Represent food by common allergic ingredients (lactose, gluten, etc.)?

– Lots of data:
• Use more fine-grained features (bread from bakery vs. hamburger bun)?

Decision Trees
• Decision trees are simple programs consisting of:

– A nested sequence of “if-else” decisions based on the features (splitting rules).
– A class label as a return value at the end of each sequence.

• Example decision tree:

if (milk > 0.5)
{

return ‘sick’

}
else
{

if (egg > 1)
return ‘sick’

else
return ‘not sick’

}

Can draw sequences of decisions as a tree:

Decision Tree Learning

• It might be hard to find a good decision tree by hand.

– There could be a huge number of variables.

– Sequences of rules might be hard to find.

• Decision tree learning:

– Use the data to automatically write the decision tree program.

• Basic idea: search over trees for the “best” tree.

Learning A Decision Stump

• We’ll start decision stumps:
– Simple decision tree with 1 splitting rule based on thresholding 1 feature.

• How do we find the best “rule” (i.e., the feature and threshold)?
1. Define a ‘score’ for the rule.

2. Search for the rule with the best score.

Decision Stump: Accuracy Score

• Most intuitive score: classification accuracy.
– “If we use this rule, how many objects do we label correctly?”

• Computing classification accuracy for (egg > 1):
– Find most common labels if we use this rule:

• When (egg > 1), we were “sick” both times.

• When (egg <= 1), we were “not sick” three out of four times.

– Compute accuracy:
• Rule (egg > 1) is correct on 5/6 objects.

• Scores of other rules:
– (milk > 0.5) obtains lower accuracy of 4/6 .

– (egg > 0) obtains optimal accuracy of 6/6.

– () obtains “baseline” accuracy of 3/6, as does (egg > 2).

Egg Milk Fish …

1 0.7 0

2 0.7 0

0 0 0

0 0.7 1.2

2 0 1.2

0 0 0

Sick?

1

1

0

0

1

0

Decision Stump: Rule Search (Attempt 1)

• Accuracy “score” evaluates quality of a rule.

– Find the best rule by maximizing score.

• Attempt 1 (exhaustive search):

• As you go, keep track of the highest score.

• Return highest-scoring rule.

Compute score of (egg > 0) Compute score of (milk > 0) …
Compute score of (egg > 0.01) Compute score of (milk > 0.01) …
Compute score of (egg > 0.02) Compute score of (milk > 0.02) …
Compute score of (egg > 0.03) Compute score of (milk > 0.03) …
… … …
Compute score of (egg > 99.99) Compute score of (milk > 0.99) …

Cost of Decision Stumps (Attempt 1)

• How much does this cost?

• Assume we have:

– ‘n’ objects (days that we measured).

– ‘d’ features (foods that we measured).

– ‘t’ thresholds (>0, >0.01, >0.02,…)

• Computing the score of one rule costs O(n):

– We need to go through all ‘n’ examples.

– If you are not familiar with “O(n)” see notes on webpage.

• To compute scores for d*t rules, total cost is O(ndt).

• Can we do better?

Speeding up Rule Search

• We can ignore rules outside feature ranges:

– E.g., we never have (egg > 50) in our data.

– These rules can never improve accuracy.

– Restrict thresholds to range of features.

• Most of the thresholds give the same score.

– If we never have (0.5 < egg < 1) in the data,

• then (egg < 0.6) and (egg < 0.9) have the same score.

– Restrict thresholds to values in data.

Decision Stump: Rule Search (Attempt 2)

• Attempt 2 (search only over features in data):

• Now at most ‘n’ thresholds for each feature.

• We only consider O(nd) rules instead of O(dt) rules:

– Total cost changes from O(ndt) to O(n2d).

Compute score of (eggs > 0) Compute score of (milk > 0.5) …
Compute score of (eggs > 1) Compute score of (milk > 0.7) …
Compute score of (eggs > 2) Compute score of (milk > 1) …
Compute score of (eggs > 3) Compute score of (milk > 1.25) …
Compute score of (eggs > 4) …

Supervised Learning Notation

• Standard supervised learning notation:

• Feature matrix ‘X’ has rows as objects, columns as features.
– Xij is feature ‘j’ for object ‘i’.

– E.g., Xij is quantity of food ‘j’ on day ‘i’.

• Label vector ‘y’ contains the labels of the objects.
– yi is the label of object ‘i’.

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Decision Stump Learning Pseudo-Code

Decision Stump: Rule Search (Attempt 3)

• Do we have to compute score from scratch?

– Rule (egg > 1) and (egg > 2) have same decisions, except when (egg == 2).

– Sort the examples based on ‘egg’.

– Go through the rules in order, updating the score.

• Sorting costs O(n log n) per feature.

• You do at most O(n) score updates per feature.

• Total cost is reduced from O(n2d) to O(nd log n).

• This is a good runtime:

– O(nd) is the size of data, same as runtime up to a log factor.

– We can apply this algorithm to huge datasets.

Decision Tree Learning

• Decision stumps have only 1 rule based on only 1 feature.

– Very limited class of models: usually not very accurate for most tasks.

• Decision trees allow sequences of splits based on multiple features.

– Very general class of models: can get very high accuracy.

– However, it’s computationally infeasible to find the best decision tree.

• Most common decision tree learning algorithm in practice:

– Greedy recursive splitting.

Example of Greedy Recursive Splitting

• Start with the full dataset:

Egg Milk …

0 0.7

1 0.7

0 0

1 0.6

1 0

2 0.6

0 1

2 0

0 0.3

1 0.6

2 0

Find the decision stump with the best score:

Split into two smaller datasets based on stump:

Egg Milk …

0 0

1 0

2 0

0 0.3

2 0

Egg Milk …

0 0.7

1 0.7

1 0.6

2 0.6

0 1

1 0.6

Sick?

1

1

0

1

0

1

1

1

0

0

1

Sick?

0

0

1

0

1

Sick?

1

1

1

1

1

0

Greedy Recursive Splitting
We now have a decision stump and two datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Split the leaves by fitting a decision stump to each dataset:

Greedy Recursive Splitting
Splitting the leaves gives a “depth 2” decision tree:

We can then split the training examples into 4 datasets, and recurse on these…

Greedy Recursive Splitting
A “depth 3” decision tree:

Typically we continue splitting until:
- The leaves only has one label.
- We reach a user-defined maximum depth.

Discussion of Decision Tree Learning

• Advantages:
– Interpretable.
– Fast to learn.
– Very fast to classify

• Disadvantages:
– Hard to find optimal set of rules.
– Greedy splitting uses very simple rules.
– Unless very deep, greedy splitting often not accurate.

• Issues:
– Can you revisit a feature?

• Yes, knowing other information could make feature relevant again.

– More complicated rules?
• Yes, but searching for the best rule gets much more expensive.

– Is accuracy the best score?
• No, there may no split that increase accuracy. Alternative: information gain.

– What depth?

Summary

• Supervised learning:

– using data to write a program based on input/output examples.

• Decision trees: predicting a label using a sequence of simple rules.

• Decision stumps: simple decision tree that is very fast to fit.

• Greedy recursive splitting: uses a sequence of stumps to fit a tree.

– Very fast and interpretable, but not always the most accurate.

• Next time: the most important ideas in machine learning.

Bonus Slide: Can you re-visit a feature?

• Yes.

Knowing (ice cream > 0.3) makes small milk quantities relevant.

Bonus Slide: Can you have more complicated rules?

• Yes:

• But searching for best rule can get expensive.

Bonus Slide: Which Score Function?

• Shouldn’t we just use accuracy score?

– For leafs: yes, just maximize accuracy.

– For internal nodes: maybe not.

• There may be no simple rule like (egg > 0.5) that improves accuracy.

• Most common score in practice: information gain.

– Choose split that decreases entropy (“randomness”) of labels the most.

– Basic idea: easier to find good rules on “less random” labels.

Bonus Slide: Entropy as Measure of Randomness

• Entropy is measure of “randomness” of a set of variables.

• For discrete data, the uniform distribution has the highest entropy.

• So information gain tries to make labels “more predictable”.

High entropy means “very random”Low entropy means “very predictable”

Bonus Slide: Probabilistic Predictions

• Often, we’ll have multiple ‘y’ values at each leaf node.

• In these cases, we might return probabilities instead of a label.

• E.g., if in the leaf node we 5 have “sick” objects and 1 “not sick”:

– Return p(y = “sick” | xi) = 5/6 and p(y = “not sick” | xi) = 1/6.

• In general, a natural estimate of the probabilities at the leaf nodes:

– Let ‘nk’ be the number of objects that arrive to leaf node ‘k’.

– Let ‘nkc’ be the number of times (y == c) in the objects at leaf node ‘k’.

– Maximum likelihood estimate for this leaft is p(y = c | xi) = nkc/nk.

