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DataSense presents...

=5 Microsoft

MacHne LearninGg
CompPeTITION:

Predicting salaries e .f..;;.., oy

As students, we all probably thought abut the followmg questlon “how much
money can | expect to make when | graduate?” To answer that question,
Microsoft and DataSense challenge you to build a machine learning algorithm
which "learns" patterns from real world Canadian Census data to predict how
much money Canadians make. Compete for awesome prizes and be judged by
Data Science professionals (including a Microsoft Recruiter!)

For more information, visit our facebook event
page at https://goo.gl/eRNfGB




Admin

Assignment 4.

— 1 late date to hand in Wednesday, 2 for Friday, 3 for Monday.
Office hours:

— Tuesday 2pm office hours moved to ICICS 104.

Assignment 5:

— Out tonight/tomorrow (2-3 questions).

Assignment 6:

— Out by weekend (2 questions).

Final:
— December 12



Last 3 Lectures: Latent-Factor Models

* We’'ve been discussing latent-factor models of the form:
P(Zw)= SlIWs=4lP

* We get different models with under different conditions:
— K-means: each z, has one ‘1’ and the rest are zero.
— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: the columns w_have a norm of 1 and have an inner product of zero.
— NMF: all elements of W and Z are non-negative.



Last Time: Variations on Latent-Factor Models

* We can use all our tricks for linear regression in this context:
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* Absolute loss gives robust PCA that is less sensitive to outliers.

 We can use L2-regularization.
— Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.

* We can use L1-regularization to give sparse latent factors/features.
* We can use logistic/softmax/Poisson losses for discrete X
* Can use change of basis to learn non-linear latent-factor models.



Recommender System Motivation: Netflix Prize

e Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.

— Grand prize was $S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8t,

— 1% error reduction achieved on October 15,

— Steady improvement after that.

* ML methods soon dominated.

— One obstacle was ‘Napolean Dynamite’ problem:
 Some movie ratings seem very difficult to predict.
e Should only be recommended to certain groups.



Lessons Learned from Netflix Prize

 Prize awarded in 2009:

— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.
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* Winning entry (and most entries) used collaborative filtering:
— Method that only looks at ratings, not features of movies/users.

* A simple collaborative filtering method that does really well:

— Regularized matrix factorization. Now adopted by many companies.



Motivation: Other Recommender Systems

e Recommender systems are now everywhere:
— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

 Main types approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y; given x..
— Apply model to prediction for new users/items.

’ o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

e “Unsupervised” learning (but have label matrix ‘Y’ but no features):

— We only have labels y; (rating of user i’ for movie j’).

* Example: Amazon recommendation algorithm.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* We have some ratings available with values {1,2,3,4,5}.
 We want to predict ratings “?” by looking at available ratings.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* What rating would “Ryan Reynolds” give to “Green Lantern”?

— Why is this not completely crazy? We may have similar users and movies.



Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

yy = Wz

User ‘i’ has latent features z..
Movie J" has latent features w..
Our loss functions sums over available ratings ‘R’:
F(2w) = (% (w2 = y;)? = Azl + ﬂ% w2
And we add L2-regularization to both types of features.



Adding Global/User/Movie Biases

e Qur standard latent-factor model for entries in matrix ‘Y’:

yy = Wz

* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias B reflecting average overall rating:

y(S ~ ﬁ + MG’ZE
— We could also add a user-specific bias 3, and item-specific bias (3.
>/aJ' ~Fp+ 2 tp ~""‘()'77'{

* Some users rate things higher on average, and movies are rated better on average.
* These might also be regularized.



Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

* Other issues important in recommender systems:
— Diversity: how different are the recommendations?

* If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last?

* If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?
— Trust: tell user why you made a recommendation.
— Social recommendation: what did your friends watch?
— Freshness: people tend to get more excited about new/surprising things.

 Collaborative filtering does not predict well for new users/movies.



Hybrid Approaches

* Collaborative filtering can’t predict ratings for new users/movies.

* Hybrid approaches combine content-based/collaborative filtering:
— SVDfeature (won “KDD Cup” in 2011 and 2012)
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(pause)



Latent-Factor Models for Visualization

* PCA takes features x, and gives k-dimensional approximation z..

* If kis small, we can use this to visualize high-dimensional data.
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Motivation for Non-Linear Latent-Factor Models

* But PCA is a parametric linear model
 PCA may not find obvious low-dimensional structure.
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* We could use change of basis or kernels: but still need to pick basis.



Multi-Dimensional Scaling

* PCA for visualization:
— We’re using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:
— Let’s directly optimize the locations of the z, values.

* “Gradient descent on the points in a scatterplot”.

— Needs a“cost” function saying how “good” the z. locations are.
 Classic MDS cost function:
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.

£(2)= 225 (g2~ lly, - xI1)*
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. — )()“)

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional “distances” between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 225 (g2~ lly, - xI1)*

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. — )()“)

= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. — )()“)

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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MDS Optimization

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.

£(2)= 225 (g2~ lly, - xI1)*

= ‘J""’

* Cannot use SVD to compute solution:
— Gradient descent on z; values.
— You “learn” a scatterplot that tries to visualize high-dimensional data.
— But not convex and sensitive to initialization.



MDS Method (“Sammon Mapping”) in Action
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Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norm:

£(z2)= Zi (2 - ~2ill = lly; = x)H)
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* But we can make z, match different distances/similarities:

f(2)= zz d5(Lal2,2;) = dilx,x))
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— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.
* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Classic Multi-Dimensional Scaling (MDS)

* MDS default objective function with general distances/similarities:
£(2)= f 2 d3(dalai)25) — dy(x,x;))
|J-l |
* “Classic” MDS uses d,(x;x) = x;'x; and d,(z,z) = 7'z,
— We obtain PCA in this special case (for centered x;).
— Not a great choice because it’s a linear model.



Non-Euclidean Multi-Dimensional Scaling (MDS)

* MDS default objective function with general distances/similarities:

‘F(Z) = f,\ £ 43(12(2'.)2)) - d\(X;)XJ))

1= j’;l*l

* Another possibility: dy(x,x) = | |x;— x| | and d,(z;,z)) = [ [z;— 7| |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances more comparable.
]C Z) Z 2 ( dl(z,) )) J (x x)))

— Denominator reduces focus on large distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances more comparable.
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Summary

Recommender systems try to recommend products.

Collaborative filtering tries to fill in missing values in a matrix.
— Matrix factorization is a common approach.

SVDfeature combines linear regression and matrix factorization.
Multi-dimensional scaling is non-parametric latent-factor model.
Different distances/losses/weights usually gives better results.

Next time: fixing MDS and discovering new types of Leukemia cells.



Bonus Slide: Tensor Factorization

e Tensors are higher-order generalizations of matrices:
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e Generalization of matrix factorization is tensor factorization:
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e Useful if there are other relevant variables:
 Instead of ratings based on {user,movie}, ratings based {user,movie,age}.
» Useful if ratings change over time.



e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulatlon

”\;%“ 232 qCdi G x), 4y (2;,2))
* Using multivariate chain rule we have:
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