CPSC 340:
Machine Learning and Data Mining

Sparse Matrix Factorization
Fall 2016

Admin

Midterms:
— Midterms can be viewed during office hours.

Assignment 4.
— Due Monday.

Office hours:

— Tuesday 2pm office hours moved to ICICS 104.
— Extra office hours Thursdays from 4:30-5:30 in ICICS X836.

Assignment 5:
— Out on the weekend.

Last Time: PCA with Orthogonal/Sequential Basis

* When k=1, PCA has a scaling problem.

* When k > 1, have scaling, orthogonality, rotation, label switching.
— Standard fix: use normalized orthogonal rows w_ of ‘W".

T _ T. ,
\A/CWL—" and wcu/c.—o for (/,7‘0
— And fit the rows in order:
* First row “explains the most variance” or “reduces error the most”.

Xig

N

(— Off/ma/ So,u‘/im
with o&_LC
("fist" PO

Xij

ori)m/ solution Thet is
L/ ar‘uqonal To “fict” PC

Last Time: Learning a Basis for Faces

* We discussed three ways to learn a basis z, for faces:

— K-means (vector quantization).
* Replace face by the average face in a cluster.
* Can’t distinguish between people in the same cluster (only ‘k’ possible faces).

. - ™ | . ’v‘_.- :.; -
@0 W DTl
i ‘ A M l' |

XS ETW w2t Fa ity g Rty

Last Time: Learning a Basis for Faces

* We discussed three ways to learn a basis z, for faces:

— K-means (vector quantization).
— PCA (orthogonal basis).

* Global average plus linear combination of “eigenfaces”.
* Can generate an infinite number of faces when changing the z..
* But “eigenfaces” are not intuitive ingredients for faces.

. sav | | s ‘I-WE ..MH ”“”‘E”“‘

Xi -+ Zu*\V/ ’+ 2)*\” + Z,‘;* \A/S + 2;43’% +ZS* \n/s,

Last Time: Learning a Basis for Faces

* We discussed three ways to learn a basis z, for faces:
— K-means (vector quantization).
— PCA (orthogonal basis).
— NMF (non-negative matrix factorization):

* Instead of requiring orthogonality requires non-negativity.
— No “ordering” among parts.
— The z, are sparse so each face only uses a subset of the sparse “parts”.

t 2u¥w, 4+ kW + 2u¥ w + 2 ¥ Wy *l—‘Z,S)“WS

Warm-up to NMF: Non-Negative Least Squares

* Consider our usual least squares problem:
n
| T 2
‘F(W) 2 é(w J)’,7

* But assume y and elements of x, are non-negative:
— Could be sizes (‘height’, ‘milk’, ‘/km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).
* Assume we want elements of ‘w’ to be non-negative, too:

— No physical interpretation to negative weights.
— If x;; is amount of product you produce, what does w; < 0 mean?

 Non-negativity tends to generate sparse solutions.

Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
Hw)= 2' ;(w X; "7;)2 wilh W20
* Plotting the (constrained) objective function:

7 mdﬂ&/ﬁ(\v)

771/ w
O

* |In this case, non-negative solution is least squares solution.

Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
Hw)= 2' ;(w X; "7;)2 wilh W20
* Plotting the (constrained) objective function:

Const rainei Mvh
w

* |n this case, non-negative solution is w = 0.

Sparsity and Non-Negativity

* So non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

 How can we minimize f(w) with non-negative constraints?
— Naive approach: solve least squares problem, set negative w; to 0.

Comrvn(e w = (XT)()\()(-'\/)
Se"r \/\6-3 MaXZO)Mﬁz

— This is correct when d = 1.
— Can be worse than setting w = 0 when d > 2.

Sparsity and Non-Negativity

* So non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

 How can we minimize f(w) with non-negative constraints?
— A correct approach is projected gradient algorithm:

* Run a gradient descent iteration:
t+4 t
\; = Wt T o V‘F(wé)
* After each step, set negative values to 0.
'64' o t-lr'[z;
W Max 2 0, w,

* Repeat.

Sparsity and Non-Negativity

e Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

 How can we minimize f(w) with non-negative constraints?

— Correct approach is “projected” gradient descent:
t‘“é _64, _ t+'[2
w = Wt "o(tV‘F(wé) W, = MaY%O) Wy /{
— Similar properties to gradient descent:
* Guaranteed decrease of ‘" if o, is small enough.

e Reaches local minimum under weak assumptions (global minimum for convex ‘f’).

* Generalizations allow things like L1-regularization instead of non-negativity.
(findMinL1.m)

Projected-Gradient for NMF

* Back to the non-negative matrix factorization (NMF) objective:

F(W 2)= 2 Z(w Z; 7 X) with WLJ70
EINEL GV\C(Zu 0
— Different ways to use projected gradient:
e Alternate between projected gradient steps on ‘W’ and on ‘Z’
* Or run projected gradient on both at once.
* Or sample a random ‘i’ and ‘j” and do stochastic projected gradient.

Set 2= oW ank w = wf =, FW2) for seladed i and |

(keff 6'“1# Vq/vlo) o‘P

— Non-convex and (unlike PCA) is sensitive to |n|t|aI|zat|on. W oand 2 firel)

* Hard to find the global optimum.
* Typically use random initialization.

Regularized Matrix Factorization

 For many PCA applications, ordering orthogonal PCs makes sense.
— Latent factors are independent of each other.
— We definitely want this for visualization.

* |n other cases, ordering orthogonal PCs doesn’t make sense.

— We might not expect a natural “ordering”.
"A."’-’ r“ " f ‘;"~':.—.— |
s ‘?“(,‘ *t ‘ — \‘7"1‘..;..' "1
ES 2 = = it | ¥
B S RN T e S ; LT he
- 0:‘-‘--71' 1 ‘__ v —‘- ler-. "‘:if V M / k\ ~— g~ == { ‘

'i’ \- .",’“ - iF ’_‘.ﬂ._\’; 051a S \ “\‘ PN fCA W/{/\
e e Rl b L r'koym it 3 SR TN - ,f l
S b\ et vt T | nonsorfhogana
.f_./"- < l. " X — e :- “‘:.‘.—ﬁf,’_‘_::‘ :'", % 19“56-

o 4 St 2 Soll Sag SN -
. _;,' % ;" \ o“'.) \]

Regularized Matrix Factorization

* More recently people have considered L2-regularized PCA:

F(w,2)= L) 2w-XII? +%.ME +Z‘2_zN’ZHF2 Kl
N—

IR

— Replaces normalization/orthogonality/sequential-fitting.

* But requires regularization parameters A; and A,.

— Need to regularize W and Z because of scaling problem:
e Regularizing only ‘W’ won’t work: you could make ‘Z’ big to compensate.
* You could alternately constrain one and regularize the other:

Pow) =L [2w=xIE + 2121 with Tl [fi ol

Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:
n d
F(Wy2)=ZIzw-xli¢ + 220k, + 2}3 I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
* Disadvantage of using L1-regularization over non-negativity:
— Sparsity controlled by A; and A, so you need to set these.

* Advantage of using L1-regularization:
— Negative coefficients usually make sense.
— Sparsity controlled by A; and A,, so you can control amount of sparsity.

Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:
n d
F(Wy2)=ZIzw-xli¢ + 220k, + Zlgg I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

* Many variations exist:
— Mixing L2-regularization and L1-regularization or making one a constraint.
— K-SVD constrains each z; to have at most ‘k” non-zeroes:

* K-means is special case where k = 1.
* PCA is special case where k =d.

Matrix Factorization with L1-Regularization

\m ed: PoSﬁ ve

N 2 - —— ..
' A "l‘ y N
; ' o WA
B ’ i \]
od i3 i
- Q:’.'.-"-—-' ;'\‘el -\‘ MY ‘
4. ‘ (3N . L) :-3
I el s — PR N
e v i - — - ~ - N
X - 04 P ;‘, - " " "',)’)
5! i - oy ! '» WY <N |
— Y — , o P
» -'-‘ — q'»";' a _‘v{ . ‘~ .
P SN -\ ey |- oA U, A\ T
/ » 5 \ 7
e i\'.\ ‘\- ./-" RN RVNE \
AN AW Tl
. O N e Pt A
= = ..'ZT.‘."". T o Toat Toa A 2.
> [Sl - » * ’ -
e \ ';.-‘ Ca BT (-5‘) 2o |
= -_= - o P ’ ’ .
A A P==dL, - L . S =
-~ - - - —
’L : e T = O ISR TR) AT Ty
ol Jo N
o =, P‘;} \‘-..A ;""‘ » | ’.n‘. ’?'
- » N & - ‘\..- >
o T M N Y .
7 WSS A . e - " '. o 7 ‘.\ "U.."\'
po = 4R < oA
") - " wl o
-~ - - L)

r o~ NN -
4 / (‘ ' ‘k—. fara - k e
I s F
o T e ¥, Py Mo
~n - o=t | | "
Y e o Sy L T ’.'."‘ -
o 'S o8
| 3 /h l N | O
N

-_—_
‘:‘ — .'f‘
53 M A L SR Y
SN » ",;‘ & -) -
- vy ~ - - 4 k-. _— - N
I e ' PN
.9 “ ‘ : 4 V, I.‘ \
o's y$ 3 -
v « -

(e) Dictionary Learning

PCA WLM\ ()(thosoml'l*\/ Sp

— L

- " ’
] P) ! :I' ‘ !' . @ \» P .[
= va ' ~ l- \ = . TP E
B $ -~ .j ‘\ . . 3
= _ \ a Gl NEA
‘ v A \ Pl : o n
‘ .’ . ' ’ \ l ' . .
“ 4 — \ v
\ F > ..' 4 — 7 s \) t‘ ’
- e - -) z e |
o "' T ||Y ds TR
» / — V. e * . v o= i/ 4
. \p2 : v | R 1)
= VIR NS B
J, W ooy BV eV \
(¢) NMF (d) SPCA, T=30%

Y
arsn‘}\/ é\ne “o
Non— n(’() o\" wit Y

powsi fy Pue/'fo

L, = fec\).«lariz alion

Recent Work: Structured Sparsity

e “Structured sparsity” considers dependencies in sparsity patterns.

ILIANEHEDL JCNFARERS
AEF4AEFRES INENEEEER
ulZdEENEY IENNNRENN
EEEENAREE RERREESER

I\/M F gd)ﬁfo PCA wc'ﬂ\ ”Sfrud(v\mel\,(faf.ﬂ'ly

Application: Sports Analytics

. Stephen Curry (940 shots) LeBron James (315 shots)
 NBA shot charts: —

* NMF (using “KL divergence” loss with k=10 and smoothed data).

— Negative 20)| 2O) 30O) >0O)| B)| >3 nc) 0) PO)| B3O
i

va l ues wou I d LeBron James 0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17

Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01

not ma ke Tyson Chandler .26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01

Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03

SENse h ere. Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00

Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry 0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34

Application: Image Restoration

Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

1= =
] _

Si?t Or X: ("wm,)_, “)eiqh','))f(iwa)e \»'\H}Q Ly ((rc'}c,‘\ he-.()w)x(,.kwlﬂ)xg)

Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering
2. “Whiten” patches.
(remove correlations)

Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
* Few PCs do almost everything.
* Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

(b) Principal components. ‘Gabor’ filters

Latent-Factor Models for Image Patches

e Results from a sparse (non-orthogonal) latent factor model:
i . N ™] N | j‘]f’='1

(a) With centering - gray. (b) With centering - RGB.

Latent-Factor Models for Image Patches

e Results from a “sparse” (non-orthogonal) latent-factor model:

——— —_—
R ——

= Bl
I N I R
LAY —_\} Al BN ==\ e

(c) With whitening - gray.

Recent Work: Structured Sparsity

e Basis learned with a variant of “structured sparsity”:

. Iy .
SMIM‘ *,(7 (or')l(a/ (o/vmmg“

'hneor\/ n \/va/ COrfe)(

(b) With 4 x 4 neighborhood.

Beyond Squared Error

* Our (unregularized) objective for latent-factor models (LFM):

P(w2)= 250w =x)?

1<«)—"!

* As before, there are squared error alternatives.
* We can get a LFM for binary x;; using the logistic loss:

'F(W)Z7: % 2&- IO()(H’exP(‘X‘j \"’;Zi)>

AR

Robust PCA
e Robust PCA methods use the absolute error:
n
1 (W2) Z % \WJTZi - X;,"
115~

e Will be robust to outliers in the matrix ‘X.

. T
* Encourages “residuals” r; to be exactly zero. X W 2;

— Non-zero r; are where the “outliers” are.

Arr'yévq robust FA
Fo video {rames

Robust PCA

e Miss Korea contestants and robust PCA:

Original image Low rank Sparse error
reconstruction

Summary

Non-negativity constraints lead to sparse solution.
Projected gradient adds constraints to gradient descent.
Non-orthogonal LFMs make sense in many applications.
L1-regularization leads to other sparse LFMs.

Robust PCA allows identifying certain types of outliers.

Next time: predicting which movies you are going to like.

