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Admin

• Midterms:

– Midterms can be viewed during office hours.

• Assignment 4:

– Due Monday.

• Office hours:

– Tuesday 2pm office hours moved to ICICS 104.

– Extra office hours Thursdays from 4:30-5:30 in ICICS X836.

• Assignment 5:

– Out on the weekend.



Last Time: PCA with Orthogonal/Sequential Basis

• When k = 1, PCA has a scaling problem.

• When k > 1, have scaling, orthogonality, rotation, label switching.

– Standard fix: use normalized orthogonal rows wc of ‘W’.

– And fit the rows in order: 

• First row “explains the most variance” or “reduces error the most”.



Last Time: Learning a Basis for Faces

• We discussed three ways to learn a basis zi for faces:

– K-means (vector quantization).

• Replace face by the average face in a cluster.

• Can’t distinguish between people in the same cluster (only ‘k’ possible faces).



Last Time: Learning a Basis for Faces

• We discussed three ways to learn a basis zi for faces:

– K-means (vector quantization).

– PCA (orthogonal basis).

• Global average plus linear combination of “eigenfaces”.

• Can generate an infinite number of faces when changing the zi.

• But “eigenfaces” are not intuitive ingredients for faces.



Last Time: Learning a Basis for Faces

• We discussed three ways to learn a basis zi for faces:

– K-means (vector quantization).

– PCA (orthogonal basis).

– NMF (non-negative matrix factorization):

• Instead of requiring orthogonality requires non-negativity.
– No “ordering” among parts.

– The zi are sparse so each face only uses a subset of the sparse “parts”.



Warm-up to NMF: Non-Negative Least Squares

• Consider our usual least squares problem:

• But assume yi and elements of xi are non-negative:

– Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).

• Assume we want elements of ‘w’ to be non-negative, too:

– No physical interpretation to negative weights.

– If xij is amount of product you produce, what does wj < 0 mean?

• Non-negativity tends to generate sparse solutions.



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

• So non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– Naive approach: solve least squares problem, set negative wj to 0.

– This is correct when d = 1.

– Can be worse than setting w = 0 when d ≥ 2.  



Sparsity and Non-Negativity

• So non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– A correct approach is projected gradient algorithm:

• Run a gradient descent iteration:

• After each step, set negative values to 0.

• Repeat.



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– Correct approach is “projected” gradient descent:

– Similar properties to gradient descent:

• Guaranteed decrease of ‘f’ if αt is small enough.

• Reaches local minimum under weak assumptions (global minimum for convex ‘f’).

• Generalizations allow things like L1-regularization instead of non-negativity. 
(findMinL1.m)



Projected-Gradient for NMF

• Back to the non-negative matrix factorization (NMF) objective:

– Different ways to use projected gradient:
• Alternate between projected gradient steps on ‘W’ and on ‘Z’.

• Or run projected gradient on both at once.

• Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.

– Non-convex and (unlike PCA) is sensitive to initialization.
• Hard to find the global optimum.

• Typically use random initialization.



Regularized Matrix Factorization

• For many PCA applications, ordering orthogonal PCs makes sense.

– Latent factors are independent of each other.

– We definitely want this for visualization.

• In other cases, ordering orthogonal PCs doesn’t make sense.

– We might not expect a natural “ordering”.

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Regularized Matrix Factorization

• More recently people have considered L2-regularized PCA:

– Replaces normalization/orthogonality/sequential-fitting.

• But requires regularization parameters λ1 and λ2.

– Need to regularize W and Z because of scaling problem:

• Regularizing only ‘W’ won’t work: you could make ‘Z’ big to compensate.

• You could alternately constrain one and regularize the other:



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Disadvantage of using L1-regularization over non-negativity:

– Sparsity controlled by λ1 and λ2 so you need to set these.

• Advantage of using L1-regularization:

– Negative coefficients usually make sense.

– Sparsity controlled by λ1 and λ2, so you can control amount of sparsity.



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Many variations exist:

– Mixing L2-regularization and L1-regularization or making one a constraint.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:

• K-means is special case where k = 1.

• PCA is special case where k = d.



Matrix Factorization with L1-Regularization

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Recent Work: Structured Sparsity

• “Structured sparsity” considers dependencies in sparsity patterns.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf



Application: Sports Analytics

• NBA shot charts:

• NMF (using “KL divergence” loss with k=10 and smoothed data).

– Negative
values would
not make 
sense here.

http://jmlr.org/proceedings/papers/v32/miller14.pdf



Application: Image Restoration

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:



Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering 
2. “Whiten” patches.
(remove correlations)



Latent-Factor Models for Image Patches

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

Orthogonal bases don’t seem right:
• Few PCs do almost everything.
• Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

‘Gabor’ filters



Latent-Factor Models for Image Patches

• Results from a sparse (non-orthogonal) latent factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Latent-Factor Models for Image Patches

• Results from a “sparse” (non-orthogonal) latent-factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Recent Work: Structured Sparsity

• Basis learned with a variant of “structured sparsity”:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Beyond Squared Error

• Our (unregularized) objective for latent-factor models (LFM):

• As before, there are squared error alternatives.

• We can get a LFM for binary xij using the logistic loss:



Robust PCA

• Robust PCA methods use the absolute error:

• Will be robust to outliers in the matrix ‘X’.

• Encourages “residuals” rij to be exactly zero.

– Non-zero rij are where the “outliers” are.

http://statweb.stanford.edu/~candes/papers/RobustPCA.pdf



Robust PCA

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

• Miss Korea contestants and robust PCA:



Summary

• Non-negativity constraints lead to sparse solution.

• Projected gradient adds constraints to gradient descent.

• Non-orthogonal LFMs make sense in many applications.

• L1-regularization leads to other sparse LFMs.

• Robust PCA allows identifying certain types of outliers.

• Next time: predicting which movies you are going to like.


