CPSC 340:
Machine Learning and Data Mining

Multi-Class Regression
Fall 2016



Admin

e Midterm:
— Grades/solutions will be posted later this week.

* Assignment 4:
— Posted, due November 14.

e Extra office hours:
— Thursdays from 4:30-5:30 in ICICS X836.



Last Time: L1-Regularization

* We discussed L1-regularization:
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— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘w’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘W’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (proximal-gradient).

— Solution is not unique.
— Tends to yield false positives.



Extensions of L1-Regularization

e “Elastic net” uses L2-regularization plus L1-regularization.
— Solution is still sparse but is now unique.
— Slightly better with feature dependence: selects both “mom” and “mom?2”.

* “Bolasso” runs L1-regularization on bootstrap samples.
— Selects features that are non-zero in all samples.
— Much less sensitive to false positives.

* There are many non-convex regularizers (square-root, “SCAD”):
— Much less sensitive to false positives.
— But computing global minimum is hard.



Last: Maximum Likelihood Estimation

We discussed computing ‘w’ by maximum likelihood estimation (MLE):
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This is equivalent to minimizing negative log-likelihood (NLL):
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For logistic regression, probablllty is wx. passed through sigmoid.
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Maximum Likelihood and Least Squares

 Many of our objective functions can be written as an MLE.
* For example, consider Gaussian likelihood with mean of w'x::
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Maximum Likelihood and Least Squares

Many of our objective functions can be written as an MLE.
For example, consider Gaussian likelihood we mean of w'x::
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So we can minimize NLL by minimizing:
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So least squares is MLE under Gaussian likelihood.
— With a Laplace likelihood you would absolute error.



Problem with Maximum Likelihood Estimation

Maximum likelihood estimate maximizes:
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It’s is a bit weird:
— “Find the ‘W’ that makes ‘y’ have the highest probability given X’ and ‘w’.”

A problem with MLE:

— ‘y’ could be very likely for some very unlikely ‘w’.
— E.g., complex model that overfit by memorizing the data.

What we really want:
— “Find the ‘w’ that has the highest probability given ‘X" and ‘y"”



Maximum a Posteriori (MAP) Estimation

 Maximum a posteriori (MAP) maximizes what we want:
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Maximum a Posteriori (MAP) Estimation

 Maximum a posteriori (MAP) maximizes what we want:
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* Prior p(h) is ‘belief’ that ‘w’ is the correct before seeing data:
— Can take into account that complex models can overfit.

* If we again minimize the negative of the logarithm, we get:
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MAP Estimation and Regularization

 While many losses are equivalent to NLLs,
many regularizers are equivalent to negative log-priors.

* Assume each w; comes from a Gaussian (0-mean, 1/A variance):
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* And negative log-prior over all /j’ is:

d
d
T '”‘3( F(""» = ~32 l09( f(wj )) = ((ans*awj) g% Wj

23w = At (L™ repheaity



MAP Estimation and Regularization

* MAP estimation gives link between probabilities and loss functions.
— Gaussian likelihood and Gaussian prior gives L2-regularized least squares.
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Why do we care about MLE and MAP?

Unified way of thinking about many of our tricks?
— Laplace smoothing in naive Bayes can be viewed as regularization.

Remember our two ways to reduce complexity of a model:
— Model averaging (ensemble methods).
— Regularization (linear models).

“Fully”-Bayesian methods combine both of these.
— Average over all models, weighted by posterior (which includes regularizer).
— Very powerful class of models we’ll cover in CPSC 540.

Sometimes it’s easier to define a likelihood than a loss function.
— We'll do this for multi-class classification.



Multi-Label Classification
 We’'ve been considering supervised learning with a single label:
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* E.g., is there a cat in this image or not?




Multi-Label Classification

* |n multi-label classification we want to predict ‘k’ binary labels:
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Multi-Label Classification
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 Approach 1:
— Treat {1,-1,1,1,-1} as the binary label 10110.
— Problem is that with ‘k’ labels you have 2k classes.

* Only useful if k" is very small.
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Multi-Label Classification

* Approach 2:

— Fit a binary classifier for each column ‘¢’ of Y, using column as labels.

()~ )

* If we use a linear model, each classifier has a weights w_.

* Let’s put the w_ together into a matrix ‘W’:

W= ww---

J./¥




Multi-Label Classification
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* Fancier methods model correlations between y. or between the w..



Multi-Class Classification
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* Multi-class classification: special case where each y. has 1 non-zero.



Multi-Class Classification and “One vs. All”
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* Multi-class classification: special case where each y. has 1 non-zero.

— Now we can code y, as a discrete number {1,2,3,...} giving class ‘k’.

* One vs. all multi-class approach uses naive multi-label approach:

— Independently fit parameters ‘w_’ of a linear model for each class ‘c’.

* Each ‘w_’ tries to predict +1 for class ‘c’ and -1 for all others.



Multi-Class Classification and “One vs. All”
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* But prediction W'x. might have multiple +1 values.
* To predict the “best” label, choose ‘c’ with largest value of w_"x..
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Multi-Class Classification and “One vs. All”
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* But we only trained w_ to get the correct sign of y.:

— We didn’t train the w_so that the largest w_"x, would be y..



Multinomial Logistic Regression

Can we define a loss function so that largest w_'x, gives y.?
In the multi-label logistic regression model we used:
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The multinomial logistic regression model uses the same idea:
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Multinomial Logistic Regression

e So multinomial logistic regression uses:
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e Which is also known as the softmax function.
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* Now that we have a probability, the MLE gives a loss function:
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Losses for Other Discrete Labels

 MLE/MAP gives loss for classification with basic discrete labels:

n  «u

— Logistic regression for binary labels {“spam”, “not spam”}.
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— Softmax regression for multi-class {“spam”, “not spam”, “important”}.

 But MLE/MAP lead to losses with other discrete labels:
— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
— Counts: 602 ‘likes’.

* We can also use ratios of probabilities to define more losses:

— Multi-class SVMs (similar to softmax, but generalizes hinge loss).
— Ranking: Difficulty(A3) > Difficulty(A4) > Difficulty (A2) > DifficultyA(1).



Ordinal Labels

* Ordinal data: categorical data where the order matters:
— Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.
— Softmax would ignore order.

* Can use ‘ordinal logistic regression’.
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Count Labels

Count data: predict the number of times something happens.

— For example, y. = “602” Facebok likes.

Softmax/ordinal require finite number of possible labels.

We probably don’t want separate parameter for ‘654’ and ‘655’.
Poisson regression: use probability from Poisson count distribution.

— Many variations exist.



Summary

-log(probability) lets us to define loss from any probability.

— Special cases are least squares, least absolute error, and logistic regression.
MAP estimation directly models p(w | X, y).

— Gives probabilistic interpretation to regularization.

Softmax loss is natural generalization of logistic regression.

Discrete losses for weird scenarios are possible using MLE/MAP:
— Ordinal logistic regression, Poisson regression.

Next time:
— What ‘parts’ are your personality made of?



Bonus Slide: Multi-Class SVMs



Bonus Slide: Ranking



