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Admin

e Midterm:
— Grades/solutions will be posted later this week.

* Assignment 4:

— Coming soon.



Last Time: Feature Selection

e Before midterm we discussed feature selection:
— Choosing set of “relevant” features
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* There a numerous challenges.
— Conditional independence and variable dependence (can do these wrong).
— Tiny effects and context-specific relevance (depends on application).
— Causality and confounding (can’t resolve these with “observational” data).



Last Time: Feature Selection

e Before midterm we discussed feature selection:
— Choosing set of “relevant” features.
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* Two common approaches: ”""V‘“”l

— Hypothesis testing: sequence of conditional independence tests.
e Often better for identifying relevant factors, worse for regression.
* Variable dependence problems.

— Search and score: define a “score” and search for the best score.

e Often better for regression, worse for identifying factors.
* Hard to define “score” and search for the best score.




Motivation: Identifying Important E-mails

Recall problem of identifying ‘important’ e-mails:

| »  Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) -
» Issam Laradji Inbox  Convergence rates forcu = 9:49 am
(_  Important ) » sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mgl » Mark .. sara, Sara (11) Label propagation &= 757 am

Nrafes (4

Global/local features in linear models give personalized prediction.
We can do binary classification by taking sign of linear model:

yi = signlux)
— Convex loss functions (hinge loss, logistic loss) let us find an appropriate ‘w’.
We can train on huge datasets like Gmail use stochastic gradient.

But what if we want a probabilistic classifier?
— Want a model of p(y, = “important” | x).



Generative vs. Discriminative Models

* Previously we talked generative probabilistic models:
— These use Bayes rule and models p(x;|y.) to predict p(y; | x;).

P(7i')4‘)o( \D(Xi[)’i>f(y">

— Classic example is naive Bayes.

* Alternative is discriminative probabilistic models:
— Directly model p(y. | x;) to predict p(y; | x,).

* No need to model x;, so we can use complicated features.
* Tend to work better when we have lots of data.

— Classic example is logistic regression.



Logistic Regression

* Challenge: ply, | x;) might still be really complicated:

— If x, has ‘d’ binary features, need to estimate p(y; | x;) for 2¢ input values.

* Practical solution: assume p(y; | x;) has “parsimonious” form.

— E.g., ply; | x;) has a form with only ‘d’ parameters.

* Most common choice is linear model passed through sigmoid:
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Logistic Regression

* Linear passed through sigmoid is called logistic regression.

|
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Logistic Regression

* Linear passed through sigmoid is called logistic regression.

|
P(y =+ /X,)w) }(ifw ¥i/ = T:f exp (-w"y,-)
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Maximum Likelihood Estimation

* We can find ‘w’ using maximum likelihood estimation (MLE).
— Given data {X,y} and parameters ‘w’, MLE is given by maximum of:

P(yl X w)
l/l}kc‘ll\ool\\

— Appealing “consistency” properties as n goes to infinity (take STAT 4XX).
— If our data {X,y} contains ‘n’ [ID samples {x,y.}, then likelihood simplifies:

P(\/' YW> T f(y; l)(:)w)
t{k 13D dyla

— We've used this before: our naive Bayes “counting” estimate was the MLE.



Maximum Likelihood Estimation

* We can find ‘w’ using maximum likelihood estimation (MLE).
— Given |ID data {X,y} and parameters ‘w’, MLE is given by maximum of:

n
P(\/, y)W>: TT f(y' l)(.')w)
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— We usually maximize the “log-likelihood”: n
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Maximum Likelihood Estimation

* We can find ‘w’ using maximum likelihood estimation (MLE).
— Given |ID data {X,y} and parameters ‘w’, MLE is given by maximum of:

i N
)09( '):)' oy(y,-) w)x}y"i; )09(F(yi)xi,w))
— But we like to minimize things, so let’s minimize negative log-likelihood:
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MLE for Logistic Regression

* We can find ‘w’ using maximum likelihood estimation (MLE).
— Given |ID data {X,y} and parameters ‘W’, MILE is given by minimum of:
‘F(w) - = 2 \06( Yi i7W>>
| =\
— For logistic regression we had: \
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MLE for Logistic Regression

The loss function used by logistic regression:

’F (""> - Z’\ ,09 (/A ff'o(‘yqu)fi))

This ‘" is convex and di'fferentiable.

— We can minimize it using gradient descent.

If we multiply by (1/n), this ‘" is an average.
— We can use stochastic gradient on huge datasets.

(Yi:-H'X‘)W): —_— l

Can get probabilities from sigmoid: P [+ GXP(~)/5W")/'.)

4
We can/should add a regularizer: {(w) = f [o()(H exP(»%-w";q))*%"W’I‘



(pause)



Greedy Search and Score: Forward Selection

 Forward selection algorithm for feature selection:
1. Start with an empty set of relevant features, S =1 ].
For each possible feature ‘j’:

* Fit model with ‘j’ added to set of relevant features ‘S’.
| . \
For ’ec\sf sqmm:s In M«Haéf \A/: ()((-', §) 4*)( (:)S>>\ ( X(-)5>*y>
* Compute score of adding this feature.

F()r LobY\Orm N Ma“aé’ SCore~ Sum(()((’){)?(w"y)/\a?) + %*'M(J'ﬂ\(S)

& Find ‘j” that improves the score the most.
* If this j” improves the score, add it to ‘S” and go back to 2.

 If no feature ‘j’ improves the score, then stop.




Greedy Search and Score: Forward Selection

 Forward selection algorithm for feature selection:
1. Start with an empty set of relevant features, S =1 ].
2. For each possible feature ‘j’:

* Fit model with ‘j’ added to set of relevant features ‘S’.

N -~
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3. Find ‘j’ that improves the score the most.

* If this j” improves the score, add it to ‘S” and go back to 2. /’Vlc/ S'I'\QMU/)"’ we
f(’()ular/éef
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 If no feature ‘j’ improves the score, then stop.



Feature Selection Approach 3: L1-Regularization
Consider regularizing by the L1-norm:

P(w>: -é “XW~>,H2 — /M'WN,

Like L2-norm, it’s convex and improves our test error.
Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

L1-regularization simultaneously regularizes and select features.
— Very fast alternative to search and score.



Sparsity and Least Squares

* Consider 1D least squares objective:
N
‘F(W): "ll' g|(w )(-,- \/')Z

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0). | 4, . Zyi y

— But for finite ‘n” the minimum is unlikely to be exactly zero.
~—




Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objective:

n 2 i WO
4’\(\/\/):%2(\” Xi = ‘/1)7\ + w/o/ O if w=0

* This is a convex 1D quadratic function but with a discontinuity at O: )
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e LO-regularized minimum is often exactly at the ‘discontinuity’ at O:
— Sets the feature to exactly O (does feature selection), but not convex.



Sparsity and L2-Regularization

* Consider 1D L2-regularized least squares objective:
S TRV L R
“’\(W)" 2 gi(w X \/l) + -zw

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola): £(.)
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e |L2-regularization moves it a bit closer to zero.
— But doesn’t do feature selection (nothing special about being ‘exactly’ zero).
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Sparsity and L1-Regularization

* Consider 1D L1-regularized least squares objective:
' n
ﬁ(w): B! g(w Xi = ‘/1)7\ -ﬂ)w\

* This is a convex piecwise-quadratic function of ‘w’ with ‘kink” at O: 1%/)

|
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* Ll-regularization minimum is often exactly at the ‘kink’ at O:
— Sets the feature to exactly O (does feature selection),
— Big A leads to very sparse solutions, small A give dense solutions. when /2)'. / 37
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Sparsity and L2-Regularization

_2 regularlzatlon conceptually restricts ‘w’ to a ball.
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Sparsity and L2-Regularization

| @Unconstrained Solution

+."| © L2-Regularized Solution |,

| 1-regularization restricts to the L1 “

| 2-regularization conceptually restricts ‘w’ to a ball.

1 @ Unconstrained Solution

(O L1-Regularized Solution
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— Solutions tend to be at corners where W, are zero.




L2-Regularization vs. L1-Regularization

e L2-Regularization: e L1-Regularization:

— Insensitive to changes in data. — Insensitive to changes in data.

— Significantly-decreased variance: — Significantly-decreased variance:
* Lower test error. * Lower test error.

— Closed-form solution. — Requires iterative solver.

— Solution is unique. — Solution is not unique.

— All ‘w’ tend to be non-zero. — Many ‘W’ tend to be zero.

— Can learn with linear number of — Can learn with exponential

irrelevant features. number of irrelevant features.

e E.g., only O(d) relevant features. e E.g., only O(log(d)) relevant

features.



L1-Regularization Issues

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
e Picks at least one of “mom” and “mom?2”.

— Very fast: we’ll talk about proximal-gradient methods next week.
* Disadvantages:
— Tends to give false positives (selects too many variables).

* Neither good nor bad:
— Does not take small effects.
— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables.



Summary

Discriminative models directly model p(y, | x).

Logistic regression uses p(y; | x, w) = 1/(1+exp(-y;w'x.).

Maximum likelihood estimation:

— Maximizes p(y|X,w), which for IID is equivalent to minimizing —;- "7‘) {’(}" IXU w)
L1-regularization: simultaneous regularization / feature selection.

Next time: what if y, is not numerical/binary?



Bonus Slide: Other Parsimonious Parameterizations

* Sigmoid isn’t the only parsimonious p(y; | x,, w):
— Noisy-Or (simplier to specific probabilities by hand).
— Probit (uses CDF of normal distribution, very similar to logistic).
— Extreme-value loss (good with class imbalance).
— Cauchit, Gosset, and many others exist...



Unbalanced Data and Extreme-Value Loss

e Consider binary case where:
— One class overwhelms the other class (‘unbalanced’ data).
— Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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