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Admin

• Midterm:

– Grades/solutions will be posted later this week.

• Assignment 4:

– Coming soon.



Last Time: Feature Selection

• Before midterm we discussed feature selection:

– Choosing set of “relevant” features.

• There a numerous challenges:

– Conditional independence and variable dependence (can do these wrong).

– Tiny effects and context-specific relevance (depends on application).

– Causality and confounding (can’t resolve these with “observational” data).



Last Time: Feature Selection

• Before midterm we discussed feature selection:
– Choosing set of “relevant” features.

• Two common approaches:
– Hypothesis testing: sequence of conditional independence tests.

• Often better for identifying relevant factors, worse for regression.

• Variable dependence problems.

– Search and score: define a “score” and search for the best score.
• Often better for regression, worse for identifying factors.

• Hard to define “score” and search for the best score.



Motivation: Identifying Important E-mails

• Recall problem of identifying ‘important’ e-mails:

• Global/local features in linear models give personalized prediction.

• We can do binary classification by taking sign of linear model:

– Convex loss functions (hinge loss, logistic loss) let us find an appropriate ‘w’.

• We can train on huge datasets like Gmail use stochastic gradient.

• But what if we want a probabilistic classifier?
– Want a model of p(yi = “important” | xi).



Generative vs. Discriminative Models

• Previously we talked generative probabilistic models:

– These use Bayes rule and models p(xi|yi) to predict p(yi | xi).

– Classic example is naïve Bayes.

• Alternative is discriminative probabilistic models:

– Directly model p(yi | xi) to predict p(yi | xi).

• No need to model xi, so we can use complicated features.

• Tend to work better when we have lots of data.

– Classic example is logistic regression.



Logistic Regression

• Challenge: p(yi | xi) might still be really complicated:

– If xi has ‘d’ binary features, need to estimate p(yi | xi) for 2d input values.

• Practical solution: assume p(yi | xi) has “parsimonious” form.

– E.g., p(yi | xi) has a form with only ‘d’ parameters.

• Most common choice is linear model passed through sigmoid:



Logistic Regression

• Linear passed through sigmoid is called logistic regression.



Logistic Regression

• Linear passed through sigmoid is called logistic regression.



Maximum Likelihood Estimation

• We can find ‘w’ using maximum likelihood estimation (MLE).

– Given data {X,y} and parameters ‘w’, MLE is given by maximum of:

– Appealing “consistency” properties as n goes to infinity (take STAT 4XX).

– If our data {X,y} contains ‘n’ IID samples {xi,yi}, then likelihood simplifies:

– We’ve used this before: our naïve Bayes “counting” estimate was the MLE.



Maximum Likelihood Estimation

• We can find ‘w’ using maximum likelihood estimation (MLE).

– Given IID data {X,y} and parameters ‘w’, MLE is given by maximum of:

– We usually maximize the “log-likelihood”:



Maximum Likelihood Estimation

• We can find ‘w’ using maximum likelihood estimation (MLE).

– Given IID data {X,y} and parameters ‘w’, MLE is given by maximum of:

– But we like to minimize things, so let’s minimize negative log-likelihood:



MLE for Logistic Regression

• We can find ‘w’ using maximum likelihood estimation (MLE).

– Given IID data {X,y} and parameters ‘w’, MLE is given by minimum of:

– For logistic regression we had:

– So the MLE minimizes:



MLE for Logistic Regression

• The loss function used by logistic regression:

• This ‘f’ is convex and differentiable.
– We can minimize it using gradient descent.

• If we multiply by (1/n), this ‘f’ is an average.
– We can use stochastic gradient on huge datasets.

• Can get probabilities from sigmoid:

• We can/should add a regularizer:



(pause)



Greedy Search and Score: Forward Selection

• Forward selection algorithm for feature selection:

1. Start with an empty set of relevant features, S = [ ].

2. For each possible feature ‘j’:

• Fit model with ‘j’ added to set of relevant features ‘S’.

• Compute score of adding this feature.

3. Find ‘j’ that improves the score the most.

• If this ‘j’ improves the score, add it to ‘S’ and go back to 2.

• If no feature ‘j’ improves the score, then stop.
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Feature Selection Approach 3: L1-Regularization

• Consider regularizing by the L1-norm:

• Like L2-norm, it’s convex and improves our test error.

• Like L0-norm, it encourages elements of ‘w’ to be exactly zero.

• L1-regularization simultaneously regularizes and select features.

– Very fast alternative to search and score.



Sparsity and Least Squares

• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– But for finite ‘n’ the minimum is unlikely to be exactly zero.



Sparsity and L0-Regularization

• Consider 1D L0-regularized least squares objective:

• This is a convex 1D quadratic function but with a discontinuity at 0:

• L0-regularized minimum is often exactly at the ‘discontinuity’ at 0:
– Sets the feature to exactly 0 (does feature selection), but not convex.



Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it a bit closer to zero.
– But doesn’t do feature selection (nothing special about being ‘exactly’ zero).



Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

• This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization minimum is often exactly at the ‘kink’ at 0:
– Sets the feature to exactly 0 (does feature selection), 
– Big 𝜆 leads to very sparse solutions, small 𝜆 give dense solutions.



Sparsity and L2-Regularization

• L2-regularization conceptually restricts ‘w’ to a ball.



Sparsity and L2-Regularization

• L2-regularization conceptually restricts ‘w’ to a ball.

• L1-regularization restricts to the L1 “ball”:
– Solutions tend to be at corners where wj are zero.



L2-Regularization vs. L1-Regularization

• L2-Regularization:

– Insensitive to changes in data.

– Significantly-decreased variance:

• Lower test error.

– Closed-form solution.

– Solution is unique.

– All ‘w’ tend to be non-zero.

– Can learn with linear number of 
irrelevant features.

• E.g., only O(d) relevant features.

• L1-Regularization:

– Insensitive to changes in data.

– Significantly-decreased variance:

• Lower test error.

– Requires iterative solver.

– Solution is not unique.

– Many ‘w’ tend to be zero.

– Can learn with exponential
number of irrelevant features.

• E.g., only O(log(d)) relevant 
features.



L1-Regularization Issues

• Advantages:
– Deals with conditional independence (if linear).

– Sort of deals with collinearity:
• Picks at least one of “mom” and “mom2”.

– Very fast: we’ll talk about proximal-gradient methods next week.

• Disadvantages:
– Tends to give false positives (selects too many variables).

• Neither good nor bad:
– Does not take small effects.

– Says “gender” is relevant if we know “baby”.

– Good for prediction if we want fast training and don’t care about having 
some irrelevant variables.



Summary

• Discriminative models directly model p(yi | xi).

• Logistic regression uses p(yi | xi, w) = 1/(1+exp(-yiw
Txi).

• Maximum likelihood estimation:

– Maximizes p(y|X,w), which for IID is equivalent to minimizing 

• L1-regularization: simultaneous regularization / feature selection.

• Next time: what if yi is not numerical/binary?



Bonus Slide: Other Parsimonious Parameterizations

• Sigmoid isn’t the only parsimonious p(yi | xi, w):

– Noisy-Or (simplier to specific probabilities by hand).

– Probit (uses CDF of normal distribution, very similar to logistic).

– Extreme-value loss (good with class imbalance).

– Cauchit, Gosset, and many others exist…



Unbalanced Data and Extreme-Value Loss

• Consider binary case where:

– One class overwhelms the other class (‘unbalanced’ data).

– Really important to find the minority class (e.g., minority class is tumor).



Unbalanced Data and Extreme-Value Loss

• Extreme-value distribution:
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• Extreme-value distribution:


