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Admin

• Assignment 3:

– 3 late days before class Wednesday.

– Solutions will be posted after class Wednesday.

• Extra office hours Thursday:

– 10:30-12 and 4:30-6 in X836.

• Midterm Friday:

– Midterm from last year and list of topics posted (covers Assignments 1-3).

• Tutorials this week will cover practice midterm (and non-1D version of Q5).

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided. 



Big-N Problems

• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.

– O(nd) per iteration instead of O(nd2 + d3) to solve as linear system.

• What if number of training examples ‘n’ is very large?

– All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• The cost of computing the gradient is linear in ‘n’.

– As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is stochastic gradient algorithm:

• Uses gradient of randomly-chosen training example:

• Cost of computing this gradient is independent of ‘n’.

– Iterations are ‘n’ times faster than gradient descent iterations.



Stochastic Gradient (SG)

• Stochastic gradient is an algorithm for minimizing averages:

• Key advantage: iterations cost doesn’t depend on ‘n’.



Stochastic Gradient (SG)

• Stochastic gradient is an iterative optimization algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

• For a random training example ‘i’.

– Repeat to successively refine the guess:

• For a random training example ‘i’.



Why Does Stochastic Gradient Work / Not Work?

• Main problem with stochastic gradient:

– Gradient of random example might point in the wrong direction.

• Does this have any hope of working?

– The average of the random gradients is the full gradient.

– The algorithm is going in the right direction on average.



Gradient Descent vs. Stochastic Gradient (SG)
• Gradient descent:

• Stochastic gradient:



Gradient Descent in Action



Stochastic Gradient in Action



Stochastic Gradient in Action



Stochastic Gradient in Action



Stochastic Gradient in Action



Stochastic Gradient in Action



Effect of ‘w’ Location on Progress



Variance of the Random Gradients

• The “confusion” is captured by a kind of variance of the gradients:

• If the variance is 0, every step goes in the right direction.

– We’re outside of region of confusion.

• If the variance is small, most steps point in the direction.

– We’re just inside region of confusion.

• If the variance is large, many steps will point in the wrong direction.

– Middle of region of confusion, where w* lives.



Effect of the Step-Size

• We can control the variance with the step size:

– Variance slows progress by amount proportional to square of step-size.

• For a fixed step-size, SG makes progress until variance is too big.

• This leads to 2 phases when we use a constant step-size:

1. Rapid progress when we are far  from the solution.

2. Erratic behaviour within a “ball” around solutions.
(Radius of ball is proportional to the step-size.)



Stochastic Gradient with Constant Step Size



Stochastic Gradient with Constant Step Size



Stochastic Gradient with Decreasing Step Sizes

• To get convergence, we need a decreasing step size.

– Shrinks size of ball to zero so we converge to w*.

• But it can’t shrink too quickly:

– Otherwise, we don’t move fast enough to reach ball.

• Classic solution to this problem is set step-sizes αt so that:

• We can achieve this by using sure αt = O(1/t).



Stochastic Gradient Methods in Practice

• Unfortunately, setting αt = O(1/t) works badly in practice:

– Initial steps can be very large.

– Later steps get very tiny.

• Practical tricks:

– Some authors propose add extra parameters like αt = β/(t + γ).

– Theory and practice support using steps that go to zero more slowly:

• But using a weighted average of the iterations:



Stochastic Gradient with Averaging



A Practical Strategy For Choosing the Step-Size

• All these step-sizes have a constant factor in the “O” notation.

– E.g.,

• We don’t know how to do line-searches in the stochastic case.

– And choosing wrong γ can destroy performance.

• Common practical trick:

– Take a small amount of data (maybe 5% of the original data).

– Do a binary search for γ that most improves objective on this subset.



A Practical Strategy for Deciding When to Stop

• In gradient descent, we can stop when gradient is close to zero.

• In stochastic gradient:

– Individual gradients don’t necessarily go to zero.

– We can’t see full gradient, so we don’t know when to stop.

• Practical trick:

– Every ‘k’ iterations (for some large ‘k’), measure validation set error.

– Stop if the validation set error isn’t improving.



More Practical Issues

• Does it make sense to use 2 random examples?

– Yes, you can use a “mini-batch” of examples.

– The variance is inversely proportional to the mini-batch size.

• You can use a bigger step size.

• Big gains for going from 1 to 2, less big gains from going from 100 to 101.

– Useful for vectorizing/parallelizing code.

• Can we use regularization?



Gradient Descent vs. Stochastic Gradient

• Since 2012: methods with O(d) cost and polynomial in number of digits.
– Key idea: if ‘n’ is finite, you can use a memory instead of having αt go to zero.

– First was stochastic average gradient (SAG).
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Stochastic Gradient with Infinite Data

• Magical property of stochastic gradient:

– The classic convergence analysis does not rely on ‘n’ being finite.

• Consider an infinite sequence of IID samples.

– Or any dataset that is so large we cannot even go through it once.

• Approach 1 (gradient descent):

– Stop collecting data once you have a very large ‘n’.

– Fit a regularized model on this fixed dataset.

• Approach 2 (stochastic gradient):

– Perform a stochastic gradient iteration on each example as we see it.

– Never re-visit any example, always take a new one.



Stochastic Gradient with Infinite Data

• Approach 2 only looks at data point once:

– Each example is an unbiased approximation of test data.

• So Approach 2 is doing stochastic gradient on test error:

– It cannot overfit.

• Up to a constant, Approach 2 achieves test error of Approach 1.

– This is sometimes used to justify SG as the “ultimate” learning algorithm.

– In practice, Approach 1 usually gives lower test error (we don’t know why).



Summary

• Stochastic gradient methods let us use huge datasets.

• Step-size in stochastic gradient is a huge pain:

– Needs to go to zero to get convergence, but this works badly.

– Constant step-size works well, but only up to a certain point.

• SAG and other newer methods fix convergence for finite datasets.

• Infinite datasets can be used with SG and do not overfit.

• Next time: 

– Feature selection?


