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Admin

* Assignment 3:
— 3 late days before class Wednesday.
— Solutions will be posted after class Wednesday.

e Extra office hours Thursday:
— 10:30-12 and 4:30-6 in X836.

* Midterm Friday:
— Midterm from last year and list of topics posted (covers Assignments 1-3).

e Tutorials this week will cover practice midterm (and non-1D version of Q5).

— In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.



Big-N Problems

* Consider fitting a least squares model:
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* Gradient methods are effective when ‘d’” is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

 What if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

* Recall the gradient descent algorithm:
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* For least squares, our gradient has the form:
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* The cost of computing the gradient is linear in ‘n’.

— As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

 Common solution to this problem is stochastic gradient algorithm:

e Uses gradient of randomly-chosen training example:
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* Cost of computing this gradient is independent of ‘n’.

— |terations are ‘n’ times faster than gradient descent iterations.



Stochastic Gradient (SG)

e Stochastic gradient is an algorithm for minimizing averages:
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* Key advantage: iterations cost doesn’t depend on n’.



Stochastic Gradient (SG)

e Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w? = LYW

* For a random training example ‘i’.

— Repeat to successively refine the guess:
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* For a random training example ‘i’.



Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The average of the random gradients is the full gradient.
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— The algorithm is going in the right direction on average.



Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradient:|
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Gradient Descent in Action
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Stochastic Gradient in Action
M :sé (w'x; = },,)1

fe.,)
'ﬁ(»v? = (W7)(, ...7’)2
F (w) = (w Y }'z>l
fa(w) = (w X3 = /;) .l -
fi (W) = (w'xy y«ﬂl wY W
[ = (') Fpo f) A Rl
S'}o(,kasfic
9/0Jz,ﬂf
M?miw}?c)
L e




Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action

fe,)
’ﬁ(w? = (W7)(, “7!)2
—
Tt
3
WO WY Ry
Mw)
/ §+o(,kasfi5
9/0!‘2(4‘/‘
/ W\Miw?c)
—7 aAveraye
‘pFS:Z’ Value.
W W wt WA WE ‘




Stochastic Gradient in Action
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Effect of ‘w’ Location on Progress
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Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:
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If the variance is O, every step goes in the right direction.
— We're outside of region of confusion.

If the variance is small, most steps point in the direction.
— We’re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.

— Middle of region of confusion, where w™ lives.



Effect of the Step-Size

* We can control the variance with the step size:

— Variance slows progress by amount proportional to square of step-size.
* For a fixed step-size, SG makes progress until variance is too big.

* This leads to 2 phases when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour within a “ball” around solutions.
(Radius of ball is proportional to the step-size.)



Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.

— Shrinks size of ball to zero so we converge to w".

* But it can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach ball.

e Classic solution to this problem is set step-sizes a' so that:
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Stochastic Gradient Methods in Practice

* Unfortunately, setting at = O(1/t) works badly in practice:
— Initial steps can be very large.
— Later steps get very tiny.

* Practical tricks:
— Some authors propose add extra parameters like at = B/(t + vy).
— Theory and practice support using steps that go to zero more slowly:
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* But using a weighted average of the iterations:
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Stochastic Gradient with Averaging
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A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
— Eg, o(t:Z <—’ Houv Jo Wy (_‘\0053 Tl\"b (om;'/‘am'{?
\I7

e We don’t know how to do line-searches in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.



A Practical Strategy for Deciding When to Stop

* |n gradient descent, we can stop when gradient is close to zero.

* |n stochastic gradient:
— Individual gradients don’t necessarily go to zero.
— We can’t see full gradient, so we don’t know when to stop.

* Practical trick:
— Every ‘k’ iterations (for some large ‘k’), measure validation set error.
— Stop if the validation set error isn’t improving.



More Practical Issues

* Does it make sense to use 2 random examples?
— Yes, you can use a “mini-batch” of examples
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— The variance is inversely proportional to the mini-batch size.

* You can use a bigger step size.

* Big gains for going from 1 to 2, less big gains from going from 100 to 101.
— Useful for vectorizing/parallelizing code.
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Gradient Descent vs. Stochastic Gradient
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e Since 2012: methods with O(d) cost and polynomial in number of digits.
— Key idea: if ‘n’ is finite, you can use a memory instead of having o, go to zero.
— First was stochastic average gradient (SAG).



Stochastic Gradient with Infinite Data

Magical property of stochastic gradient:
— The classic convergence analysis does not rely on ‘n’” being finite.

Consider an infinite sequence of [ID samples.

— Or any dataset that is so large we cannot even go through it once.

Approach 1 (gradient descent):

— Stop collecting data once you have a very large ‘n’.

— Fit a regularized model on this fixed dataset.

Approach 2 (stochastic gradient):

— Perform a stochastic gradient iteration on each example as we see it.
— Never re-visit any example, always take a new one.



Stochastic Gradient with Infinite Data

* Approach 2 only looks at data point once:
— Each example is an unbiased approximation of test data.

* So Approach 2 is doing stochastic gradient on test error:

— It cannot overfit.

 Up to a constant, Approach 2 achieves test error of Approach 1.
— This is sometimes used to justify SG as the “ultimate” learning algorithm.
— In practice, Approach 1 usually gives lower test error (we don’t know why).



Summary

Stochastic gradient methods let us use huge datasets.

Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but this works badly.
— Constant step-size works well, but only up to a certain point.

SAG and other newer methods fix convergence for finite datasets.
Infinite datasets can be used with SG and do not overfit.

Next time:
— Feature selection?



