
CPSC 340:
Machine Learning and Data Mining

Stochastic Gradient

Fall 2016

Admin

• Assignment 3:

– 2 late days before class Monday, 3 late days before class Wednesday.

– Solutions will be posted after class Wednesday.

• Midterm next Friday:

– Midterm from last year and list of topics posted (covers Assignments 1-3).

• Tutorials next week will cover practice midterm.

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.

Last Time: SVMs and Kernel Trick

• We discussed the maximum margin view of SVMs:
– Yields an L2-regularized hinge loss.

• We introduced the kernel trick:
– Write model to only depend on inner products between features vectors.

– So everything we need to know about zi is summarized by the ziTzj.

– If you have a kernel function k(xi,xj) that computes zi
Tzj,

then you don’t need to compute the basis zi explicitly.
http://svr-www.eng.cam.ac.uk/~kkc21/thesis_main/node12.html

Polynomial Kernel with Higher Degrees

• Assume that I have 2 features and want to use the degree-2 basis:

• I can compute inner products using:

Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use zi
Tzj = (1 + xi

Txj)
4

• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.

– But cost of computing zi
Tzj is O(d) instead of O(dp).

Kernel Trick

• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and 𝐾:

– Make predictions using:

• Training cost is only O(n2d + n3), despite using O(dp) features.

– Testing cost is only O(ndt).

Linear Regression vs. Kernel Regression

Motivation: Finding Gold

• Kernel methods first came from mining engineering (‘Kriging’):

– Mining company wants to find gold.

– Drill holes, measure gold content.

– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

• Same formula and behaviour as RBF basis, but not equivalent:

– Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis zi giving the Gaussian RBF kernel is infinite-dimensional.

• Kernel trick lets us fit regression models without explicit features:

– We can interpret k(xi,xj) as a “similarity” between objects xi and xj.

– We don’t need zi and zj if we can compute ‘similarity’ between objects.

Kernel Trick for Structure Data

• Consider data that doesn’t look like this:

• But instead looks like this:

• Instead of using features, can define kernel between sentences.

– E,g, “string kernels”: weighted frequency of common subsequences.

• There are also “image kernels”, “graph kernels”, and so on…

Valid Kernels

• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:

– There must exist a mapping from xi to some zi such that k(xi,xj) = zi
Tzj.

• It can be hard to show that a function satisfies this.

• But there are some simple rules for constructing valid kernels from
other valid kernels (bonus slide).

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?
– Methods based on Euclidean distances between examples:

• Kernel k-nearest neighbours.

• Kernel clustering (k-means, DBSCAN, hierarchical).

• Kernel outlierness.

• Kernel “Amazon Product Recommendation”.

• Kernel non-parametric regression.

– L2-regularized linear models (“representer theorem”):
• L2-regularized robust regression.

• L2-regularized logistic regression.

• L2-regularized support vector machines.

Motivation: How we train on all of Gmail?

• In the Gmail problem from last time, ‘n’ and ‘d’ are huge.

– ‘n’ is the number of e-mails.

– ‘d’ is (number of features)*(number of users + 1).

• Cost of 1 iteration gradient descent for logistic regression is O(nd):

– O(nd) to compute wTxi for all ‘i’.

– O(n) to compute f(x) and each ri.

– O(nd) to multiply XT by ‘r’.

• But it’s cheaper than this because xi are very sparse:

– Each e-mail has a limited number of non-zero features,

– Each e-mail only has “global” features and “local” features for one user.

Motivation: How we train on all of Gmail?

• In the Gmail problem from last time, ‘n’ and ‘d’ are huge.
– ‘n’ is the number of e-mails.

– ‘d’ is (number of features)*(number of users + 1).

• Cost of 1 iteration gradient descent for logistic regression is O(ns):
– Where ‘s’ is the average number of non-zero features.

– O(ns) to compute wTxi for all ‘i’ (just need non-zero values).

– O(n) to compute f(x) and each ri.

– O(ns) to multiply XT by ‘r’ (just need non-zero values).

• But how do we deal with the very large ‘n’?

Minimizing Sums with Gradient Descent

• Consider minimizing average of differentiable functions:

• Includes all our differentiable losses as special cases.

• Gradient descent for this problem:

• Nice properties, but iterations require gradients of all ‘n’ examples.

• Key idea behind stochastic gradient methods:
– On average, we can decrease ‘f’ using the gradient of a random example.

Stochastic Gradient Method

• Stochastic gradient method:
1. Pick a random example it.

2. Perform a gradient descent step based only on this example.

• Intuition: unbiased estimate of full gradient:

• Key advantage:
– Iteration cost is O(d), it does not depend on ‘n’.

– If ‘n’ is 1 billion, it is 1 billion times faster than gradient descent.

• But does this actually work?

Deterministic Gradient Method in Action

Deterministic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Stochastic Gradient Method in Action

Convergence of Stochastic Gradient

• Problem is that stochastic gradient step might increase error ‘f’:

– Since you only look at one example, you can’t just check ‘f’.

• Key property used for convergence:

– If the sequence of wt are sufficiently ‘close’, we decrease ‘f’ on average.

– How ‘close’ they need to be depends on how close we are to minimum.

• To get convergence, we need a decreasing sequence of step sizes:

– Need to converge to zero fast enough (makes variance go to 0).

– Can’t converge to zero too quickly (need to be able to get anywhere).

• For example:

Summary

• Kernels let us use similarity between objects, rather than features.

• Stochastic gradient methods let us use huge datasets.

• Convergence of stochastic gradient requires decreasing step sizes.

• Next time:

– Non-binary discrete labels like categories, counts, rankings, etc.

