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Fall 2016



Admin

* Assignment 2:

— Solution posted.
* Assignment 3:

— Due Wednesday (before midnight anywhere on Earth).

— Solutions released next Wednesday after class (last possible late class).
* Midterm on Friday October 28.

— Midterm from last year and list of topics posted (covers Assignments 1-3)
— In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.



Part 3 Review

* Focus of Part 3 is linear models:
— Supervised learning where prediction is linear combination of features:
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* Change of basis: replace features x; with z: Vs X
— Add a bias variable (feature that is always one). Scole )\
— Polynomial basis. .y
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— Radial basis functions (non-parametric basis).

* Regression:
— Target y. is numerical.

— Testing whether (yhat ==y;) doesn’t make sense. M | it Tkt doesn
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Part 3 Review

e Alternate error functions for regression:
— . n - 2
Squared error ‘%_Z (. - Y"> o _}z 1. _\///1

e Can find optimal ‘w’ by solving linear system.

— L,-norm and L_,-norm errors:
“XW" \/”, I/Xw‘\/,/oz?

 More/less robust to outliers.

e L2-regularization:
— Adding a penalty on the L2-norm of ‘W’ to decrease overfitting:
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Part 3 Review

e Gradient descent:

— Can we used to find a local minimum of a smooth function.
* L,-norm and L.-norm errors are convex but non-smooth:

— But we can smooth them using Huber and log-sum-exp functions.

e Convex functions:
— Special functions where all local minima are global minima.
— Simple rules for showing that a function is convex.



Last Time: Classification using Regression

* Binary classification using sign of linear models:
Fit model \/,:\/v'x,- ond PLeJ;d s Sigm(h/'y')
J
4 -

* Problems with existing errors:
— If y. = +1 and w'x, = +100, then squared error (w'x, —y.)? is huge.
— Hard to minimize training error (“0-1 loss”) in terms of ‘w’.

 Motivates convex approximations to 0-1 loss:
_— _— RV A
— Logistic loss (logistic regression): Z IOg (| ”"F(_ y}w-fm) + g)/w//l

(=

i : > 7 2
— Hinge loss (support vector machine): S may 3 0)(» yiw x,z + .’g (wdl



Last Time: Classification using Regression

* Can minimize smooth/convex logistic loss using gradient descent.
— There are also efficient methods for support vector machines (SVMs).

* Logistic regression and SVMs are used EVERYWHERE!

— Fast training and testing, weights w; are easy to understand.

— With high-dimensional features and regularization, often good test error.
* Otherwise, often good test error with RBF basis and regularization.

* Some random questions you might be asking:
— Can we use a polynomial basis with more than 1 feature?
— Why didn’t we do the “textbook” derivation of logistic/SVM?
— How do we train on all of Gmail?
— Did we miss feature selection?



2D View of Linear Classifiers

e 2D Visualization of linear regression for/ classification:
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* “Linearly separable”: a perfect linear classifier exists.




Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— “Perceptron” algorithm finds some classifier with zero error.
— But are all zero-error classifiers equally good?




Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Support Vector Machines

* For linearly-separable data, support vector machine (SVM)

minimizes: INE j’”\ml/z
— Subject to the constraints that: \/v )(, Z | for 7;3/ Or we can wrife
(see Wikipedia or MLtextbooks) <~ . - bolh  cases  as
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Support Vector Machines

* For non-separable data, try to minimize violation of constraints:
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* For non-separable data, we usually define SVMs as minimum of:
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Support Vector Machines for Non-Separable

 Non-separable case:

w =0
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Support Vector Machines for Non-Separable

 Non-separable case:
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Support Vector Machines for Non-Separable

* Non-separable case: n _
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Support Vector Machines for Non-Separable

P= 2 mact 0= y'nd + 2 IulF
\_,\\/—/ /

 Non-separable case:
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?




Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).
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Multi-Dimensional Polynomial Basis

e Recall fitting polynomials when we only have 1 feature:

* We can fit these models using a change of basis:
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e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Approach 1: use polynomial basis for each variable.

T 0.2 0%
X=[ | 05§
| 05 -0

e But this is restrictive:
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— We should allow terms like ‘x,,x.,” that depend on feature interaction.

— But number of terms in X

poly

is huge:

* Degree-5 polynomial basis has O(d>) terms:
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* If reasonable ‘n’, we can do this efficiently using the kernel trick.



Equivalent Form of Ridge Regression

Recall L2-regularized least squares objective with basis matrix ‘Z’:

=N ze=yl1? + 2 lulf?

We showed that the solution is given by:

w= (2724 217—'(277)
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Using a “matrix inversion lemma” we can re-write this as:
— 57T T -\
w=Z2 (Z / “"//)_L? y

This is faster if n << d: N xn
— 727 is ‘d’ by ‘d’ while ZZ"is ‘n’ by ‘n’.



Predictions using Equivalent Form

e Given test data X, predlct Y by forming and Z usin
= T )
=22 (zz +?II)

= K(K +91) y

* Key observation behind kernel trick:
— Predictions y only depend on features through K and K.

— If we have function that computes K and K, we don’t need the features.




Gram Matrix

* The Gram matrix ‘K’ is defined by:
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e ‘K’ contains the inner products between all training examples.



Gram Matrix

The Gram matrix ‘K’ is defined by:
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‘K’ contains the inner products between all training examples.

‘K’ contains the inner products between training and test examples.

Kernel trick:

— | want to use a basis z, that is too huge to store.

— But | only need z to compute K =27Z"and K = ZZ".

— | can use this basis if | have a kernel function that computes k(x;x;) = z'z,.



Polynomial Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
= (K, x2) = (%, %2)
* And consider a particular degree-z basis:
Gt ("'"27\‘3 "”"07"*227 <= CTAE? %2,%3)
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Zi 2)- X., X,. + (12 £ Xt X 12>(\r XJZ) t X;z ’(Jz

2 2

= || 27(1! Xia X 51 Xi2 +XHX12
2 0
— (XH 31 Xi:lx.ﬂ) C(JMr'f)li'\j f'he 51V|are

Xi '

= ()(,'7)6')2 é’ /VO f&_g// {\or 2,' 7l0 C()Mrufe 2"72'

AN



Summary

Support vector machines maximize margin to nearest data points.
High-dimensional bases allows us to separate non-separable data.
Kernel trick allows us to use high-dimensional bases efficiently.

Next time:

— How could we train on all of Gmail?



