CPSC 340:
Machine Learning and Data Mining

Logistic Regression
Fall 2016



Admin

Assignment 1:

— Marks visible on UBC Connect.
Assignment 2:

— Solution posted after class.
Assignment 3:

— Due Wednesday (at any time on Earth).
— Solutions will be released next Wednesday after class.

Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

Midterm on Friday October 28.
— Practice midterm and list of topics posted (covers Assignments 1-3)
— In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.
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Summary of Last Lecture

Error functions:

— Squared error is sensitive to outliers.

— Absolute (L,) error and Huber error are more robust to outliers.
— Brittle (L_.) error is more sensitive to outliers.

L, and L, error functions are non-differentiable:

— Finding ‘W’ minimizing these errors is harder.

We can approximate these with differentiable functions:
— L, can be approximated with Huber.

— L., can be approximated with log-sum-exp.

Gradient descent finds local minimum of differentiable function.

For convex functions, any local minimum is a global minimum.



Very Robust Regression

Consider data with extreme outliers:
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Non-convex errors can be very robust:

— Eventually ‘give up’ on trying to make large errors smaller.
But with non-convex errors, finding global minimum is hard.

Absolute value is the most robust convex error function. x <y

Y
X
X x



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.

CO{\Q\AQF {(w):—l-ﬁvl ‘For 070_ We “mve F‘(w>==0\w

O\hd 1[\” (W):O\ 70
by GtSjum,of)on

Consider  § () = 5\"/ We  have -F '(vv): ew
and £ (W= S 0

u B\/ definiTin

010 expanen f iol f\ wnclion,




How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

We showed That Fw)=e™ is LonveX, SO () = 0™ is convey.



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = O for all ‘w’

— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.§

— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex functiop. \ y_-zv
— The max of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.

* But: not true that composition of convex with convex is convex:
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Example: Convexity of Linear Regression

* Consider linear regression objective with error function ‘g”:

’F(W?’ :ﬁ c)(W1X3 - y))

e Sufficient for ‘g’ to be convex for ‘f’ to be convex:
— Then each term is composition of convex with linear.
— And sum of convex is convex.

* Examples:
"
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Example: Convexity of Linear Regression

* Consider linear regression objective with error function ‘g”:

’F(W? Zc)(wX"y;) t 2["\/,

e Sufficient for ‘g’ to be convex for ‘f’ to be convex:
— Then each term is composition of convex with linear.
— And sum of convex is convex.

* Same condition applies with L,-regularization.



Linear Models with Binary Features

* What is the effect of a binary feature on linear regression?

1975 1 1.85
1975 0 2.25
1980 1 1.95
1980 0 2.30

* Adding a bias w,, our linear model is:
haigm‘ = w, t w¥year tw, ¥ gender ¢

* The ‘gender’ variable causes a change in y-intercept:
Tf 5emévr’=() Thon Heigw = W), -+ w,*yeur*

IE qerdoc==] " then height = wp + wFyear +w, e
4 1 _qltw Y ~indesgople e




Linear Models with Binary Features

 What if different genders have different slopes?
— You can use gender-specific feature.

Bias Year Bias Year
m (gender=1) | (gender=1) | (gender=0) | (gender=0
1 0

1975 1 1975 0
1975 0 :7 0 0 1 1975
1980 1 1 1980 0 0

1980 0 0 0 1 1980

distance = W, + Wi ¥ year  (if gender =)
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Linear Models with Binary Features

* That trick fits separate ‘local’ variable for each gender.
e To share information across genders, include a ‘global’ version.

“vear | cender
1975 1 1975 1975
1975 0 :> 1975 0 1975
1980 1 1980 1980 0
1980 0 1980 0 1980

* ‘Global’ year feature: influence of time on both genders. |
— E.g., improvements in technique. (”L "/ Cq,

QC ross
e ‘Local’ year feature: gender-specific deviation from global treno/ﬂ"""ffy f {rader
— E.g., different effects of performance-enhancing drugs. \/ W, <+ W*}’f'“f"' W; yeur



Linear Models with Binary Features
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Linear Models with Binary Features

CFestre 1 | Feature2
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Feature 1 | Feature2
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Linear Models with Binary Features
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Linear Models with Binary features

// Wo T W Xy
J Fesure 1 | reaure e,
0.5 X 2
3 O s Mo«:‘e/ [ Oﬂ/y bigs
0 | 0
2.5 A y ~
1.5 X MoJe, 25 /)Iqs'*fcafml
3 A y‘,:: WO + \N‘le




Linear Models with Binarvw/feature
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Linear Models with Binarvw/feature
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Motivation: Identifying Important E-mails

How can we automatically identify ‘important’ e-mails?

» Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE

Holger, Jim (2) lisis Intro to Computer Science 10:20 am

Inbox (3) .
» Issam Laradiji inbox  Convergence rates forcu = 9:49 am

Starred

(_ Important » sameh, Mark, sameh (3) Inbox  Graduation ProjectDema = 8:01 am
>ent Mall » Mark .. sara, Sara (11) Label propagation = 757am

Meafbs 143

We have a big collection of e-mails:

— Mark as ‘important’ if user takes some action based on them.
There might be some “universally” important messages:

— “This is your mother, something terrible happened, give me a call ASAP”

But your “important” message may be unimportant to others.

— Similar for spam: “spam” for one user could be “not spam” for another.



The Big Global/Local Feature Table
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Predicting Importance of E-mail For New User

* Consider a new user:
— Start out with no information about them.
— Use global features to predict what is important to generic user.

)}i = élgl’\ (W37X3> Feq*“\ft’S/WeiﬂLnfS Sl&l;e_é

ocrosSs WSErs

* With more data, update global features and user’s local features:
— Local features make prediction personalized.

o T T
\/i - S')n(w‘J X’ M WM« X“> feqiwf’j/wciqlnfs S cciﬂ’c
— What is important to this user? 10 user.

* G-mails system: classification with logistic regression.



Classification Using Regression?

e Usual approach to do classification with regression:
— Code y. as -1’ for one class and ‘+1’ for the other class.
— E.g., ‘+1’ means ‘important’ and -1’ means ‘not important’.
* At training time, fit a linear regression model:
Yi = Wi Xt X ® e g

_ T
- WYX

* To predict, we take the sign (i.e., closer *-1" or ‘+1?): =+ i W20
\ | W)(

Vi~
)/ S:gn(w X) \_/<Sd y,“l if W < (7



Classification using Regression
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Classification using Regression
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Classification Using Regression

* Can use regression tricks (basis, regularization) for classification.
e But, usual error functions do weird things:
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Classification Using Regression

* What went wrong?

— “Good” errors vs. “bad” errors.

T‘M) s 'H\c Iinenr r([,r\ts.‘)[w\ MOACI Wwe Wan'f

K (a rerFec" c‘«’siritf)

O \ {, | o oo
Cspam) — I+ (Hﬂl L T o

AT _

oo errars’ S g
moclel 14 bo’}mj . ‘BaJ errors: W\bclt/
r)ey.m'iz -For ‘re(h('“/\J S beilnq f?/‘dlidf’c‘ 'F)(

v\,row\} Cl(ASS\ G,SJ‘C{‘VH Co({@({ c/aff,




Classification Using Regression

N
- 2
* What went wrong? _Y(w):z (wx ’)'1)
— “Good” errors vs. “bad” errors. ‘- L l
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Comparing Loss Functions
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Comparing Loss Functions
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Comparing Loss Functions
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0-1 Loss Function

 The 0-1 loss function is the number of classification errors:
— Unlike regression, in classification it’s reasonable that sign(w'x,) = y..

* Unfortunately the 0-1 loss is non-convex in ‘w’.
— It's easy to minimize if a perfect classifier exists.
— Otherwise, finding the ‘W’ minimizing 0-1 loss is a hard problem.

* Convex approximations to 0-1 loss:
— Hinge loss (non-smooth) and logistic loss (smooth).



Convex Approximations to O-1 Loss
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Convex Approximations to O-1 Loss
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Hinge Loss and Support Vector Machines

* Hinge loss is given by:
A _
—F(h)’ Z mayZ()) | ‘)/i Wlxi)?
j=

— Convex upper bound on number of classification errors.
— Solution will be a perfect classifier, if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.

—F(w)’é may207 | *)/,- w7x,)7 -+ %HWHZ

— Next time we’ll see that it “maximizes the margin”.



Logistic Regression

* Logistic regression minimizes logistic loss:

F)= 2 Loyl I+ expl = yiw's))

* You can/should also add regularization:
F(w) = Z lo()( | + exp(‘y,- w7x,-)> +22 Hw”2

e Convex and differentiable: minimize this with gradient descent.



Logistic Regression and SVMs

* Logistic regression and SVMs are used EVERYWHERE!

e Why?
— Training and testing are both fast.
— Itis easy to understand what the weights ‘w;” mean.
— With high-dimensional features and regularization, often good test error.
— Otherwise, often good test error with RBF basis and regularization.
— Smoother predictions than random forests.



Summary

Convex functions an be identified using a few simple rules.
Global vs. local features allows ‘personalized’ predictions.
Classification using regression works if done right.

0-1 loss is the ideal loss, but is non-smooth and non-convex.
Logistic regression uses a convex and smooth approximation to 0-1.

Next time:

— One more reason to use regularization, and how to find gold.



Bonus Slide: Perceptron Algorithm

* One of the first “learning” is the perceptron algorithm.
— Searches for a ‘w’ such that w'x. > 0 when y, = +1, w'x. < 0 for y,=-1.

e Perceptron Algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y'.
* Set wl=w!+yx.
— Keep going through examples until you make no errors on training data.

e |If a perfect classifier exists, this algorithm converges to one.

— In fact, “perceptron mistaked bound” result says that number of mistakes is
finite.



