CPSC 340: Machine Learning and Data Mining

Gradient Descent Fall 2016

Admin

- Assignment 1:
 - Marks up this weekend on UBC Connect.
- Assignment 2:
 - 3 late days to hand it in Monday.
- Assignment 3:
 - Due Wednesday (so we can release solutions before the midterm).
- Tutorial room change: T1D (Monday @5pm) moved to DMP 101.
- Corrections:
 - $w = X \setminus y$ does not compute the least squares estimate.
 - Only certain splines have an RBF representation.

Last Time: RBFs and Regularization

- We discussed radial basis functions:
 - Basis functions that depend on distances to training points:

$$Y_{i} = w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right) + w_{2} \exp\left(-\frac{\|x_{i} - x_{2}\|^{2}}{2\sigma^{2}}\right) + \dots + w_{h} \exp\left(-\frac{\|x_{i} - x_{n}\|^{2}}{2\sigma^{2}}\right)$$
$$= \sum_{i=1}^{n} w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right)$$

- Flexible bases that can model any continuous function.
- We also discussed regularization:
 - Adding a penalty on the model complexity:

$$f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{2}{2} ||w||^2$$

- Best parameter lambda almost always leads to improved test error.

• L2-regularized least squares is also known as "ridge regression".

Features with Different Scales

• Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for least squares:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$
 - w_i will just be 1000 times smaller.
 - It also doesn't matter for decision trees or naïve Bayes.

Features with Different Scales

• Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - KNN will focus on large values more than small values.
 - It matters for regularized least squares:
 - Penalization |w_i| means different things if features 'j' are on different scales.

Standardizing Features

- It is common to standardize features:
 - For each feature:
 - 1. Compute mean and standard deviation: $\mathcal{M}_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \quad \mathcal{O}_{j} = \left(\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_{j})^{2} \right)$
 - 2. Subtract mean and divide by standard deviation:

X=

 $\frac{1}{2} ||Xw - y||^2 + \frac{2}{5} \frac{1}{3} \frac{w}{3}$

- Means that change in ' w_i ' have similar effect for any feature 'j'.
- Should we regularize the bias?
 - No! The y-intercept can be anywhere, why encourage it to be close to zero?
 - Yes! Regularizing all variables makes solution unique and it easier to compute 'w'.
 - Compromise: regularize the bias by a smaller amount than other variables?

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

- With standardized target, setting w = 0 predicts average y_i:
 - High regularization makes us predict closer to the average value.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

- Makes sense for geometric/exponential processes.

Ridge Regression Calculation

$$Objective: f(w) = \frac{1}{2} ||Xw - y||^{2} + \frac{1}{2}w^{T}w \quad \sqrt{w} = \sqrt{T}w$$
Gradient: $\nabla f(w) = \sqrt{T}Xw - \sqrt{T}y + \frac{1}{2}w^{T}w$
Set $\nabla f(w) = 0: \quad \sqrt{T}Xw + \frac{1}{2}w = \sqrt{T}y$

$$\int A^{-1}A = I \quad \sqrt{T}x + \frac{1}{2}w^{T}w = \sqrt{T}y$$

$$\int re^{-multiply} by (\sqrt{T}x + \frac{1}{2})^{-1} which a lways exists:$$

$$(\sqrt{T}x + \frac{1}{2})^{-1}(\sqrt{T}x + \frac{1}{2})^{-1} which a lways exists:$$

$$(\sqrt{T}x + \frac{1}{2})^{-1}(\sqrt{T}x + \frac{1}{2})^{-1}w = (\sqrt{T}x + \frac{1}{2})^{-1}\sqrt{T}y$$
Mathabis

$$w = (\chi' + \chi + lombole + eye(d)) \setminus (\chi' + \chi)$$

• Consider least squares problem with outliers:

• Consider least squares problem with outliers:

This is what least squares will actually do. X_X×××××× X × * _{* * X}

• Least squares is very sensitive to outliers.

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence 'w' much more than other points.

• Squaring error shrinks small errors, and magnifies large errors:

linc

Robust Regression

- Robust regression objectives put less focus large errors (outliers).
- For example, use absolute error instead of squared error:

$$f(w) = \sum_{i=1}^{n} |w^{T}x_{i} - y_{i}|$$

- Now decreasing 'small' and 'large' errors is equally important.
- Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Least squares:

$$f(w) = \frac{1}{2} ||Xw - y||^2$$

$$f(w) = ||Xw - y||_1$$

$$f(w) = ||Xw - y||_1$$

$$\int_{Xd} d^{x_1} d^{x_1}$$

• Least squares is very sensitive to outliers.

• Absolute error is more robust to outliers:

Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:

- Generally, harder to minimize non-smooth than smooth functions.
- Could solve as 'linear program', but harder than 'linear system'.

Smooth Approximations to the L1-Norm

- There are differentiable approximations to absolute value.
- For example, the Huber loss:

$$f(w) = \sum_{i=1}^{n} h(w^{T}x_{i} - y_{i})$$

$$h(r_{i}) = \begin{cases} \frac{1}{2}r_{i}^{2} & \text{for } |r_{i}| \leq \varepsilon \\ \varepsilon(|r_{i}| - \frac{1}{2}\varepsilon) & \text{otherwise} \end{cases}$$

- Setting $\nabla f(x) = 0$ does not give a linear system.
- But we can minimize 'f' using gradient descent:
 - Algorithm for finding local minimum of a differentiable function.

- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w^0 .

...

- It uses w^0 to generate a better guess w^1 .
- It uses w^1 to generate a better guess w^2 .
- It uses w^2 to generate a better guess w^3 .

- The limit of w^t as 't' goes to ∞ has ∇ f(w^t) = 0.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is an iterative optimization algorithm:
 - We start with some initial guess, w^0 .
 - Generate new guess by moving in the negative gradient direction:

$$w' = w^{o} - \alpha^{o} \nabla f(w^{o})$$

(scalar α^0 is the `step size', we decrease 'f' for small enough α^0) — Repeat to successively refine the guess:

$$W^{t+1} = w^t - x^t \nabla f(w^t) \quad \text{for } t = \frac{1}{2}, \frac{2}{3}, \dots$$

Stop if not making progress or)|

$$\|\nabla f(w^{t})\| \leq S$$

Some small Scalar.
Approximate local minimum

Gradient Descent in 2D

• Under weak conditions, algorithm converges to a local minimum.

Convex Functions

Concare

- Is finding a local minimum good enough?
 - For least squares and Huber loss this is enough: they are convex functions.

- A function is convex if the area above the function is a convex set.
 - All values between any two points above function stay above function.

Convex Functions

• All local minima of convex functions are also global minima.

- Gradient descent finds a global minimum on convex functions.
- Next time: how do we know if a function is convex?

Gradient Descent

- Least squares via normal equations vs. gradient descent:
 - Normal equations cost $O(nd^2 + d^3)$.

For ming $X^{T}X$ costs $O(nd^{2})$ and solving a $d \times d$ linear system costs $O(d^{3})$ - Gradient descent costs O(ndt) to run for 't' iterations. $X^{T}Yw = X^{T}(Xw)$ which

is just two nxd Matrix multiplications.

Computing
$$\nabla f(w) = \chi^T \chi_w - \chi^T \gamma$$
 only costs $O(nd)$.

- Gradient descent can be faster when 'd' is very large:
 - Faster if solution is "good enough" for (t < d) and (t < d²/n).
- Improving on gradient descent: Nesterov and Newton method.
 - For L2-regularized least squares, there is also "conjugate" gradient.

Motivation for Considering Worst Case

'Brittle' Regression

- What if you really care about getting the outliers right?
 - You want best performance on worst training example.
 - For example, if in worst case the plane can crash.
- In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.

Log-Sum-Exp Function

- As with the L₁-norm, the L_∞-norm is convex but non-smooth:
 We can fit it with gradient descent using a smooth approximation.
- Log-sum-exp function is a smooth approximation to max function:

$$\max_{i} \{z_i\} \approx \log(\{z_i > p(z_i)\})$$

- Intuition:
 - $\sum_{i} \exp(z_i) \approx \max_{i} \exp(z_i)$, as largest element is magnified exponentially. - Recall that $\log(\exp(z_i)) = z_i$.
- Notation alert: when I write "log" I always mean natural logarithm: $\log(e_{\times p}(\alpha)) \supset \ll$

Summary

- Robust regression using L1-norm/Huber is less sensitive to outliers.
- Gradient descent finds local minimum of differentiable function.
- Convex functions do not have non-global local minima.
- Log-Sum-Exp function: smooth approximation to maximum.

- Next time:
 - Finding 'important' e-mails, and beating naïve Bayes on spam filtering.

Bonus Slide: Invertible Matrices and Regularization

- Unlike least squares where $X^T X$ may not be invertible, the matrix $(X^T X + \lambda I)$ in always invertible.
- We prove this by showing that (X^TX + λI) is positive-definite, meaning that v^T(X^TX + λI)v > 0 for all non-zero 'v'. (Positive-definite matrices are invertible.)

With a generic 'v' such that
$$v \neq 0$$
 we have
 $\sqrt{(X^TX + \lambda I)}v = \sqrt{X^T}Xv + \lambda \sqrt{v}v$
 $= ||Xv||^2 + \lambda \frac{1}{2}v_j^2$
 $= \sqrt{70}v_j^2$ since $v \neq 0$.

Bonus Slide: Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

$$\begin{split} \|[X_{w} - y]\|_{\mathcal{B}} &= \max_{i} \frac{2}{2} \|w^{T}x_{i} - y_{i}\|_{s}^{2} \\ &= \max_{i} \frac{2}{2} \max_{i} \frac{2}{2} w^{T}x_{i} - y_{i}y_{i} - w^{T}x_{i}\|_{s}^{2} \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) + \sum_{i=1$$

Bonus Slide: Log-Sum-Exp Numerical Trick

- Numerical problem with log-sum-exp is that exp(z_i) might overflow.
 For example, exp(100) has more than 40 digits.
- Implementation 'trick': $L_e \dagger \beta = M_{ax} \frac{3}{2} Z_i \frac{3}{2}$ $\log(\sum_{i} \exp(z_i)) = \log(\sum_{i} \exp(z_i - \beta + \beta))$ $= \log \left(\sum e_{xp} (z_i - \beta) e_{xp} (\beta) \right)$ = $\log(\exp(\beta) \sum \exp(z_i - \beta))$ $= \log(\exp(\beta)) + \log(\sum \exp(2, -\beta))$ $= \beta + \log(\sum_{i} \exp(z_i - \beta)) = \leq 1$

Bonus Slide: Normalized Steps

This will work for a while, but notice that

$$||w^{t+1} - w^{t}|| = ||\frac{1}{||\overline{v}f(w^{t})||} \nabla f(w^{t})||$$

$$= \frac{1}{||\overline{v}f(w^{t})||} ||\overline{v}f(w^{t})||$$

$$= |$$
So the algorithm never converges

Bonus Slide: Gradient Descent for Non-Smooth?

- "You are unlikely to land on a non-smooth point, so gradient descent should work for non-smooth problems?"
 - Counter-example from Bertsekas' "Nonlinear Programming"

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise 6.3.8.