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Fall 2016



Admin

Assignment 1:

— Marks up this weekend on UBC Connect.

Assignment 2:

— 3 late days to hand it in Monday.

Assignment 3:

— Due Wednesday (so we can release solutions before the midterm).
Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

Corrections:
— w = X\y does not compute the least squares estimate.
— Only certain splines have an RBF representation.



Last Time: RBFs and Regularization

e We discussed radial basis functions:

— Basis functions that depend on distances to training points:
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— Flexible bases that can model any continuous function.

* We also discussed regularization:
— Adding a penalty on the model complexity:
= | -
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— Best parameter lambda almost always leads to improved test error.

* L2-regularized least squares is also known as “ridge regression”.



Features with Different Scales

e Consider features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0) 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?

— |t doesn’t matter for least squares:

* w;*(100 mL) gives the same model as w;*(0.1 L)
* w; will just be 1000 times smaller.

— It also doesn’t matter for decision trees or naive Bayes.



Features with Different Scales

e Consider features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— |t matters for k-nearest neighbours:
 KNN will focus on large values more than small values.

— |t matters for regularized least squares:
* Penalization |w;| means different things if features j" are on different scales.



Standardizing Features .-
 |tis common to standardize features: - Vo,
— For each feature: T C,,/.A,Z,n Z\
1. Compute mean and standard deviation; | N " ——
_ —| | <

2. Subtract mean and divide by standard deviation:
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— Means that change in ‘w;" have similar effect for any feature .

e Should we regularize the bias?
— No! The y-intercept can be anywhere, why encourage it to be close to zero?
— Yes! Regularizing all variables makes solution unique and it easier to compute ‘w’.
— Compromise: regularize the bias by a smaller amaount than other variables? (%
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Standardizing Target

* In regression, we sometimes standardize the targetsy..
— Puts targets on the same standard scale as standardized features:
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* With standardized target, setting w = O predicts average y::
— High regularization makes us predict closer to the average value.

* Other common transformations of y, are logarithm/exponent:

Use I"ﬂ(}/i) o  &xp (n’/y,)

— Makes sense for geometric/exponential processes.
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Ridge Regression Calculation
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Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier  Thot doesa't ol 7(/’:/‘(4
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http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier  Thot doesa't ol 71/0‘4
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* Least squares is very sensitive to outliers.
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Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies largg errors:
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e Qutliers (large error) influence ‘w” much more than other points.




Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:

K

-

[t ]]]]|

e Qutliers (large error) influence ‘w” much more than other points.
— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.
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Robust Regression

Robust regression objectives put less focus large errors (outliers).
For example, use absolute error instead of squared error:

tlw)= é— )""TX"_)/"\

Now decreasing ‘small’ and ‘large’ errors is equally important.
Instead of minimizing L2-norm, minimizes L1-norm of residuals:
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Least Squares wiIh Outliers

* Least squares is very sensitive to outlfers.
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Least Squares with Outliers

e Absolute error is more robust to outliers:

e A\Oﬁolu\ff érror_s Absoluﬂle 6:’/09
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Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:

||

[

— We can’t take the gradient at zero.

-
0

— Generally, harder to minimize non-smooth than smooth functions.
— Could solve as ‘linear program’, but harder than ‘linear system’.



Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.
* For example, the Huber loss: I |

() = ék(wTK ~v)
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e Setting I/f(x) = 0 does not give a linear system.

* But we can minimize ‘t" using gradient descent:
— Algorithm for finding local minimum of a differentiable function.



Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— It starts with a “guess” w@.
— It uses w? to generate a better guess w.
— It uses w' to generate a better guess w?.
— It uses w? to generate a better guess w3.

— The limit of w' as ‘t’ goes to o= has V f(w') = 0.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = oL VFWY)

(scalar a? is the “step size’, we decrease ‘f’ for small enough a°)
— Repeat to successively refine the guess:

W= Wt = VW) for 12 )23

— Stop if not making progressor ||V (W)l < ¢
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Gradient Descent in 2D
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Under weak conditions, algorithm converges to a local minimum.
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* |s finding a local minimum good enough?

7)) [ LL
Convex Functions ////\///
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— For least squares and Huber loss this is enough: they are convex functions.

/ N 7

A function is convex if the area above the function is a convex set.

— All values between any two points above function stay above function.



Convex Functions

e All local minima of convex functions are also global minima.
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— Gradient descent finds a global minimum on convex functions.
— Next time: how do we know if a function is convex?



Gradient Descent

* Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d?3).

FOrqu XTX costs 0(n42> and Solvm\? a J’(J fnear Sys'ffw\ (o5Ts 0(43)
— Gradient descent costs O(ndt) to run for ‘t’ iterations. We con w
_ )(Iy"'/: )(T()(w> W}HCLI
Comru’fin? V()= Y%, = Yy only costs O(nd) S just two p xd
Malr:x m"\Hif’i(Wlimf.
— Gradient descent can be faster when ‘d’ is very large:

* Faster if solution is “good enough” for (t < d) and (t < d?/n).

* Improving on gradient descent: Nesterov and Newton method.
— For L2-regularized least squares, there is also “conjugate” gradient.



Motivation for Considering Worst Case




‘Brittle’ Regression

* What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* In this case you can use something like the infinity-norm:

?(w)f H)(w‘ yl)o@ X where “r“ot,: YVW,U( g |/‘,,;
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* Very sensitive to outliers (brittle), but worst case will be better.



Log-Sum-Exp Function

As with the L;-norm, the L_-norm is convex but non-smooth:
— We can fit it with gradient descent using a smooth approximation.

Log-sum-exp function is a smooth approximation to max function:

m_\owgzl.g o |03( éiexlo(z;ﬁ

Intuition:
— Jiexp(z;) = maxexp(z;), as largest element is magnified exponentially.
l

— Recall that log(exp(z)) = z..

Notation alert: when | write “log” | always mean natural logarithm:
Joglexp(e)) = ¢



Summary

Robust regression using L1-norm/Huber is less sensitive to outliers.
Gradient descent finds local minimum of differentiable function.
Convex functions do not have non-global local minima.
Log-Sum-Exp function: smooth approximation to maximum.

Next time:
— Finding ‘important’ e-mails, and beating naive Bayes on spam filtering.



Bonus Slide: Invertible Matrices and Regularization

* Unlike least squares where X"™X may not be invertible,
the matrix (X™X + Al) in always invertible.

* We prove this by showing that (X"X + Al) is positive-definite,
meaning that v(X'X + Al)v > O for all non-zero V.
(Positive-definite matrices are invertible.)

Wi‘l\\ a 3@_9;'\_(, v\ s uch Tt vF0 we have
v OO Hi)w VIXTXe + ATV
= 1K 112 47%

—~ K_/y\/
70 7 0 ¢since \/:"(0



Bonus Slide: Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:
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Bonus Slide: Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z,) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [t p= max 32,3

l(ycj( ?(&(/)(2.,')) = qu( ? CX/O(Z,' —-,2 +I£))

= 04 (2\ ex,o(Z;"ﬁ)e//o ()

= log Cenp () Z exp(2;-p))

= l“ﬁ (exf(,@)) + loas(%eq(z,*ﬁ))
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Bonus Slide: Normalized Steps
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Bonus Slide: Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient
descent should work for non-smooth problems?”

)

— Counter-example from Bertsekas’ “Nonlinear Programming”
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Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.



