CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Fall 2016



Admin

Assignment 1:

— Marks up this weekend on UBC Connect.

Assignment 2:

— 3 late days to hand it in Monday.

Assignment 3:

— Due Wednesday (so we can release solutions before the midterm).
Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

Corrections:
— w = X\y does not compute the least squares estimate.
— Only certain splines have an RBF representation.



Last Time: RBFs and Regularization

e We discussed radial basis functions:

— Basis functions that depend on distances to training points:
_ |1x ;= %R _ xi= %l _ x- 51/2
Y= wexp( )+ mery (- MG ) e (-1
N

Lp-? 2 42
ey X - ¥ /2
Zweq( A
— Flexible bases that can model any continuous function.

* We also discussed regularization:
— Adding a penalty on the model complexity:
= | -
£6D = L=yl + 211,12
— Best parameter lambda almost always leads to improved test error.

* L2-regularized least squares is also known as “ridge regression”.



Features with Different Scales

e Consider features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0) 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?

— |t doesn’t matter for least squares:

* w;*(100 mL) gives the same model as w;*(0.1 L)
* w; will just be 1000 times smaller.

— It also doesn’t matter for decision trees or naive Bayes.



Features with Different Scales

e Consider features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— |t matters for k-nearest neighbours:
 KNN will focus on large values more than small values.

— |t matters for regularized least squares:
* Penalization |w;| means different things if features j" are on different scales.



Standardizing Features .-
 |tis common to standardize features: - Vo,
— For each feature: T C,,/.A,Z,n Z\
1. Compute mean and standard deviation; | N " ——
_ —| | <

2. Subtract mean and divide by standard deviation:

: Xiv— M
Kcla(qce 7(,5 wiTh ) &/%
J

— Means that change in ‘w;" have similar effect for any feature .

e Should we regularize the bias?
— No! The y-intercept can be anywhere, why encourage it to be close to zero?
— Yes! Regularizing all variables makes solution unique and it easier to compute ‘w’.
— Compromise: regularize the bias by a smaller amaount than other variables? (%

L s *'ZHXW\yUl‘F s

J. < ﬂ_) “\/) {\o;—’b[ﬂs)



Standardizing Target

* In regression, we sometimes standardize the targetsy..
— Puts targets on the same standard scale as standardized features:

Rer,lu(e )/i wi'h /_l_:__’___“y

%

* With standardized target, setting w = O predicts average y::
— High regularization makes us predict closer to the average value.

* Other common transformations of y, are logarithm/exponent:

Use I"ﬂ(}/i) o  &xp (n’/y,)

— Makes sense for geometric/exponential processes.



A A

\}

Ridge Regression Calculation

T T = 7
OIO\')Ccf‘VC: F<W) = "}:“Xw" \1”1 -+ _jiw W W w™ w Ih/
Grmlie(ﬁ" VP(W>= &Xw— XTX_'l' T’AW
Set VF(W)=0: X' Xw +Aw =Xy

or

XTxwt AIw =¥y

or .
(é é + 31 )w = X Y
Pre - ""“”’fy lp‘/ (X7X+/>il> which a'___g_g exists:

(XTX+4T) (x7x+21)w (xTx+91)" Xy

\_/—\Tr’

so w= (XXt ’)IY X_'y



Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier  Thot doesa't ol 7(/’:/‘(4

_”/\is (S WLD# wé

) / M lCC(.S‘f S?(Ah‘fc_s
to do

http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier  Thot doesa't ol 71/0‘4

/\V Ths 5 what

I{aﬁl Syma/cs
% wl// ac‘fuq”}/ do.

* Least squares is very sensitive to outliers.



/N
Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies largg errors:

Aloﬁo'uft érfocs gg_v\ar{;J

rrors

LeaS‘f Symn/ej R
minimniZes

ver tieal dis "amN
S _(1 wase .l

\M%\ “l‘H'('l'I'l\pl l.\t.cnn.J.r

e Qutliers (large error) influence ‘w” much more than other points.




Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:

K

-

[t ]]]]|

e Qutliers (large error) influence ‘w” much more than other points.
— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

A[oSolque érrog

llltlul)“

——

SMJ

evvrorsS

/l'nm/)/}

N

SYyUm 6{\ fi‘l@ §

!

Srmo,//et‘

Tha
For The

C owrec7
))nc .



Robust Regression

Robust regression objectives put less focus large errors (outliers).
For example, use absolute error instead of squared error:

tlw)= é— )""TX"_)/"\

Now decreasing ‘small’ and ‘large’ errors is equally important.
Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Lead éc/ nares’ Le ast  absol ufe error
= = 2 = -
7C(W) -i ”)(w y” 1[‘(w> “Xw y”,

Ard dv x|



Least Squares wiIh Outliers

* Least squares is very sensitive to outlfers.

W s

.

'\ Simaru(

rrors

Llr\ear moclcl w (m/ﬂ:M am& 1{'\ w)- - " )(w yl

SMJ

evvorS

/lmu//)/l




Least Squares with Outliers

e Absolute error is more robust to outliers:

e A\Oﬁolu\ff érror_s Absoluﬂle 6:’/09

ol L el

A
Lir\ear model ‘W' m/'n)m(ziw\)t F(w): ” )(w" yl/, = -f '\IVIX,' e /ll

—




Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:

||

[

— We can’t take the gradient at zero.

-
0

— Generally, harder to minimize non-smooth than smooth functions.
— Could solve as ‘linear program’, but harder than ‘linear system’.



Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.
* For example, the Huber loss: I |

() = ék(wTK ~v)

}\( 7\ —'Zf,'z For 'I‘,I\<£ L .' '. \' 4_[7
A E(\ -1 Theowi -£¢ 0 E\—”“\/‘/
(\i 2 £> 0 Thennise ———— absg lnle error

Squared “error near ze. A2y from zero.

e Setting I/f(x) = 0 does not give a linear system.

* But we can minimize ‘t" using gradient descent:
— Algorithm for finding local minimum of a differentiable function.



Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— It starts with a “guess” w@.
— It uses w? to generate a better guess w.
— It uses w' to generate a better guess w?.
— It uses w? to generate a better guess w3.

— The limit of w' as ‘t’ goes to o= has V f(w') = 0.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

f)
f(w®)

|

— J

(o) ¥
w w

(Wl{n'wa'z er )

e



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

Lin@ wi th
$|0f€ V(W)

-

S W WS
§|orc Vf(w()) IS e
negatve so we can decreuse Flw)

IO\/ making 'w' more 'oag}five




Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

(wn.'n'umiz er 7

Sbfe TS ;;cc)‘din negq‘live /(/ Lme wﬂl[a S,O(Je V‘F(W')

5o maKe 'w more ‘:ogﬁive.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

f)
f(w’)
‘ NI ="/ w
o v:/o W' W,‘ W} WH



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

"4

/Vow '“\e, slore V{\(w” 5 posilive

F

So we move in The negative dice ctin



Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = oL VFWY)

(scalar a? is the “step size’, we decrease ‘f’ for small enough a°)
— Repeat to successively refine the guess:

W= Wt = VW) for 12 )23

— Stop if not making progressor ||V (W)l < ¢
L)7 Some Sﬁ'\q“ Sc G/qf.

A (ida poximale local minimum



Gradient Descent in 2D

%

. , \;r - w5
/ \ ‘ \‘\‘M/mmi z£>>

Under weak conditions, algorithm converges to a local minimum.

W)



* |s finding a local minimum good enough?

7)) [ LL
Convex Functions ////\///
(Ghm"f /
/

— For least squares and Huber loss this is enough: they are convex functions.

/ N 7

A function is convex if the area above the function is a convex set.

— All values between any two points above function stay above function.



Convex Functions

e All local minima of convex functions are also global minima.

P‘"OD‘Y ‘o\/ (or\fracil(,'fiof\.'

COﬂSiAPf @ |o(a/ i nipuv) _LC 7th5 iS nof 91019,,1 i nimun,
ﬂ""le musT a gmp,//er‘ vm/hi’..
8(41 This

COn'/ch/ i /f '/[,\a"/
we ore at

'ﬂ“’ W,
SRREIRRTI

B)/ convexily We con move a/on9 lime 1 1/0L6/ Minimam and  deweise objectie

— Gradient descent finds a global minimum on convex functions.
— Next time: how do we know if a function is convex?



Gradient Descent

* Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d?3).

FOrqu XTX costs 0(n42> and Solvm\? a J’(J fnear Sys'ffw\ (o5Ts 0(43)
— Gradient descent costs O(ndt) to run for ‘t’ iterations. We con w
_ )(Iy"'/: )(T()(w> W}HCLI
Comru’fin? V()= Y%, = Yy only costs O(nd) S just two p xd
Malr:x m"\Hif’i(Wlimf.
— Gradient descent can be faster when ‘d’ is very large:

* Faster if solution is “good enough” for (t < d) and (t < d?/n).

* Improving on gradient descent: Nesterov and Newton method.
— For L2-regularized least squares, there is also “conjugate” gradient.



Motivation for Considering Worst Case




‘Brittle’ Regression

* What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* In this case you can use something like the infinity-norm:

?(w)f H)(w‘ yl)o@ X where “r“ot,: YVW,U( g |/‘,,;

X
X XXX ¥ .
)<)<X
* Very sensitive to outliers (brittle), but worst case will be better.



Log-Sum-Exp Function

As with the L;-norm, the L_-norm is convex but non-smooth:
— We can fit it with gradient descent using a smooth approximation.

Log-sum-exp function is a smooth approximation to max function:

m_\owgzl.g o |03( éiexlo(z;ﬁ

Intuition:
— Jiexp(z;) = maxexp(z;), as largest element is magnified exponentially.
l

— Recall that log(exp(z)) = z..

Notation alert: when | write “log” | always mean natural logarithm:
Joglexp(e)) = ¢



Summary

Robust regression using L1-norm/Huber is less sensitive to outliers.
Gradient descent finds local minimum of differentiable function.
Convex functions do not have non-global local minima.
Log-Sum-Exp function: smooth approximation to maximum.

Next time:
— Finding ‘important’ e-mails, and beating naive Bayes on spam filtering.



Bonus Slide: Invertible Matrices and Regularization

* Unlike least squares where X"™X may not be invertible,
the matrix (X™X + Al) in always invertible.

* We prove this by showing that (X"X + Al) is positive-definite,
meaning that v(X'X + Al)v > O for all non-zero V.
(Positive-definite matrices are invertible.)

Wi‘l\\ a 3@_9;'\_(, v\ s uch Tt vF0 we have
v OO Hi)w VIXTXe + ATV
= 1K 112 47%

—~ K_/y\/
70 7 0 ¢since \/:"(0



Bonus Slide: Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:

”Xw"‘/" - malz w'x; ‘7’5
- WZM,,,X%W” Yir) w% Srce [zl 7 murfz ~a
_ '@9(23’({’(‘” Y \/) + éeyf(y, w Y)) (AS/'/k]l Io) Sum™érp

10 foro )(Wq\/f

“mex over An Toms



Bonus Slide: Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z,) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [t p= max 32,3

l(ycj( ?(&(/)(2.,')) = qu( ? CX/O(Z,' —-,2 +I£))

= 04 (2\ ex,o(Z;"ﬁ)e//o ()

= log Cenp () Z exp(2;-p))

= l“ﬁ (exf(,@)) + loas(%eq(z,*ﬁ))

—~ {} + loa(ziexf(?—i'ﬂ ) S| sOO\/f’/r%OV




Bonus Slide: Normalized Steps

. / 'é'//: fs‘_,— VP f W\
QW)’,/'W\ from closss “can we we W w 9aof (W)

TL\\S Wi ” wor ¢ Po{ Q \,ulai/e) LJV‘, Y\ofi(ﬂ ﬁ“#

[T u L N

NEIll
waf)u 13

|

So Tre ulgari"‘\m never comveryes




Bonus Slide: Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient
descent should work for non-smooth problems?”

)

— Counter-example from Bertsekas’ “Nonlinear Programming”

)
\uz Converjes To here  (even fhogh Juncion
PRV
\N\\Y\M Wer §. (S (6VWe)()
\\I \
H1
wéﬁé%

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.



