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Admin
Assignment 2: I—fjho/e Am'ymmf 1

— 2 late days to hand it in Friday, 3 for Monday. Marks 6 Con/iccf

Assignment 3 is out.
— Due next Wednesday (so we can release solutions before the midterm).

Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

Assignment tips:
— Put your name and ID numbers on your assignments.
— Do the assignment from this year.



Last Time: Normal Equations and Change of Basis

e Last time we derived normal equations: 3
X Xw=X '\/

— Solutions ‘W’ minimize squared error in linear model.

* We also discussed change of basis:

— E.g., polynomial basis:
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Parametric vs. Non-Parametric Bases

* Polynomials are not the only possible bases:
— Exponentials, logarithms, trigonometric functions, etc.

— The right basis will vastly improve performance. For b odic dat
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Parametric vs. Non-Parametric Bases

* Polynomials are not the only possible bases:
— Exponentials, logarithms, trigonometric functions, etc.
— The right basis will vastly improve performance.

— But the right basis may not be obvious.
 What happens if we use the wrong basis?

— As ‘n’ increases, we can fit ‘w’ more accurately.

— But eventually more data doesn’t help if basis isn’t “flexible” enough.
* Alternative is non-parametric bases:

— Size of basis (number of features) grows with ‘n’.

— Model gets more complicated as you get more data.
— You can model very complicated functions where you don’t know the right basis.



Non-Parametric Basis: RBFs

* Radial basis functions (RBFs):
— Non-parametric bases that depend on distances to training points.
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* This affects fundamental trade-off (set it using a validation set).



Non-Parametric Basis: RBFs

* Radial basis functions (RBFs):

— Non-parametric bases that depend on distances to training points.
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Non-Parametric Basis: RBFs
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e Gaussian RBFs are universal approximators (compact subets of R9Y)
— Can approximate any continuous function to arbitrary precision.
— Achieve irreducible error as ‘n’ goes to infinity.



Interpolation vs. Extrapolation
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Non-Parametric Basis: RBFs

Least squares with Gaussian RBFs for different o values:

i — — Co\AU QJJ _’9}3—5 and 'Menr basis.

05} , = | __,)() — 3(":(,‘)!,”7 " - T g(,”x,")(n”)
" _ | — Xy — ! - .
o :‘," } 2 - {_XB_. | ) \ :
g : ' [ N g l
0.5} « ‘ : '
" ;:. | — La— ("x.’xn") i ‘(j("’(h-yh")
= “_ 1- i v Vv S W
g *a :‘ I A n
1.5} v *': 1*‘ . '
L T This cever’s fo [near_regression
5 l'_;‘l * s .
ahlis i : insfeal of 0 away from dgta.

25




Last Time: Polynomial Degree and Training vs. Tesing

* As the polynomial degree increases, the training error goes down.
* But training error becomes worse approximation test error.
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e Same effect as we decrease variance in Gaussian RBF.
* But what if we need a complicated model?



Controlling Complexity

Usually “true” mapping from x. to y. is complex.
— Might need high-degree polynomial or small 6% in RBFs.

But complex models can overfit.
So what do we do???

There are many possible answers:
— Model averaging: average over multiple models to decrease variance.
— Regularization: add a penalty on the complexity of the model.



L2-Regularization

e Standard regularization strategy is L2-regularization: /

)= 31D yIP+ A0ul? or ¥(w>=-i§(wx, p e

¢ -
- -

* Intuition: large w; tend to lead to overfitting (cancel each other).

* So minimize squared error plus penalty on L2-norm of ‘w’.
— This objective balances getting low error vs. having small slope ‘w’.

* You can increase the error if it makes ‘w’ much smaller.
e Reduces overfitting.

— Regularization parameter A > 0 controls “strength” of regularization.

* Large A puts large penalty on slope.



L2-Regularization

e Standard regularization strategy is L2—regu|arization'
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* |n terms of fundamental trade-off:
— Regularization increases training error.
— Regularization makes training error better approximation of test error.

 How should you choose A?

— Theory: as ‘n” grows A should be in the range O(1) to O(n/2).
— Practice: optimize validation set or cross-validation error.

* This almost always decreases the test error.



L2-Regularization

e Standard regularization strategy is L2-regularization:
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Why use L2-Regularization?

* |t's a weird thing to do, but Mark says “always use regularization”.
— “Almost always decreases test error” should already convince you.

* Mike says “try to make the objective function reflect test error”
— Create an optimization problem that you actually want to solve.

 But here are 6 more reasons:

Solution ‘w’ is unique.

X™X does not need to be invertible.

Less sensitive to changes in X ory.

Makes algorithms for computing ‘w’ converge faster.

Stein’s paradox: if d > 3, ‘shrinking” moves us closer to ‘true’ w.
Worst case: just set A small and get the same performance.

o U eE Wwh e



Shrinking is Weird and Magical

 We throw darts at a target:
— Assume we don’t always hit the exact center.

— Assume the darts follow a symmetric pattern
around center.




Shrinking is Weird and Magical

 We throw darts at a target:
— Assume we don’t always hit the exact center.

— Assume the darts follow a symmetric pattern
around center.

* Shrinkage of the darts :

1. Choose some arbitrary location ‘0.
2. Measure distances from darts to ‘0.



Shrinking is Weird and Magical

X x X
 We throw darts at a target: x go——y
X /X \\ Y
— Assume we don’t always hit the exact center. y @\“
— Assume the darts follow a symmetric pattern X X\ )x A
around center. X o X
 Shrinkage of the darts : ' o

1. Choose some arbitrary location ‘0. 0"
2. Measure distances from darts to ‘O’
3. Move misses towards ‘0’, by small

amount proportional to distances.

* If small enough, darts will be closer to center on average.

Visualization of the related Stein’s paradox:
https://www.naftaliharris.com/blog/steinviz



https://www.naftaliharris.com/blog/steinviz

RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!
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RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 0.500000)

RBF Basis (sigma = 2.000000)

— Can add bias or linear/poly basis to do better away from data.
— Expensive at test time: need distance to all training examples.
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Summary

Radial basis functions:
— Non-parametric bases that can model any function.

Regularization:
— Adding a penalty on model complexity.
— Improves test error because it is magic.

L2-regularization: penalty on L2-norm of regression weights ‘w’.

Next time:

— The most important algorithm in machine learning.



Bonus Slide: Predicting the Future

* |n principle, we can use any features x; that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.
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Bonus Slide: Predicting the Future

* In principle, we can use any features x. that we think are relevant.

* This makes it tempting to use time as a feature, and predict future.
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https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg
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Bonus Slide: Predicting 100m times 400 years in the
future?

Male 100 m Sprint Prediction
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Bonus Slide: Predicting 100m times 400 years in the
future?
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Bonus Slide: No Free Lunch, Consistency, and the

Future
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Bonus Slide: No Free Lunch, Consistency, and the
Future
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Bonus Slide: Ockham’s Razor vs. No Free Lunch

 Ockham’s razor is a problem-solving principle:

— “Among competing hypotheses, the one with the
fewest assumptions should be selected.”

— Suggests we should select linear model.
 Fundamental theorem of ML:
— If training same error, pick model less likely to overfit.
— Formal version of Occam’s problem-solving principle.
— Also suggests we should select linear model.
* No free lunch theorem:

— There exists possible datasets where you should
select the green model.



Bonus Slide: No Free Lunch, Consistency, and the
Future
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Bonus Slide: No Free Lunch, Consistency, and the

Future
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Bonus Slide: No Free Lunch, Consistency, and the

Future
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Bonus Slide: No Free Lunch, Consistency, and the

Future
i ohows Tt ypeen mold 15 net et

| NQ W é
| &%
6
| b
O o
J
[Pe) ¢ ;
[ 000 ‘ € 0: ) X
‘ 0O ( /
@ “ D
AR U
/ )L () / "' y
\(l ‘0 ’ 06 OO /
9 |
{ 000 D \ @0 9
| O AN \[)_M

&\/\’\\7 \,\/ISW\ \/\V\..I\/f/S U\(\\/ COW/\5;§+\CV\4 @g“(;/f\/\q {Vf)

wWe can \S5e moce Aﬁv\ JLD 3@[ C(T%W %OU
Ywe  anQadet



Bonus Slide: No Free Lunch, Consistency, and the
Future
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Bonus Slide: No Free Lunch, Consistency, and the
Future
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Bonus Slide: No Free Lunch, Consistency, and the
Future
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Bonus Slide: Application: Climate Models

* Has Earth warmed up over last 100 years? (Consistency zone)
— Data clearly says ‘yes’.

Global Land—Ocean Temperature Index
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* Will Earth continue to warm over next 100 years? (Really NFL zone)
— We should be more skeptical about models that predict future events.



Bonus Slide: Application: Climate Models

* So should we all become global warming skeptics?
* |f we average over models that overfit in *indepednent™ ways, we

expect the test error to

Global Warming Projections
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e lower, so this gives more confidence:
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— We should be skeptical of individual models, but agreeing predictions
made by models with different data/assumptions are more likely be true.

* If all near-future predictions agree, they are likely to be accurate.
* As we go further in the future, variance of average will be higher.



Bonus Slide: Splines in 1D

* For 1D interpolation, alternative to polynomials/RBFs are splines:
— Use a polynomial in the region between each data point.
— Constrain some derivatives of the polynomials to yield a unique solution.

 Most common example is cubic spline:
— Use a degree-3 polynomial between each pair of points.
— Enforce that f’(x) and f”’(x) of polynomials agree at all point.
— “Natural” spline also enforces f”’(x) = 0 for smallest and largest x.

* Non-trivial fact: natural cubic splines are sum of:
— Y-intercept.
— Linear basis.
— RBFs with g(a) = a3.

e Different than Gaussian RBF because it increases with distance.

Approximating f{x) = x sin(2 1 x + 1) using Matural cubic splines
a5 . . .

= Cubic spline Apprax.
= = Exact Function




Bonus Slide: Spline in Higher Dimensions

* Splines generalize to higher dimensions if data lies on a grid.
— For more general (“scattered”) data, there isn’t a natural generalization.

* Common 2D “scattered” data interpolation is thin-plate splines:
— Based on curve made when bending sheets of metal.
— Corresponds to RBFs with g(a) = a? log(at).

* Natural splines and thin-plate splines: special cases of
“polyharmonic” splines:
— Less sensitive to parameters than Gaussian RBF.




