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Admin

• Assignment 2:

– 2 late days to hand it in Friday, 3 for Monday.

• Assignment 3 is out.

– Due next Wednesday (so we can release solutions before the midterm).

• Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

• Assignment tips:

– Put your name and ID numbers on your assignments.

– Do the assignment from this year.



Last Time: Normal Equations and Change of Basis

• Last time we derived normal equations:

– Solutions ‘w’ minimize squared error in linear model.

• We also discussed change of basis:

– E.g., polynomial basis:

– Let’s you fit non-linear models with linear regression.



Parametric vs. Non-Parametric Bases

• Polynomials are not the only possible bases:
– Exponentials, logarithms, trigonometric functions, etc.

– The right basis will vastly improve performance.

– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.

– As ‘n’ increases, you can estimate the model more accurately.

– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.

– Model gets more complicated as you get more data.

– You can model very complicated functions where you don’t know the right basis.



Parametric vs. Non-Parametric Bases

• Polynomials are not the only possible bases:

– Exponentials, logarithms, trigonometric functions, etc.

– The right basis will vastly improve performance.

– But the right basis may not be obvious.

• What happens if we use the wrong basis?

– As ‘n’ increases, we can fit ‘w’ more accurately.

– But eventually more data doesn’t help if basis isn’t “flexible” enough.

• Alternative is non-parametric bases:

– Size of basis (number of features) grows with ‘n’.

– Model gets more complicated as you get more data.

– You can model very complicated functions where you don’t know the right basis.



Non-Parametric Basis: RBFs

• Radial basis functions (RBFs):
– Non-parametric bases that depend on distances to training points.

– Most common ‘g’ is Gaussian RBF:

• Variance σ2 controls influence of nearby points.

• This affects fundamental trade-off (set it using a validation set).
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Non-Parametric Basis: RBFs

• Gaussian RBFs are universal approximators (compact subets of ℝd)
– Can approximate any continuous function to arbitrary precision.

– Achieve irreducible error as ‘n’ goes to infinity.



Interpolation vs. Extrapolation



Non-Parametric Basis: RBFs

• Least squares with Gaussian RBFs for different σ values:



Last Time: Polynomial Degree and Training vs. Tesing

• As the polynomial degree increases, the training error goes down.
• But training error becomes worse approximation test error.

• Same effect as we decrease variance in Gaussian RBF.
• But what if we need a complicated model?

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Controlling Complexity

• Usually “true” mapping from xi to yi is complex.

– Might need high-degree polynomial or small σ2 in RBFs.

• But complex models can overfit.

• So what do we do???

• There are many possible answers:

– Model averaging: average over multiple models to decrease variance.

– Regularization: add a penalty on the complexity of the model.



L2-Regularization

• Standard regularization strategy is L2-regularization:

• Intuition: large wj tend to lead to overfitting (cancel each other).

• So minimize squared error plus penalty on L2-norm of ‘w’.

– This objective balances getting low error vs. having small slope ‘w’.

• You can increase the error if it makes ‘w’ much smaller.

• Reduces overfitting.

– Regularization parameter λ > 0 controls “strength” of regularization.

• Large λ puts large penalty on slope.



L2-Regularization

• Standard regularization strategy is L2-regularization:

• In terms of fundamental trade-off:

– Regularization increases training error.

– Regularization makes training error better approximation of test error.

• How should you choose λ?

– Theory: as ‘n’ grows λ should be in the range O(1) to O(n1/2).

– Practice: optimize validation set or cross-validation error.

• This almost always decreases the test error.



L2-Regularization

• Standard regularization strategy is L2-regularization:

• Equivalent to minimizing squared 
error with L2-norm constraint:

• Connection to Occam’s razor



Why use L2-Regularization?

• It’s a weird thing to do, but Mark says “always use regularization”.
– “Almost always decreases test error” should already convince you.

• Mike says “try to make the objective function reflect test error”
– Create an optimization problem that you actually want to solve.

• But here are 6 more reasons:
1. Solution ‘w’ is unique. 

2. XTX does not need to be invertible.

3. Less sensitive to changes in X or y.

4. Makes algorithms for computing ‘w’ converge faster.

5. Stein’s paradox: if d ≥ 3, ‘shrinking’ moves us closer to ‘true’ w.

6. Worst case: just set λ small and get the same performance.



Shrinking is Weird and Magical

• We throw darts at a target:

– Assume we don’t always hit the exact center.

– Assume the darts follow a symmetric pattern 
around center. 
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2. Measure distances from darts to ‘0’.



Shrinking is Weird and Magical

• We throw darts at a target:

– Assume we don’t always hit the exact center.

– Assume the darts follow a symmetric pattern 
around center. 

• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.

2. Measure distances from darts to ‘0’.

3. Move misses towards ‘0’, by small
amount proportional to distances.

• If small enough, darts will be closer to center on average.
Visualization of the related Stein’s paradox:
https://www.naftaliharris.com/blog/steinviz

https://www.naftaliharris.com/blog/steinviz


RBFs, Regularization, and Validation

• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.

– Flexible non-parametric basis, magic of regularization, and tuning for test error!

– Can add bias or linear/poly basis to do better away from data.

– Expensive at test time: need distance to all training examples.
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• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.

– Flexible non-parametric basis, magic of regularization, and tuning for test error!

– Can add bias or linear/poly basis to do better away from data.

– Expensive at test time: need distance to all training examples.



Summary

• Radial basis functions: 

– Non-parametric bases that can model any function.

• Regularization:

– Adding a penalty on model complexity.

– Improves test error because it is magic.

• L2-regularization: penalty on L2-norm of regression weights ‘w’.

• Next time:

– The most important algorithm in machine learning.



Bonus Slide: Predicting the Future

• In principle, we can use any features xi that we think are relevant.

• This makes it tempting to use time as a feature, and predict future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/



Bonus Slide: Predicting the Future

• In principle, we can use any features xi that we think are relevant.

• This makes it tempting to use time as a feature, and predict future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mi
https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg
https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg


Bonus Slide: Predicting 100m times 400 years in the 
future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif



Bonus Slide: Predicting 100m times 400 years in the 
future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif
http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/
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Bonus Slide: Ockham’s Razor vs. No Free Lunch

• Ockham’s razor is a problem-solving principle:

– “Among competing hypotheses, the one with the 
fewest assumptions should be selected.”

– Suggests we should select linear model.

• Fundamental theorem of ML:

– If training same error, pick model less likely to overfit.

– Formal version of Occam’s problem-solving principle.

– Also suggests we should select linear model.

• No free lunch theorem:

– There exists possible datasets where you should 
select the green model.
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Bonus Slide: No Free Lunch, Consistency, and the 
Future



Bonus Slide: Application: Climate Models

• Has Earth warmed up over last 100 years? (Consistency zone)
– Data clearly says ‘yes’.

• Will Earth continue to warm over next 100 years? (Really NFL zone)
– We should be more skeptical about models that predict future events.

https://en.wikipedia.org/wiki/Global_warming



Bonus Slide: Application: Climate Models

• So should we all become global warming skeptics?

• If we average over models that overfit in *indepednent* ways, we 
expect the test error to be lower, so this gives more confidence:

– We should be skeptical of individual models, but agreeing predictions 
made by models with different data/assumptions are more likely be true.

• If all near-future predictions agree, they are likely to be accurate.

• As we go further in the future, variance of average will be higher.
https://en.wikipedia.org/wiki/Global_warming



Bonus Slide: Splines in 1D

• For 1D interpolation, alternative to polynomials/RBFs are splines:
– Use a polynomial in the region between each data point.

– Constrain some derivatives of the polynomials to yield a unique solution.

• Most common example is cubic spline: 
– Use a degree-3 polynomial between each pair of points.

– Enforce that f’(x) and f’’(x) of polynomials agree at all point.

– “Natural” spline also enforces f’’(x) = 0 for smallest and largest x.

• Non-trivial fact: natural cubic splines are sum of:
– Y-intercept.

– Linear basis.

– RBFs with g(α) = α3.
• Different than Gaussian RBF because it increases with distance.

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html



Bonus Slide: Spline in Higher Dimensions

• Splines generalize to higher dimensions if data lies on a grid.

– For more general (“scattered”) data, there isn’t a natural generalization.

• Common 2D “scattered” data interpolation is thin-plate splines:

– Based on curve made when bending sheets of metal.

– Corresponds to RBFs with g(α) = α2 log(α).

• Natural splines and thin-plate splines: special cases of 
“polyharmonic” splines:

– Less sensitive to parameters than Gaussian RBF.

http://step.polymtl.ca/~rv101/thinplates/


