CPSC 340:
Machine Learning and Data Mining

Non-Linear Regression
Fall 2016



Admin

* Assignment 2 is due now.
— 1 late day to hand it in on Wednesday, 2 for Friday, 3 for next Monday.

* Assignment 3 will be out by early next week.
— Due October 19 (so we can release solutions before the midterm).

* We will have tutorials on Tuesday/Wednesday of next week:

— Focusing on multivariate calculus in matrix notation.
* Tutorial room change: T1D (Monday @5pm) moved to DMP 101.



THE DATA BEHIND MASSIVE
OPEN ONLINE COURSES (MOOCS) AT

LRI oacc I 12 0Y

Thursday October 13, 2016 at 5:30pm

BIG DATA I3}
aslDataSense GnIvVERSITY

“In this talk, Eli will provide an overview of how big data is used to create and power
Silicon Valley's greatest companies, with specific examples from Udacity.”

Location TBA!

There will be free food and drinks. More info and to get your tickets:
https://goo.gl/QGsnUU

https://www.facebook.com/events/645894388926612/


https://goo.gl/QGsnUU

Last Time: Linear Regression

We discussed linear models:
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add them to get y,”.
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http://setosa.io/ev/ordinary-least-squares-regression

Why don’t we have a y-intercept?

e Last time: Linear models with no y-intercept.

— Linear model is y, = w'x. instead of y, = w'x. + w, with y-intercept w,,.

— So if x, = 0 then we must predict y, = 0.
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Why don’t we have a y-intercept?

e Last time: Linear models with no y-intercept.
— Linear model is y, = w'x. instead of y, = w'x. + w, with y-intercept w,,.
— So if x, = 0 then we must predict y, = 0.
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Adding a Bias Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.
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* Now use “Z” as features to get a model W|th a non zero y-intercept:
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* So we can have a non-zero y-intercept by changing features.
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Linear Least Squares
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Linear Least Squares
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Linear Least Squares
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Linear Least Squares
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Linear Least Squares
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Least Squares Issues

* |ssues with least squares model: .
o . X is nxd
— Solution might not be unique. .
. L . s dx
— |t is sensitive to outliers. so KIS dxn
"l .
— It always uses all features. and XX is Jxd

— Data can might so big we can’t store X"X. -
— It might predict outside range of y, valueS\/
— It assumes a linear relationship between x, and y
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Example: Non-Linear Progressions in Athletics

* Are top athletes going faster, higher, and farther?
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Generative models: fit p(x; | y;,) and p(y,) with Gaussian or other model.




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Generative models: fit p(x; | y,) and p(y,) with Gaussian or other model.

— Non-parametric models:

* Mean y, among k-nearest neighbours.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Generative models: fit p(x; | y,) and p(y,) with Gaussian or other model.

1.0F

— N On-pa ra metrlc mOdels: KNeighborsRegressor (k = 5, weights = 'uniform’)

1
— prediction
see data

* Mean y, among k-nearest neighbours.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Generative models: fit p(x; | y,) and p(y,) with Gaussian or other model.
— Non-parametric models:

* Mean y, among k-nearest neighbours. =

* Could be weighted by distance. |
* ‘Nadaraya-Waston’: weight all y, by distance to x..
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‘Locally linear regression’: for each x; a fit linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Generative models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:
* Mean y, among k-nearest neighbours.
* Could be weighted by distance.
* ‘Nadaraya-Waston’: weight all y, by distance to x..
* ‘Locally linear regression’: for each x;, fit linear model weighted by distance.
(Better than KNN and NW at boundaries.)
— Ensemble methods:

e Can improve performance by averaging across regression models.



Regression Forests for Fluid Simulation

e https://www.youtube.com/watch?v=kGB7Wd9CudA



https://www.youtube.com/watch?v=kGB7Wd9CudA

Linear Least Squares for Quadratic Models

Can we use linear least squares to fit a quadratic model?
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)i - W, T WX T WX

You can do this by changing the features (change of basis):
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It’s a linear function of w, but a quadratic function of x..
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Linear Least Squares for Quadratic Models

SC}&A“VCS leco?l
S¢ wa/&
with
(,V\ﬂd"aﬁc

LasiS



General Polynomial Basis

 We can have a polynomial of degree ‘p’ by using a basis:
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* There are polynomial basis functions that are numerically nicer:

— E.g., Lagrange polynomials.




General Polynomial Basis

Degree 7




Degree of Polynomial and Fundamental Trade-Off

As the polynomial degree increases, the training error goes down.
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But training error becomes worse approximation test error.
Usual approach to selecting degree: validation or cross-validation.



Summary

Y-intercept can be modeled by using a column of 1s.

Linear least squares solution is given by normal equations:

— Solve (X™X)w = X'y.

Tree/generative/non-parametric/ensemble methods for regression.
Change of basis allows linear models to model non-linear data:

Next time:

— Bases that can model any continuous function.



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
Our uH/’Mq }e ‘ea)'f S(/Mﬂ/(5 /)o"lmf"‘?/\"
flw) = Lt 117
@u{" '\'F we ac,fee on /\Oi‘q‘*ior\ We Cagn (/(AiCk/‘/ VW\C‘{’/‘S%&"\J:
g = 3 A~ bl
Tf we use random notaflon we 39* 7‘Af’m}y [ife:
= | — P12
Hp = LIIRE= R
]5 this ﬂ\é Same moJe/?



