CPSC 340:
Machine Learning and Data Mining

Outlier Detection
Fall 2016



Admin

e Assignment 1 solutions will be posted after class.

* Assighment 2 is out:
— Due next Friday, but start early!

e Calculus and linear algebra terms to review for next week:
— Vector addition and multiplication: ax + Sy.
— Inner-product: xy.
— Matrix multiplication: Xw.
— Solving linear systems: Ax = b.
— Matrix inverse: X 1.
— Norms: | |x]].
— Gradient: Vf(x).
— Stationary points: Vf(x)
— Convex functions: f''(x)

AV
-



* We discussed hierarchical clustering:
— Perform clustering at multiple scales.
— Output is usually a tree diagram (“dendrogram”).
— Reveals much more structure in data.
— Usually non-parametric:

* At finest scale, every point is its own clusters.

* Important application is phylogenetics.
— Scientific American yesterday:

e “Scientists Trace Society’s Myths to Primordial Origins”

e “Cosmic Hunt”: Man hunts animal that becomes constellation.



Motivating Example: Finding Holes in Ozone Layer

 The huge Antarctic ozone hole was “discovered” in 1985.

* |t had been in satellite data since 1976:
— But it was flagged and filtered out by quality-control algorithm.



Outlier Detection

e Qutlier detection:
— Find observations that are “unusually different” from the others.
— Also known as “anomaly detection”.
— May want to remove outliers, or be interested in the outliers themselves.
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 Some sources of outliers:
— Measurement errors.
— Data entry errors.
— Contamination of data from different sources.
— Rare events.



Applications of Outlier Detection

Data cleaning.
Security and fault detection (network intrusion, DOS attacks).
Fraud detection (credit cards, stocks, voting irregularities).
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Detecting natural disasters (earthquakes, particularly underwater).
Astronomy (find new classes of stars/planets).
Genetics (identifying individuals with new/ancient genes).



Classes of Methods for Outlier Detection

Model-based methods.
Graphical approaches.
Cluster-based methods.
Distance-based methods.
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Supervised-learning methods.

* Warning: this is the topic with the most ambiguous “solutions”.
— Next week we’ll get back to topics with more concrete solutions.



Model-Based Outlier Detection

 Model-based outlier detection:
1. Fit a probabilistic model.
2. Outliers are examples with low probability.
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* Simplest approach is z-score: — Xi = o
— If z, > 3, 97% of data is larger than x,? | &




Problems with Z-Score

e The z-score relies on mean and standard deviation:

— These measure are sensitive to outliers.
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— Possible fixes: use quantiles, or sequentially remove worse outlier.

e The z-score also assumes that data is uni-modal...



Global vs. Local Outliers

* |s the red point an outlier?



Global vs. Local Outliers

* |s the red point an outlier? What if add the blue points?
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Global vs. Local Outliers

* |s the red point an outlier? What if add the blue points?
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* Red point has the lowest z-score.
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— In the first case it was a “global” outlier.

— In this second case it’s a “local” ouliter:

* It’s within the range of the data, but is far away from other points.

* |n general, hard to give precise definition of ‘outliers’.



Global vs. Local Outliers

* |s the red point an outlier? What if add the blue points?
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* Red point has the lowest z-score.
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— In the first case it was a “global” outlier.

— In this second case it’s a “local” ouliter:

* It’s within the range of the data, but is far away from other points.

* |In general, hard to give precise definition of ‘outliers’.

— Can we have outlier groups?



Global vs. Local Outliers

* |s the red point an outlier? What if add the blue points?
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* Red point has the lowest z-score.
— In the first case it was a “global” outlier.
— In this second case it’s a “local” ouliter:
* It’s within the range of the data, but is far away from other points.
* In general, hard to give precise definition of ‘outliers’.
— Can we have outlier groups?

— What about repeating patterns?
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Graphical Outlier Detection

* Graphical approach to outlier detection:

1. Look at a plot of the data.

2. Human decides if data is an outlier.

 Examples:
1. Box plot:

* Visualization of quantiles/outliers.
* Only 1 variable at a time.
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Graphical Outlier Detection

* Graphical approach to outlier detection:

1. Look at a plot of the data.

2. Human decides if data is an outlier.

 Examples:
1. Box plot.
2. Scatterplot:

e Can detect complex patterns.
* Only 2 variables at a time.
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Graphical Outlier Detection

* Graphical approach to outlier detection:
1. Look at a plot of the data.
2. Human decides if data is an outlier. ‘|
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 Examples: P
1. Box plot. -
2. Scatterplot. ];
3. Scatterplot array: ]f

* Look at all combinations of variables. ” ¥ 4
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Graphical Outlier Detection

* Graphical approach to outlier detection:
1. Look at a plot of the data.
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Cluster-Based Outlier Detection

* Detect outliers based on clustering:
1. Cluster the data.
2. Find points that don’t belong to clusters.

 Examples:

1. K-means:
* Find points that are far away from any mean.
* Find clusters with a small number of points.
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Cluster-Based Outlier Detection

* Detect outliers based on clustering:
1. Cluster the data.
2. Find points that don’t belong to clusters

9
 Examples: @/
1. K-means.
2. Density-based clustering:

e Qutliers are points not assigned to cluster.




Cluster-Based Outlier Detection
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* Detect outliers based on clustering: S e,

1. Cluster the data. i o T
2. Find points that don’t belong to clusters. . T
100 Crab-eating fox %
* Examples: —
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Distance-Based Outlier Detection

* Most of these approaches are based on distances.
* Can we skip the models/plot/clusters and directly use distances?

— Directly measure of how close objects are to their neighbours.

 Examples:
— How many points lie in a radius r’?
— What is distance to kth nearest neighbour?



Global Distance-Based Outlier Detection: KNN

 KNN outlier detection:
— For each point, compute the average distance to its KNN.

— Sort these values.
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— Choose the biggest values as outliers.

* Goldstein and Uchida [2016]:

— Compared 19 methods on 10 datasets.
— KNN best for finding “global” outliers.
— “Local” outliers better detected by LOF...




Local Distance-Based Outlier Detection

* As with density-based clustering, problem with differing densities:

Cpov - -

* 01

* Outlier o, has similar density as elements of cluster C,.

e Solution: “local outlier factor” (LOF) and variations like outlierness:

— |s point “relatively” far away from its neighbours?



Outlierness

Let N, (x,) be the k-nearest neighbours of x..
Let D,(x;) be the average distance to k-nearest neighbours:
—
DI((xj>’1: Z “)(i—XJ’J/
M)

Outlierness is ratio of D,(x;) to average D,(x;) for its neighbours ‘j':

Ok(xi>: Ok()(i) B

JMM)
If outlierness > 1, x; is further away from neighbours than expected.




Outlierness Ratio

* QOutlierness finds o, and o,: * More complicated data:
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Outlierness with Close Clusters

 |f clusters are close, outlierness gives unintuitive results:
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* In this example, ‘p’ has higher outlierness than ‘g’ and ‘r’:
— The green points are not part of the KNN list of ‘p’ for small k.



Outlierness with Close Clusters

* ‘Influenced outlierness’ (INFLO) ratio:

— Include in denominator the ‘reverse’ k-nearest neighbours:
* Points that have ‘p’ in KNN list.

— Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

J

l..
o
<
d

|
%?@
o

~®
®
®
O
|
\

e But still has problems:
— Dealing with hierarchical clusters.
— Yields many false positives if you have “global” outliers.
— Goldstein and Uchida [2016] recommend just using KNN.



Supervised Outlier Detection

* Final approach to outlier detection is to use supervised learning:
* y.=1if x. is an outlier.
* y,=0if x, is a regular point.

* Let’s us use our great methods for supervised learning:
— We can find very complicated outlier patterns.

 But it needs supervision:
— We need to know what outliers look like.
— We may not detect new “types” of outliers.



Summary

Outlier detection is task of finding unusually different object.
— A concept that is very difficult to define.

Model-based methods check if objects are unlikely in fitted model.
Graphical methods plot data and use human to find outliers.

Cluster-based methods check whether objects belong to clusters.
Distance-based methods measure relative distance to neighbours.
Supervised-learning methods just turn it into supervised learning.

Next time: “customers who bought this item also bought”.



