CPSC 340
Assignment 5 Tutorial

Questions 1to 2.2

Question 1- Sparse Latent Features

® example_faces.m shows an example of using PCA on images
® generates b plots:

Figure 1- Original Images

10 20 30 10 20 30

Question 1- Sparse Latent Features

® example_faces.m shows an example of using PCA on images
® generates b plots:

Figure 1- Original Images

X

Question 1- Sparse Latent Features

® example_faces.m - Figure 2:\imu = mean(X);

Question 1- Sparse Latent Features

® example_faces.m - Figure 3: SVD(X)=U,Z, vT
W=VI[1:1:k]

1 2
Lix-zwli2

10 20 30 10 20 30 10 20 30 10 20 30
10 20 30 10 20 30 10 20 30 10 20 30

020 0 10 20 A0

Eigenvectors (Eigenfaces)

Question 1- Sparse Latent Features W
® example_faces.m - Figure 3: SVD(X)=U,2, VI

e N
1 2

S| X = ZW]|

| ‘1 <

10 20 30 10 20 30 10 20 30 10 20

mi “ i

10 20 30 10 20 30 10 20 30 10 20 30

kxd

|
30

Each eigenvector is 32x32

10 2D 30 10 20 30

Eigenvectors (Eigenfaces)

Question 1- Sparse Latent Features W
® example_faces.m - Figure 3: SVD(X)=U,2, VI

e N

kxd

Change the value of “k” to get 0 90 o6 50 30 90 0 20 30

- eigenveCtorS i “

10 20 30 10 20 30 10 20 30

Each eigenvector is 32x32

10 2D 30 10 20 30

Eigenvectors (Eigenfaces)

Question 1- Sparse Latent Features %%
® example_faces.m - Figure 4: | /| = XWT

/ \

Compressed data

Original data Eigenvectors of X T x

kxd

Original Data Data compressed tao 10 numbers

[£

nxk

EOE =

X

nxd

1000

1500 g 1500 =

Question 1- Sparse Latent Features %%

® example_faces.m - Figure 5: %HX— ZW| |§

kxd

10

10
20 20
30 30

10 20 30

10 20 30 10 20 30

Reconstructed X

Question 1.1 - Sparse Latent Features

If you re-run the script, you may get different principal components, even though all that changes between
runs is the order of the training examples. What is the specific difference between the principal components
that are obtained between different runs of the algorithm?

Observe what changes between these two
/\‘

X Z W

U

nxd nxk kxd

Question 1.2 - Non-Negative Matrix Factorization

non-negative constraints on W. Using dimRedPCA_alternate as a template, write a function dimRedNMF
that implements the non-negative matrix factorization (NMF) model. Hand in your code and hand in a plot
of the latent factors (Figure 3) obtained when k& = 100.

NMF is for optimizing Zzw in 3l X —ZW|5
such that Z and W have non-zero terms

Question 1.2 - use NMF

a. Optimization stage

Initialize without negative values

= findMin{@fun0bjZ,Zz(:),18,8,X,W);

1 2
LI X - ZW| 2

findMin(@funObjW,W(:),18,8,X,7);

- %.5e\n',iter,f); sl lUkRsl uses gradient descent (no constraints)

if f0ld - £ < 1

break;

mu = mu;
W= W

.compress
.expand =

@

=

function [model] =

findMin(@funObjzZ,Z(:),18,8,X,W);

findMin(@funObjW,W(:),18,8,X,7);

loss = %.5e\n',iter,f);

if f0ld -

break;

mu = mu;

W= W

.compress = (@compress;
.expand = @expand;

Question 1.2 - use NMF

a. Optimization stage

Initialize without negative values

1 2
5| X = ZW]|;

uses gradient descent (no constraints)

Use gradient descent that enforces non-
negative parameters (findMinNN) instead!

function [Z] = (model, X)
[t,d] = size(X);
mu = model.mu;

model.W;

X - repmat(mu,[t 1]);

X*W'*inv(W*W');

Question 1.2 - use NMF

b. Compress function
Computes Z with W fixed.

Uses least squares - we don’t want that!

Use gradient descent that enforces non-
negative parameters (findMinNN) instead!

e NMF results in sparse matrices for Z and W since negative values become zero
e However, the compression ratio is poor - the non-negative constraint strongly limits the model power

function [model] =

[n,d] = =ize(X); Question 1.3 -
Use L1 regularization

X=X - re
a. Optimization stage

We can have negative values!

findMin(@funObjz,Z(:),16,8

1 2
—LIx - ZwW2

findMin(@funObjW,W(:),18,8,X,7);

uses gradient descent (no constraints)

if f0ld -
break;

e Use L1-regularized gradient descent
(findMinL1) instead!

o
enda

model .mu = mu;

model . W = W;

model . compress = [@compress;
model . expand = @= d;

=

end

function [Z] = (model, X)

[t,d] = size(X); Question 1.3 - use L1
mu = model.mu; . .
model . W; Regularization
b. Compress function
X - repmat(mu,[t 1]); Computes Z with W fixed.
XFW" *inv (W W'); Uses least squares - no constraints!

Use L1-regularized gradient descent
(findMinL1) instead!

e L1 Regularization results in sparse matrices for Zand W
e The compression ratio is better for using L1 than for using NMF

Question 2 - Recommender Systems

If you run the function |emamp£e_mo*f,-".ies,| it will load a dataset consisting of movie ratings for different users.

The vector y contains the ratings, the first column of X contains the user numbers, and the second column
The script runs several simple baseline methods, and reports their

of X contains the movie numbers.
performance on the validation set.

X Y

e No features being represented
e But we can extract latent features that represent

the relationships between users, movies, and

nxd nx1 ratings

7NN

User id Movie id Movie ratings

Question 2.1 - Latent-Factor Model

We have no features for the user/movies, we must predict the labels based on other labels (collaborative
filtering). One way to improve on these methods is with a latent-factor model. Consider a model of the form

Yum = bu A bm T wazu:

o

nx1

Question 2.1 - Latent-Factor Model

We have no features for the user/movies, we must predict the labels based on other labels (collaborative
filtering). One way to improve on these methods is with a latent-factor model. Consider a model of the form

Yum = by, H Om,

T
+ w T zi‘.‘.

o

nx1

Bias

!

Latent features (represents hidden relationships)
We can extract them through optimization

Bias term, variable for movie ‘m’

term, variable for user ‘v’

Question 2.1 - Latent-Factor Model

We have no features for the user/movies, we must predict the labels based on other labels (collaborative
filtering). One way to improve on these methods is with a latent-factor model. Consider a model of the form

Yum = bu bm

T
Hwn,

z u

o

nx1

!

We want this equality to hold!
Use optimization!

Latent features (represents hidden relationships)
We can extract them through optimization

Bias term, variable for movie ‘m’

Bias term, variable for user ‘v’

Question 2.1 - Latent-Factor Model

Consider training this based on the squared loss function, which means that our error for a particular user
u and movie m is given by

1
f(bu: bm: Wi, zu.) = g(yum - (bu + bm + TUSJ;Z-U,))z-

Minimize this objective function

e To optimize this function we can use gradient descent, which involves computing the partial
derivatives w.r.t to the unknown variables.

Question 2.1 - Latent-Factor Model

1

f(buabm:wms zu) = *Z"(yum - (bu + bm + ’lU;l;;Zu))z.

Using the notation 7, = (Yum — (by + by + wl 2,)), derive the|partial derivative|of this expression with

respect to (i) by, (ii) by, (iii) (w,,); for a particular element i of w,,, and (iv) (z,,); for a particular element
i of z,.

o _
ob,,
af
ob,,

Question 2.1 - Optimization problem example

X241

eashortest distance

f(x) = /x

Question 2.1 - Optimization problem example

@1 P(x1,%2) = 5(f(x1) — 8(x2))° + 5 (X1 — X2)°

eashortest distance

f(x) = /x

Question 2.1 - Optimization problem example

eshortest distance

f(x) = /x

Algorithm
1. Initialize random values for X1, X2
2. Update X, X2 as follows,

¥y opP
X1 :=X1— Clia—xl

b opP
X2 .= X2 — Clia—xz

P(x1,X2) = 5(f(x1) — 8(x2))* + 5 (%1 — x2)°

P _ 1 . YEm X 1
o = X1= X~ ==+ 5+ 3)
OP _ 2

x5, = X1+ 2%2(x5 — /X1 +1) + X2
a>0

learning rate

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples

: bu(u) + bm{m) + W(:,m) " *Z{u,:)";

y(i)-vhat;
gu(u) = gu(u) - r;
gn(m) = gm(m) - r;
ghi(:,m) =
gZ(u,:) =
end

t = bufu} + bm{m} + W(:,m)"*Z(u,:)";
f + [(L/2¥*(y(1i) - yhat)"2;

fprintf(‘Iter = ¥d, ¥ = He\n',iter,f});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples

: bu(u) + bm{m) + W(:,m) " *Z{u,:)";

y(i)-vhat;
gu(u) = gu(u) - r;
gn(m) = gm(m) - r;
ghi(:,m) =
gZ(u,:) =
end

t = bufu} + bm{m} + W(:,m)"*Z(u,:)";
f + [(L/2¥*(y(1i) - yhat)"2;

fprintf(‘Iter = ¥d, ¥ = He\n',iter,f});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o— Very costly for datasets with over million samples

: bu(u) + bm{m) + W(:,m) " *Z{u,:)";

y(i)-vhat;
gu(u) = gu(u) - r;
gn(m) = gm(m) - r;
ghi(:,m) =
gZ(u,:) =
end

t = bufu} + bm{m} + W(:,m)"*Z(u,:)";
f + [(L/2¥*(y(1i) - yhat)"2;

fprintf(‘Iter = ¥d, ¥ = He\n',iter,f});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples

Eu} + bm{m) + W({:,m}"*

r = yf{i}-yhat;

Eu[:u) = u{:u} —F5

gm) =Wy R o Accumulates gradients for each sample
gW(:,m) = g e) 11 L TS

EZ(u,:) = gZ(u,:) - r*W{:,m)";

']
buf{u) + bm{m) + W{:,m)}"*Z(

f + [(1/2)Y*{y(1i) - yhat}"2;

fprintf(Iter %d, T Xe\n',iter,T});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples

Eu} + bm{m) + W({:,m}"*

r = yf{i}-yhat;

Eu[:u) = u{:u} —F5

gm) =Wy R o Accumulates gradients for each sample
gW(:,m) = g e) 11 L TS

EZ(u,:) = gZ(u,:) - r*W{:,m)";

Updates variables

']
buf{u) + bm{m) + W{:,m)}"*Z(

f + [(1/2)Y*{y(1i) - yhat}"2;

fprintf(Iter %d, T Xe\n',iter,T});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples
Use Stochastic Gradient Descent instead
< o Uses one random sample at a time to update
(u) + bm(m) + W(:,m) " *Z(u,:}"; the variables.

‘nRatines Pick one sample randomly

r = y{i}-yhat;

Eu[:u) = u{:u} —F5

gn(m) = gn(m) - r;

ghi(:,m) = gh e) 11 L TS

EZ(u,:) = gZ(u,:) - r*W{:,m)";
end

']
buf{u) + bm{m) + W{:,m)}"*Z(

f + [(1/2)Y*{y(1i) - yhat}"2;

fprintf(Iter %d, T Xe\n',iter,T});

Question 2.2 - Gradient descent

l:maxIter

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples
Use Stochastic Gradient Descent instead
S o Uses one random sample at a time to update

m=

yhat = hu&lj} + bm{m} + MW{:,m}"*Z{u,:}"; the VariableS

‘nRatines Pick one sample randomly

r = yf{i}-yhat;

gu(u) gufu) - r;

gm) =Wy R o Accumulates gradients for each sample
ll(E EW(:,m} - r*Z{u,:)";

EZ(u,2) - r*M{:,m)";

m)
:)

hmfm‘l + M .}m‘l L
“(y(i) - yhat)"2;

end

fprintf(Iter %d, T Xe\n',iter,T});

maxIter = 18;

l:maxIter

‘nRatines Pick one sample randomly

u

m = X(
yhat

gu(u)
gm(m) =
gW(:,m) :

Y - r*W{:,m}";

bm(m) + W({:,m} " *Z{u,:)";
“(y(i) - yhat)"2;
end
fprintf(Iter f = %e\n',iter,f});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples
Use Stochastic Gradient Descent instead
o Uses one random sample at a time to update
the variables.

Accumulates gradients for each sample

Use the gradient for the chosen sample
only!

end

Pick one sample randomly

X(i,1);
X(i,2};

yhat = bu(u) + bm{m) + W(:,m) " *Z{u,:)";

r = :‘,rt: i
gu(u)
gm(m)

}-yhat;
(uy -

gh(:,my - r*Z{u,:)";
EZ(up} - r*W{:,m)";

<)s
bufu} + bm{m} + W(:,m)"*Z(u,:)";
f + (1/2)*(y(i) - yhat)"2;

n

fprintf(‘Iter = ¥d, ¥ = He\n',iter,f});

Question 2.2 - Gradient descent

® Gradient Descent
o Uses the complete dataset per iteration
o Very costly for datasets with over million samples
Use Stochastic Gradient Descent instead
o Uses one random sample at a time to update
the variables.

Accumulates gradients for each sample

Use the gradient for the chosen sample
only!

Insert the update rules inside the loop
We update every time we choose a random sample

