CPSC 340:
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Density-Based Clustering
Fall 2015



Admin

* Tutorials today.
e Office hours tomorrow
e Assignment 2 due Friday.



K-Means++

e Steps of k-means++:
1. Selectinitial mean p,, from among the object x..
2. Compute distance d,. of object x. to each mean p
d = 1~ I = | 2, (=t 2
3. For each object set d. to the mimmum distance across all clusters C.
d/; = " %A Cg
C ~
4. Choose next mean by sampling proportional to (d.)?.

AQ
ji o 42 =2 p = 0

n
5. Stop when we have k means, otherwise return to 2. i

* Expected approximation ratio is O(log(k)). J-
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K-Means++

First mean is a
random example.
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K-Means++

Weight examples by
distance squared.
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K-Means++

Sample mean proportional

to distances squared.
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K-Means++
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Weight examples by squared
distance to mean.
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Sample mean proportional

to distances squared.

® ° ° ®
B .‘ @ * ¢ “ *® ..ao >
+ upiy , 25 N0
% ‘ 3% ® e
» o'""‘é.ﬁ)‘-.‘.o
®e
R Se,_ ®
° ..‘A.%.
e . _sSe0 ®
_ ot
L)
o..
I ™
-20 -15 -10 5 0 10 15



K-Means++

. o8’

Weight examples by squared
distance to mean.
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K-Means++

Sample mean proportional
to distances squared.
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K-Means++

Assign each object to

the closest mean.
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Update the mean
of each group.
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Shape of K-Means Clusters

 K-means clusters are formed by the intersection of half-spaces.
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters

* |Intersection of half-spaces forms a convex set:
— Line between any two points in the set stays in the set.

Not Convex

Ol %S/JZ



Shape of K-Means Clusters
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K-Means with Non-Convex Clusters

Mon-convex banana-shaped data points

-1 5160500051015 2025 30



K-Means with Non-Convex Clusters

kmeans with k=2

K-means cannot separate non-convex

—-1.51.6050051015 202530



K-Means with Non-Convex Clusters

K-means cannot separate non-convex

Though over-clustering can help
(next class)

—-1.51.6-0500 0510 15 20 2530



Application: Elephant Range Map

Find habitat area of African elephants.
— Useful for assessing/protecting population.

Build clusters from observations of locations.

Clusters are non-convex:

— affected by vegetation, relief, rivers,
water access. =

We do not want a partition: e
— Some regions should not have a cluster.




Motivation for Density-Based Clustering

* Density-based clustering is a non-parametric clustering method:
— Clusters are defined by connected dense regions.

* Become more complicated the more data we have.

— Data points in non-dense regions are not assigned a cluster.
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Other Potential Applications

nere are high crime regions of a city?
nere should taxis patrol?
here does Iguodala make/miss shots?

nich products are similar to this one?

nich pictures are in the same place? A e

nere can protein ‘dock’?
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Density-Based Clustering

* Density-based clustering algorithm (DBSCAN) has two parameters:
— Radius: minimum distance between points to be considered ‘close’.
— MinPoints: number of ‘close’ points ne(eded to define(a cluster.
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Density-Based Clustering
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Density-Based Clustering

e Pseudocode for DBSCAN:

— For each example x::
* If x; is already assigned to a cluster, do nothing.
* If x, is not core point (less than minPoints neighbours with distance < ’r’), do nothing.
* If x, is a core point, expand cluster.

— Expand cluster function:
* Assign all x; within distance ‘r’ of core point x; to cluster.
* For each newly-assigned neighbour x; that is a core point, expand cluster.
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e Pseudocode for DBSCAN:
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Density-Based Clustering

e Pseudocode for DBSCAN:

— For each example x::
* If x; is already assigned to a cluster, do nothing.
* If x, is not core point (less than minPoints neighbours with distance < ’r’), do nothing.
* If x, is a core point, expand cluster.

— Expand cluster function:

* Assign all x; within distance ‘r’ of core point x; to cluster.
* For each newly-assigned neighbour x; that is a core point, expand cluster.
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Density-Based Clustering
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Density-Based Clustering

e Pseudocode for DBSCAN:

— For each example x::
* If x; is already assigned to a cluster, do nothing.
* If x, is not core point (less than minPoints neighbours with distance < ’r’), do nothing.
* If x, is a core point, expand cluster.
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Density-Based Clustering

e Pseudocode for DBSCAN:

— For each example x::
* If x; is already assigned to a cluster, do nothing.
* If x, is not core point (less than minPoints neighbours with distance < ’r’), do nothing.
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Density-Based Clustering




Density-Based Clustering Issues

Some points are not assigned to a cluster.
— Good or bad, depending on the application.

Sensitive to the choice of radius and minPoints.

Ambiguity of ‘non-core’ (boundary) points:
— They could be assigned more than once.

Other than this ambiguity, not sensitive to initialization.
Assigning new points to clusters is expensive.
In high-dimensions, need a lot of points to ‘fill’ the space.



Summary

1. K-means++: randomized initialization with good expected
performance.

2. Shape of K-means clusters: intersection of half-spaces => convex
sets.

3. Density-based clustering: useful for finding non-convex connected
clusters.

4. DBSCAN algorithm: assign points in dense regions to same cluster.

* Next time:
— Dealing with clusters of different densities.



