CPSC 340: Machine Learning and Data Mining

Decision Theory and Non-Parametric Models September 18, 2015

Admin

- Assignment 2 out today, due Friday of next week, start early!
- No tutorials today, there will be office hours tomorrow.
- Course drop deadline tomorrow.

Application: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

- We formulated as supervised learning:
 - $-(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
 - (xij = 1) if word/phrase 'j' is in e-mail 'i', (xij = 0) if it is not.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0

Jannie Keenan	ualberta You are owed \$24,718.11
Abby	ualberta USB Drives with your Logo
Rosemarie Page	Re: New request created with ID: ##62
Shawna Bulger	RE: New request created with ID: ##63
Gary	ualberta Cooperation

• We considered spam filtering methods based on generative models:

$$p(y_{i} = 'spam' \mid x_{i}) = p(x_{i} \mid y_{i} = 'spam')p(y_{i} = 'spam')$$

$$p(x_{i}) = p(x_{i} \mid y_{i} = (x_{i})p(x_{i})p(y_{i} = (x_{i})p(x_{i})p(y_{i})p(y_{i} = (x_{i})p(y_{$$

• What do these terms mean?

• We considered spam filtering methods based on generative models:

$$p(y_i = span' \mid x_i) = p(x_i \mid y_i = span')p(y_i = span')$$

 $p(x_i)$

• $p(x_i)$ is probability that a random e-mail has features x_i .

• We considered spam filtering methods based on generative models:

$$p(y_{i} = 'spam' | x_{i}) = p(x_{i} | y_{i} = 'spam')p(y_{i} = 'spam')$$

 $p(x_{i})$

• $p(x_i)$ is probability that a random e-mail has features x_i .

ALL E-MAILS (including duplicates)

$$p(x_i) = # e^{-mails} with features x.$$

e^{-mails} total

• We considered spam filtering methods based on generative models:

• We considered spam filtering methods based on generative models:

• We considered spam filtering methods based on generative models:

$$p(y_{i} = 'spam' | x_{i}) = p(x_{i} | y_{i} = 'spam')p(y_{i} = 'spam')$$

 $p(x_{i})$

• $p(y_i = spam')$ is probability that a random e-mail is spam.

- Hard to compute exactly.
- But is easy to approximate from data:
 - Count (#spam in data)/(#messages)

- We considered spam filtering methods based on generative models:
- $p(x_i | y_i = 'spam' | x_i) = p(x_i | y_i = 'spam') p(y_i = 'spam')$ • $p(x_i | y_i = 'spam')$ is probability that spam has features x_i .

NOTALLE-SPARS SPA Micluding duplicates

• We considered spam filtering methods based on generative models:

$$p(y_{i} = 'spam' | x_{i}) = p(x_{i} | y_{i} = 'spam')p(y_{i} = 'spam')$$

$$p(x_{i} | y_{i} = 'spam') \text{ is probability that spam has features } x_{i}.$$

Naïve Bayes

• How the naïve Bayes model deals with the hard term:

$$p(spam) helloyvicodin, (PSC 340) = \frac{p(helloyvicodin, (PSC 340|spam)p(spam)}{p(helloyvicodin, CPSC 340)}$$

$$\frac{11}{eclored} np to constant'' \propto p(helloyvicodin, CPSC 340|spam)p(spam)$$

$$\approx p(hellolspam)p(vicodinlspam)p(CPSC 340|spam)p(spam)$$

• Now only estimates of quantities like p('vicodin' = 1 | y_i = 'spam').

Naïve Bayes Models

• p(vicodin = 1 | spam) is probability of seeing 'vicodin' in spam message.

- Easy to estimate:
 - #(spam w/ Vicodin)/#spam
 - "Maximum likelihood estimate"

Naïve Bayes

• Naïve Bayes more formally:

$$p(y_{\lambda} | x_{\lambda}) = p(x_{\lambda} | y_{\lambda}) p(y_{\lambda})$$

$$p(x_{\lambda})$$

$$p(x_{\lambda} | y_{\lambda}) p(y_{\lambda})$$

$$\approx \frac{d}{d} \left[p(x_{\lambda} | y_{\lambda}) p(y_{\lambda}) \right]$$

– Assumption: given y_i, all x_i are conditionally independent of each other.

Conditional Independence

- A and B are conditionally independent given C if
 p(A, B | C) = p(A | C)p(B | C).
 - Equivalently: p(A | B, C) = p(A | C). Or p(B | A, C) = p(B | C).
 - "Knowing C happened, also knowing B happened says nothing about A".
 - Example: p(Pizza | D₁, Survive) = p(Pizza | Survive).
 - Knowing you survived, dice 1 gives no information about chance of pizza.
 - -We use the notation: A B B C Pizza L D Survive
- Semantics of p(A, B | C, D):

– "probability of A and B happening, if we know that C and D happened".

Decision Trees vs. Naïve Bayes

- Decision trees:
 - Sequence of rules based on 1 feature.
 - Training: 1 pass over data per depth.
 - Hard to find optimal tree.
 - Testing: just look at features in rules.
 - Accuracy: good if simple rules work.
 - Mik 70.5 no/ Jes lactase 70 Toranges 7075 no/ yes No/ yes No/ yes Lock Yes Lock Yes

- Naïve Bayes:
 - Simultaneously combine all features.
 - Training: 1 pass over data.
 - Easy to find optimal probabilities.
 - Testing: look at all features.
 - Accuracy: good if features almost independent given label.

p(Sick | milk, oranges, lactase) × p(milk, oranges, lactase | sick) p(sick) × p(milk|sick)p(oranges|sick)p(lactase|sick)p|sick)

Naïve Bayes Issues

- 1. Do we need to store the full bag of words representation?
 - No: only need list of non-zero features for each e-mail.
 - We use a sparse matrix in Assignments 1 and 2.
- 2. Problem with maximum likelihood estimate (MLE):
 - MLE of p('lactase' = 1| 'spam') is (#spam messages with 'lactase')/#spam.
 - If you've never seen 'lactase' in a spam message then:
 - p('lactase' | 'spam') = 0, and message automatically gets through filter.
 - Fix: imagine we saw/not-saw each word in spam/not-spam messages:
 - Estimate p(<word> | 'spam') by (1 + count(spam with <word>)/(2 + #spam).
 - We might use parameter 'c' instead of '1', and '2c' instead of '2'.
- 3. Are we equally concerned about spam vs. not spam?

Decision Theory

• True positives, false positives, false negatives, false negatives:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	True Positive	False Positive
Predict 'not spam'	False Negative	True Negative

- The costs of false positives vs. false negatives might be different:
 - Letting a spam message through (false negative) is not a big deal.
 - Filtering a not spam (false positive) message will make users mad.

Decision Theory

• We can give a cost to each scenario, such as:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	TP: 0	FP: 100
Predict 'not spam'	FN: 10	TN: 0

• Instead of assigning to most likely classify, minimize expected cost:

$$E\left[C\left(\hat{y}_{i}=spam\right)\right]=p(y_{i}=spam\left[x_{i}\right)C\left(\hat{y}_{i}=spam_{y}y_{i}=spam\right)$$

+ $p(y_{i}=not spam[x_{i})C\left(\hat{y}_{i}=spam_{y}y_{i}=not spam\right)$

 Might classify as 'not spam' even if p(spam |x_i) > p(not spam | x_i), if E[C(yhat_i = spam)] > E[C(yhat_i = not spam)].

Other Performance Measures

- Classification error might be wrong measure:
 - Use weighted classification error if have different costs.
 - Might want to use things like Jaccard measure.
- Often, we report precision and recall (want both to be high):
 - Precision: "if I classify as spam, what is the probability it actually is spam?"
 - Precision = TP/(TP + FP).
 - High precision means the filtered messages are likely to really be spam.
 - Recall: "if a message is spam, what is probability it is classified as spam?"
 - Recall = TP/(TP + FN)
 - High recall means that most spam messages are filtered.

Precision-Recall Curve

- Consider the rule $p(y_i = spam' | x_i) > t$, for threshold 't'.
- Precision-recall (PR) curve plots precision vs. recall as 't' varies.

ROC Curve

- Receiver operating characteristic (ROC) curve:
 - Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).

(negative examples classified as positive)

- Diagonal is random, perfect classifier would be in upper left.
- Sometimes papers report area under curve (AUC).

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

Parametric vs. Non-Parametric Methods

Parametric vs. Non-Parametric

- Decision trees and naïve Bayes are often not very accurate.
 - Rules or independence assumptions might not make sense in application.
 - They are also parametric methods:
 - There are a fixed number of "parameters" in the model (e.g., number of rules).
 - As you get more data, you can estimate them more accurately.
 - But at some point, more data doesn't help because model is too simple.
 - E.g., depth-3 decision trees can't model most distributions.
- Non-parametric models:
 - Number of parameters grows with the number of training examples.
 - Model gets more complicated as you get more data.
 - E.g., decision tree whose depth grows with the number of examples.

K-Nearest Neighbours (KNN)

- Classical non-parametric classifier is k-nearest neighbours.
- Based on an intuitive idea:
 - Objects with similar features are likely to have similar labels.
- K-nearest neighbours algorithm for classifying a test example 'x':
 - Find 'k' values of x_i that are most similar to x.
 - Find the 'k' corresponding labels y_i .
 - Classify using the mode of the y_i.
- "Lazy" learning: there is no actual "training" phase (just store data).
- Number of "parameters" is proportional to data size.

How to Define 'Nearest'?

- There are many possible notions of similarity between x_i and x_i.
- Most common is Euclidean distance: ${\color{black}\bullet}$

- Other possibilities: L_1 distance: $p(x_1, x_2) = \frac{d}{d_2} \left[x_{1j} x_{2j} \right]$ Jaccard similarity (binary): $p(x_1, x_2) = \frac{x_1 \cap x_2}{x_1 \cup x_2} number in both$
 - Distance after dimensionality reduction (later in course).
 - Metric learning (*learn* the best distance function).

Example of KNN

ie a Kure Z 6 60⁰0 + б \mathcal{O} б 0 \mathcal{O} \bigcap feature (x.,)

Example of KNN

Example of KNN

Consistency of KNN

- With a small dataset, KNN model will be very simple.
- With more data, model gets more complicated:
 - Starts to be able to detect subtle differences between examples.
- With a fixed 'k', it has appealing consistency properties:
 - With binary labels and under mild assumptions on distribution:
 - as 'n' goes to infinity, KNN test error is less than twice minimum achievable error.
- Stone's Theorem:
 - If 'k' also goes to infinity and k/n goes to zero:
 - KNN is 'universally consistent': it has the minimum achievable error.
 - Stone's result was the first time any algorithm was shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
 - No, Stone's theorem says nothing about performance with finite training set.

Summary

- 1. Naïve Bayes makes conditional independence assumptions to make estimation practical.
- 2. Decision theory allows us to consider costs of predictions.
- 3. Non-parametric models grow the number of parameters with the data set size.
- 4. K-Nearest Neighbours is a simple non-parametric classifier, with appealing theoretical properties.

- Next Time:
 - Simple tricks to make classifiers work much better.