CPSC 340: Machine Learning and Data Mining

Conditional Probability and Generative Models September 18, 2015

Admin

- Assignment 1 was due at 3pm.
 - 1 late day if you hand it in before Monday at 3pm.
 - 2 late days if you hand it in before Wednesday at 3pm.
 - You've used all your late days if you hand it in before next Friday at 3pm.
 - Mark of 0 after that.
- No tutorials Monday, there will be office hours Tuesday.
- Assignment 2 out by Monday, due in 2 weeks.
 - Start early!
- Registration in tutorials:
 - You need to be registered in a tutorial section to stay enrolled.
- Auditors:
 - Will not be able to register while students are on the waiting list (currently: 6).

- Scenario 1:
 - "I built a model based on the data you gave me."
 - "It classified your data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably not:
 - They are reporting training error.
 - This might have nothing to do with test error.
 - E.g., they could have fit a very deep decision tree.
- Why 'probably'?
 - If they only tried a few very simple models, the 98% might be reliable.
 - E.g., they only considered decision stumps with simple 1-variable rules.

- Scenario 2:
 - "I built a model based on half of the data you gave me."
 - "It classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the validation error once.
 - This is an unbiased approximation of the test error.
 - Trust them if you believe they didn't violate the golden rule.

- Scenario 3:
 - "I built 10 models based on half of the data you gave me."
 - "One of them classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the validation error a small number of times.
 - Maximizing over these errors is a biased approximation of test error.
 - But they only maximized it over 10 models, so bias is probably small.
 - They probably know about the golden rule.

- Scenario 4:
 - "I built 1 billion models based on half of the data you gave me."
 - "One of them classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably not:
 - They computed the validation error a huge number of times.
 - Maximizing over these errors is a biased approximation of test error.
 - They tried so many models, one of them is likely to work by chance.
- Why 'probably'?
 - If the 1 billion models were all extremely-simple, 98% might be reliable.

- Scenario 5:
 - "I built 1 billion models based on the first third of the data you gave me."
 - "One of them classified the second third of the data with 98% accuracy."
 - "It also classified the last third of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the first validation error a huge number of times.
 - But they had a second validation set that they only looked at once.
 - The second validation set gives unbiased test error approximation.
 - This is ideal, as long as they didn't violate golden rule on second set.
 - And assuming you are using IID data in the first place.

The 'Best' Machine Learning Model

- Decision trees are not always most accurate.
- What is the 'best' machine learning model?
- No free lunch theorem:
 - There is no 'best' model that achieves the best test error for every problem.
 - If model A works better than model B on one dataset, there is another dataset where model B works better.
- This question is kind of like asking which is 'best' among "rock", "paper", and "scissors".

The 'Best' Machine Learning Model

- Implications of the lack of a 'best' model:
 - We need to learn about and try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate a method by a specific application.
 - But we'll focus on models that are effective in many applications.
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured.
 - Some datasets are more likely than others.
 - Model A really could be better than model B on every real dataset in practice.
- Machine learning research:
 - Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

• Want a build a system that filters spam e-mails.

- X D	Jannie Keenan	ualberta You are owed \$24,718.11
	Abby	ualberta USB Drives with your Logo
	Rosemarie Page	Re: New request created with ID: ##62
	Shawna Bulger	RE: New request created with ID: ##63
□ ☆ D	Gary	ualberta Cooperation

Gary <jaiwasie@mail.com> to schmidt v

Be careful with this message. Similar messages were used to steal people's personal information. Learn more

Hey,

Do you have a minute today? Are you interested to use our email marketing and lead generation solutions? We have worked on a number of projects and campaigns in many industries since 2007

Please reply today so we can go over options for you. I am sure we can help to grow your business soon by using our mailing services.

Best regards, Gary Contact: abelfong@sina.com

- We have a big collection of e-mails, labeled by users.
- Can we formulate as supervised learning?

First a bit more supervised learning notation

• We have been using the notation 'X' and 'y' for supervised learning:

- X is matrix of all features, y is vector of all labels.
- Need a way to refer to the features and label of specific object 'i'.
 - We use y_i for the label of object 'i' (element 'i' of 'y').
 - We use x_i for the features object 'i' (row 'i' of 'X').
 - We use x_{ij} for feature 'j' of object 'i'.

Feature Representation for Spam

• How do we make label ' y_i ' of an individual e-mail?

 $-(y_i = 1)$ means 'spam', $(y_i = 0)$ means 'not spam'.

- How do we construct features 'x_i' for an e-mail?
 - Use bag of words:
 - "hello", "vicodin", "\$".
 - "vicodin" feature is 1 if "vicodin" is in the message, and 0 otherwise.
 - Could add phrases:
 - "be your own boss", "you're a winner", "CPSC 340".
 - Could add regular expressions:
 - <recipient>, <sender domain == "mail.com">

Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - Naïve Bayes is probabilistic classifier based on Bayes rule.
 - It's 'naïve' because it makes a strong independence assumption.
 - But it tends to work well with bag of words.
- Probabilistic classifiers model a conditional probability, p(y_i | x_i).
 - "If a message has words x_i , what is probability that message is spam?"
- If $p(y_i = spam' | x_i) > p(y_i = not spam' | x_i)$, classify as spam.

https://en.wikipedia.org/wiki/Dice_throw_%28review%29

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

• Probabilities defined on 'event space':

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

• Probabilities defined on 'event space':

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - 'Likelihood' that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - p(-Survive) = 1 p(Survive) = 2/3.

D1\D2	1	2	3	4	5	6
1						
2			Cur			
3			Jui	VIVE		
4						
5				ind		
6		•	Sur	IVE	TZZC	

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - 'Likelihood' that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - p(-Survive) = 1 p(Survive) = 2/3.
 - $p(D_1 \text{ is even}) = 18/36 = \frac{1}{2}$.

D1\D2	1	2	3	4	5	6
1						
2			D ₁ is	even		
3						
4			D ₁ is	even		
5						
6			D_1 is	even		

Random Variables and 'Sum to 1' Property

- Random variable: variable whose value depends on probability.
- Example: event (D₁ = x) depends on random variable D₁.
- Convention:
 - Often use p(x) to mean p(X = x), when random variable X is obvious.
- Sum of probabilities of random variable over entire domain is 1:
 - $-\sum_{x}p(x)=1.$

- E.g,
$$\sum_{i} p(D_1 = i) = 1/6 + 1/6 + ...$$

= 1.

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.

D1\D2	1	2	3	4	5	6
1			D ₁	= 1		
2						
3						
4						
5				ind		
6			Sur	IVE		

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.
 - $p(D_1 \text{ even}, \text{Pizza}) = 3/36 = 1/12.$

D1\D2	1	2	3	4	5	6
1						
2			D ₁ is	even		
3						
4			D_1 is	even		
5						
6			D_1 is	even ^r		k

• Note: order of A and B does not matter

Conditional Probability

- Conditional probability: probability of A, if know B happened.
 - probability that A will happen *if we know* that B happens.
 - "probability of A *restricted* to scenarios where B happens".
 - Written p(A|B), said "probability of A given B".
- Calculation:
 - Within area of B:
 - Compute Area(A)/TotalArea.
 - p(Pizza | Survive) =

D1\D2	1	2	3	4	5	6
1						
2			Cur			
3		-	-Sui	VIVE		
4						
5				ind		
6			Sur	INE		1

Conditional Probability

- Conditional probability: probability of A, if know B happened.
 - probability that A will happen *if we know* that B happens.
 - "probability of A *restricted* to scenarios where B happens".
 - Written p(A|B), said "probability of A given B".
- Calculation:
 - Within area of B:
 - Compute Area(A)/TotalArea.
 - p(Pizza | Survive) =

p(Pizza, Survive)/p(Survive) = 6/12 = ¹/₂.

- Higher than p(Pizza, Survive) = 6/36 = 1/6.
- More generally, p(A | B) = p(A,B)/p(B).

Geometrically: compute area of A on new space where B happened.

'Sum to 1' Properties and Bayes Rule.

- Conditional probability P(A | B) sums to one over all A:
 - $-\sum_{x} P(x \mid B) = 1.$
 - P(Pizza | Survive) + P(– Pizza | Survive) = 1.
 - P(Pizza | Survive) + P(Pizza | -Survive) \neq 1.
- Bayes Rule:

$$p(A | B) = p(B|A)p(A)$$
$$p(B)$$

- P(Pizza | Survive) = P(Survive | Pizza)P(Pizza)/P(Survive)
=
$$(1)(1/6)/(1/3) = \frac{1}{2}$$
.

Back to E-mail Spam Filtering...

- Recall our spam filtering setup:
 - $-y_i$: whether or not the e-mail was spam.
 - $-x_i$: words/phrases/expressions in the e-mail.
- To model conditional probability, naïve Bayes uses Bayes rule: $n(y_1 = \frac{1}{2} c_{abc}) = n(y_1 + \frac{1}{2} c_{abc}) + n(y_2 + \frac{1}{2} c_{abc})$

$$D(y_{i} = 'spam' | x_{i}) = p(x_{i} | y_{i} = 'spam')p(y_{i} = 'spam')$$

 $p(x_{i})$

- Easy part: p(x_i) does not depend on y_i, we can ignore it.
- Easy part: $p(y_i = spam')$ is the probability that an e-mail is spam.
 - Count of number of times (y_i = 'spam') divided by number of objects 'n'.
 - For (complicated) proof of this (simple) fact, see:
 - http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Generative Classifiers

- Hard part: p(x_i | y_i = 'spam') is the probability of seeing the words/expressions x_i if the e-mail is spam.
- This is called a generative classifier:
 - It needs to know the probability of the features, given the class.
 - You need one model that knows what spam messages look like.
 - You need a second model that knows what non-spam messages look like.
- Generative classifiers tend to work well when:

– We have a huge number of features compared to number of objects.

• But does it need to know language to model p(x_i | y_i)???

Generative Classifiers

- To fit generative models, usually make BIG assumptions:
 - Gaussian discriminant analysis (GDA):
 - Assume that $p(x_i | y_i)$ follows a multivariate normal distribution.
 - Naïve Bayes (NB):
 - Assume that variables in x_i are independent of each other given y_i.
- Events A and B are independent if p(A,B) = p(A)p(B).
 - Equivalently: p(A|B) = p(A).
 - "Knowing B happened tells you nothing about A".
 - We use the notation:

AIB

Independence of Random Variables

Random variables are independent if p(x,y) = p(x)p(y) for all x and y.

 $C_1 \perp C_2$

- Flipping two coins:

$$p(C_1 = \text{'heads'}, C_2 = \text{'heads'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'heads'})$$
$$p(C_1 = \text{'tails'}, C_2 = \text{'heads'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'heads'}).$$
$$p(C_1 = \text{'heads'}, C_2 = \text{'tails'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'tails'}).$$
$$p(C_1 = \text{'tails'}, C_2 = \text{'tails'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'tails'}).$$

Summary

- 1. Reviewed scenarios where you should trust test error estimates.
- 2. No free lunch theorem: there is no 'best' ML model.
- 3. Joint probability: probability of A and B happening.
- 4. Conditional probability: probability of A if we know B happened.
- 5. Generative classifiers: build a probability of seeing the features.
- 6. Independent variables: variables do not affect each other.
- Monday:
 - Conditional independence and naïve Bayes assumption.
 - Models that whose complexity grows with the data.