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Admin

• Assignment 1 was due at 3pm.
– 1 late day if you hand it in before Monday at 3pm.

– 2 late days if you hand it in before Wednesday at 3pm.

– You’ve used all your late days if you hand it in before next Friday at 3pm.

– Mark of 0 after that.

• No tutorials Monday, there will be office hours Tuesday.

• Assignment 2 out by Monday, due in 2 weeks.
– Start early!

• Registration in tutorials:
– You need to be registered in a tutorial section to stay enrolled.

• Auditors:
– Will not be able to register while students are on the waiting list (currently: 6).



Should you trust them?

• Scenario 1:
– “I built a model based on the data you gave me.”

– “It classified your data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They are reporting training error.

– This might have nothing to do with test error.

– E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
– If they only tried a few very simple models, the 98% might be reliable.

– E.g., they only considered decision stumps with simple 1-variable rules.



Should you trust them?

• Scenario 2:

– “I built a model based on half of the data you gave me.”

– “It classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error once.

– This is an unbiased approximation of the test error.

– Trust them if you believe they didn’t violate the golden rule.



Should you trust them?

• Scenario 3:

– “I built 10 models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error a small number of times.

– Maximizing over these errors is a biased approximation of test error.

– But they only maximized it over 10 models, so bias is probably small.

– They probably know about the golden rule.



Should you trust them?

• Scenario 4:
– “I built 1 billion models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They computed the validation error a huge number of times.

– Maximizing over these errors is a biased approximation of test error.

– They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
– If the 1 billion models were all extremely-simple, 98% might be reliable.



Should you trust them?

• Scenario 5:
– “I built 1 billion models based on the first third of the data you gave me.”

– “One of them classified the second third of the data with 98% accuracy.”

– “It also classified the last third of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the first validation error a huge number of times.

– But they had a second validation set that they only looked at once.

– The second validation set gives unbiased test error approximation.

– This is ideal, as long as they didn’t violate golden rule on second set.

– And assuming you are using IID data in the first place.



The ‘Best’ Machine Learning Model

• Decision trees are not always most accurate.

• What is the ‘best’ machine learning model?

• No free lunch theorem:

– There is no ‘best’ model that achieves the best test error for every 
problem.

– If model A works better than model B on one dataset, there is another 
dataset where model B works better.

• This question is kind of like asking which is ‘best’ among “rock”, 
“paper”, and “scissors”.



The ‘Best’ Machine Learning Model

• Implications of the lack of a ‘best’ model:
– We need to learn about and try out multiple models.

• So which ones to study in CPSC 340?
– We’ll usually motivate a method by a specific application.

– But we’ll focus on models that are effective in many applications.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured.

– Some datasets are more likely than others.

– Model A really could be better than model B on every real dataset in practice. 

• Machine learning research:
– Large focus on models that are useful across many applications.



Application: E-mail Spam Filtering

• Want a build a system that filters spam e-mails.

• We have a big collection of e-mails, labeled by users.

• Can we formulate as supervised learning?



First a bit more supervised learning notation

• We have been using the notation ‘X’ and ‘y’ for supervised learning:

• X is matrix of all features, y is vector of all labels.

• Need a way to refer to the features and label of specific object ‘i’.

– We use yi for the label of object ‘i’ (element ‘i’ of ‘y’).

– We use xi for the features object ‘i’ (row ‘i’ of ‘X’).

– We use xij for feature ‘j’ of object ‘i‘.



Feature Representation for Spam

• How do we make label ‘yi’ of an individual e-mail?

– (yi = 1) means ‘spam’, (yi = 0) means ‘not spam’.

• How do we construct features ‘xi’ for an e-mail?

– Use bag of words:

• “hello”, “vicodin”, “$”.

• “vicodin” feature is 1 if “vicodin” is in the message, and 0 otherwise.

– Could add phrases:

• “be your own boss”, “you’re a winner”, “CPSC 340”.

– Could add regular expressions:

• <recipient>, <sender domain == “mail.com”>



Probabilistic Classifiers

• For years, best spam filtering methods used naïve Bayes.

– Naïve Bayes is probabilistic classifier based on Bayes rule.

– It’s ‘naïve’ because it makes a strong independence assumption.

– But it tends to work well with bag of words.

• Probabilistic classifiers model a conditional probability, p(yi | xi).

– “If a message has words xi, what is probability that message is spam?”

• If p(yi = ‘spam’ | xi) > p(yi = ‘not spam’ | xi), classify as spam.



Digression to Review Probabilities…

https://en.wikipedia.org/wiki/Dice_throw_%28review%29



Digression to Review Probabilities…

• Dungeons & Dragons scenario:

– You roll dice 1:

• Roll 5 or 6 you sneak past monster.

• Otherwise, you are eaten.

– If you survive, you roll dice 2:

• Roll 4-6, find pizza.

• Otherwise, you find nothing.

https://en.wikipedia.org/wiki/Dice_throw_%28review%29
http://www.dungeonsdragonscartoon.com/2011/11/cloak.html
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Calculating Basic Probabilities

• Probability of event ‘A’ is ratio:

– p(A) = Area(A)/TotalArea.

– ‘Likelihood’ that ‘A’ happens.

• Examples:

– p(Survive) = 12/36 = 1/3.

– p(Pizza) = 6/36 = 1/6.

– p(⌐Survive) = 1 – p(Survive) = 2/3.
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Calculating Basic Probabilities

• Probability of event ‘A’ is ratio:

– p(A) = Area(A)/TotalArea.

– ‘Likelihood’ that ‘A’ happens.

• Examples:

– p(Survive) = 12/36 = 1/3.

– p(Pizza) = 6/36 = 1/6.

– p(⌐Survive) = 1 – p(Survive) = 2/3.

– p(D1 is even) = 18/36 = ½.
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Random Variables and ‘Sum to 1’ Property

• Random variable: variable whose value depends on probability.

• Example: event (D1 = x) depends on random variable D1.

• Convention:

– Often use p(x) to mean p(X = x), when random variable X is obvious.

• Sum of probabilities of random variable over entire domain is 1:

–  𝑥 𝑝 𝑥 = 1 .

– E.g,  𝑖 𝑝(𝐷1 = 𝑖) = 1/6+1/6 + …
= 1.
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Joint Probability

• Joint probability: probability that A and B happen, written ‘p(A,B)’.

– Intersection of Area(A) and Area(B).

• Examples:

– p(D1 = 1, Survive) = 0.

– p(Survive, Pizza) = 6/36 = 1/6.
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Joint Probability

• Joint probability: probability that A and B happen, written ‘p(A,B)’.

– Intersection of Area(A) and Area(B).

• Examples:

– p(D1 = 1, Survive) = 0.

– p(Survive, Pizza) = 6/36 = 1/6.

– p(D1 even, Pizza) = 3/36 = 1/12.

• Note: order of A and B does not matter
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Conditional Probability

• Conditional probability: probability of A, if know B happened.

– probability that A will happen if we know that B happens.

– “probability of A restricted to scenarios where B happens”.

– Written p(A|B), said “probability of A given B”.

• Calculation:

– Within area of B:

• Compute Area(A)/TotalArea.

– p(Pizza | Survive) = 
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Conditional Probability

• Conditional probability: probability of A, if know B happened.

– probability that A will happen if we know that B happens.

– “probability of A restricted to scenarios where B happens”.

– Written p(A|B), said “probability of A given B”.

• Calculation:

– Within area of B:

• Compute Area(A)/TotalArea.

– p(Pizza | Survive) = 
p(Pizza, Survive)/p(Survive) = 6/12 = ½.

– Higher than p(Pizza, Survive) = 6/36 = 1/6.

– More generally, p(A | B) = p(A,B)/p(B).
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Geometrically: compute area of A on new space where B happened.



‘Sum to 1’ Properties and Bayes Rule.

• Conditional probability P(A | B) sums to one over all A:

–  𝑥𝑃 𝑥 𝐵) = 1.

– P(Pizza | Survive) + P(⌐ Pizza | Survive) = 1.

– P(Pizza | Survive) + P(Pizza | ⌐Survive) ≠ 1.

• Bayes Rule:

– P(Pizza | Survive) = P(Survive | Pizza)P(Pizza)/P(Survive)
= (1)(1/6)/(1/3) = ½.



Back to E-mail Spam Filtering…

• Recall our spam filtering setup:
– yi: whether or not the e-mail was spam.

– xi: words/phrases/expressions in the e-mail.

• To model conditional probability, naïve Bayes uses Bayes rule:

• Easy part: p(xi) does not depend on yi, we can ignore it.

• Easy part: p(yi = ‘spam’) is the probability that an e-mail is spam.
– Count of number of times (yi = ‘spam’) divided by number of objects ‘n’.

– For (complicated) proof of this (simple) fact, see: 
• http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf



Generative Classifiers

• Hard part: p(xi | yi = ‘spam’) is the probability of seeing the 
words/expressions xi if the e-mail is spam.

• This is called a generative classifier:

– It needs to know the probability of the features, given the class.

– You need one model that knows what spam messages look like.

– You need a second model that knows what non-spam messages look like.

• Generative classifiers tend to work well when:

– We have a huge number of features compared to number of objects.

• But does it need to know language to model p(xi | yi)???



Generative Classifiers

• To fit generative models, usually make BIG assumptions:

– Gaussian discriminant analysis (GDA): 

• Assume that p(xi | yi) follows a multivariate normal distribution.

– Naïve Bayes (NB):

• Assume that variables in xi are independent of each other given yi.

• Events A and B are independent if p(A,B) = p(A)p(B).

– Equivalently: p(A|B) = p(A).

– “Knowing B happened tells you nothing about A”.

– We use the notation:



Independence of Random Variables

• Random variables are independent if p(x,y) = p(x)p(y) for all x and y.

– Flipping two coins: 
p(C1 = ‘heads’, C2 = ‘heads’) = p(C1 = ‘heads’)p(C2 = ‘heads’). 
p(C1 = ‘tails’, C2 = ‘heads’) = p(C1 = ‘tails’)p(C2 = ‘heads’).
p(C1 = ‘heads’, C2 = ‘tails’) = p(C1 = ‘heads’)p(C2 = ‘tails’).
p(C1 = ‘tails’, C2 = ‘tails’) = p(C1 = ‘tails’)p(C2 = ‘tails’).



Summary

1. Reviewed scenarios where you should trust test error estimates.

2. No free lunch theorem: there is no ‘best’ ML model.

3. Joint probability: probability of A and B happening.

4. Conditional probability: probability of A if we know B happened.

5. Generative classifiers: build a probability of seeing the features.

6. Independent variables: variables do not affect each other.

• Monday: 

– Conditional independence and naïve Bayes assumption.

– Models that whose complexity grows with the data.


