CPSC 340: Machine Learning and Data Mining

Spectral Clustering Fall 2015

Admin

- Assignment 5 due Friday:
 - For ISOMAP, graph should be undirected/symmetric.
 - Include i-j if 'i' is a neighbour of 'j' or 'j' is a neighbour of 'i'.
- Fill out course evaluations online.
- Assignment 6 out soon:
 - 2 questions: discrete loss functions and graph-based SSL.
 - Due Friday of next week.
- Practice final coming next week.

Last Time: Ranking

- In ranking, input is a set of objects (and possibly a query).
- We discussed supervised ranking:

- Given item relevance, formulate as regression or ordinal regression.

argmin
$$\geq -\log(p(y_{ij}|_{w,X_{ij}}))$$
 If prob
is Gaussian $\geq \frac{1}{2}(y_{ij} - w^T x_{ij})^2$ features for object i''
with gurry j''
- Given pairwise preferences, define loss by probability ratios.
argmin
well $\leq \max\{0, 1 - \log(p(y_{ik}|_{w,X_{ik}})) + \log(p(y_{jk}|_{w,X_{jk}})) \leq -\log(\frac{p(y_{ik}|_{w,X_{ik}})}{p(y_{jk}|_{w,X_{ik}})})$
 $(i_{i,j})_{k} \geq reference$ for $i' \otimes ver j''$
when gurry is k' .
If prob is softmax: argmin $\geq \max\{0, 1 - w^T x_{ik} + w^T x_{jk}\}$ $\int von (call defined by the second descend des$

Ranking: Beyond Pairwise Preferences

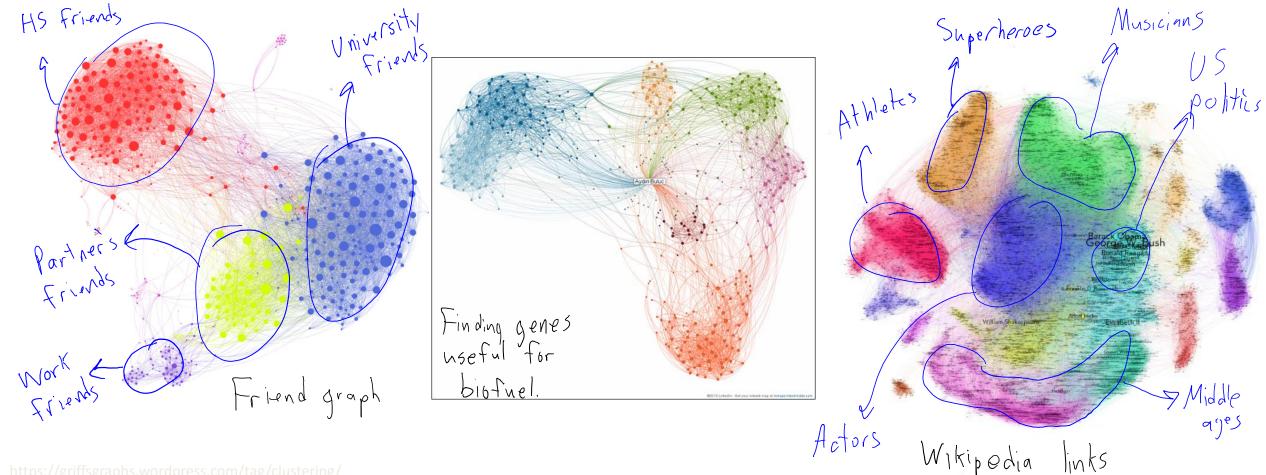
- Modern ranking methods are more advanced:
 - Take into account that you often only care about top rankings.
 - Define losses that are not additive across ratings.
 - "Precision at k": if we return k documents, how many are relevant?
 - "Average precision": precision at k averaged across values of 'k'.
 - You can still define losses based on probability ratios:
 - But you get exponential number of terms, need more advanced optimization tricks.
 - Also work on diversity of rankings:
 - E.g., divide objects into sub-topics and do weighted 'covering' of topics.

Unsupervised Graph-Based Ranking

- PageRank algorithm is graph-based unsupervised ranking.
 - Important pages are linked to by many pages.
 - Link is more meaningful if a page has few links.
- 'Random surfer' view of PageRank algorithm:
 - At time 0, start out at a random webpage.
 - At time t > 0:
 - With probability 'p', follow a random link from page at time (t-1).
 - With probability (1-p), go to a random webpage ('damping').
- PageRank: probability of random surfer landing on page at $t = \infty$.
 - Interpretation as 'Markov chain' (links on webpage, discussed next week).
 - Can be solved via SVD, or at large scale using 'power method'.

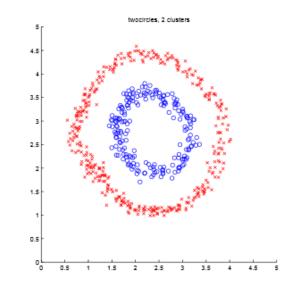
Today: Clustering on Graphs

• Consider the problem of clustering data represented as a graph.



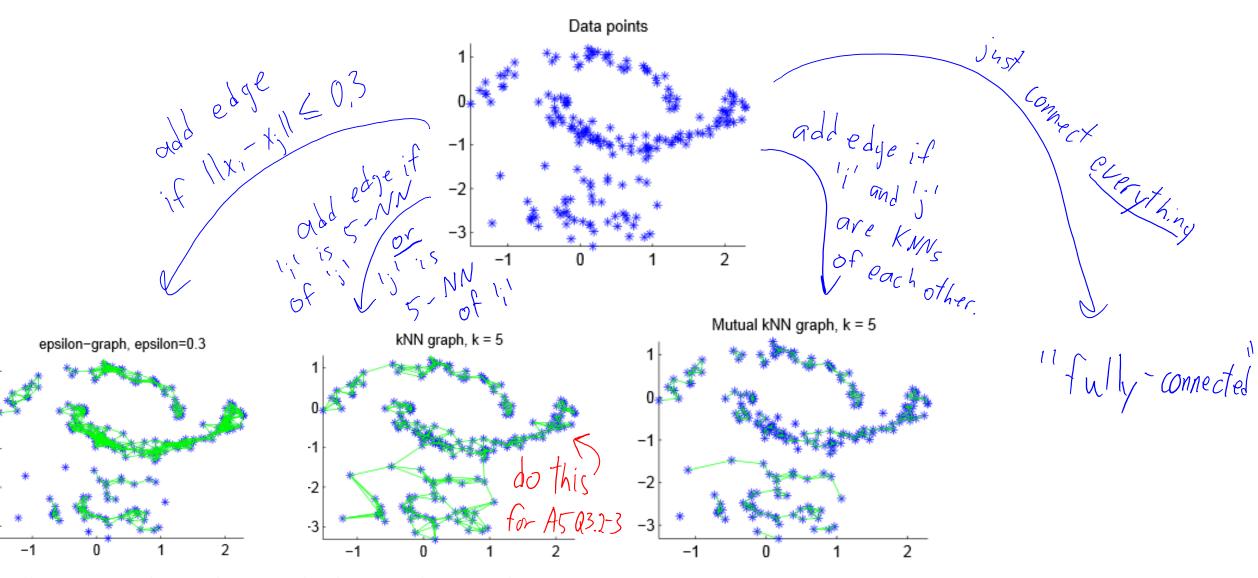
Today: Clustering on Graphs

- Setting 1:
 - We have explicit features ' x_i ' for each object 'i'.
 - Want to detect non-convex clusters.
- Setting 2:
 - We don't have explicit features.



- We have graph of links between objects (links, friends, hybridization, etc.)
- Graph is undirected and could be weighted.
- We can convert from Setting 1 to Setting 2:
 - Taking all points within radius, KNN graph, etc.

Converting from Features to Graph



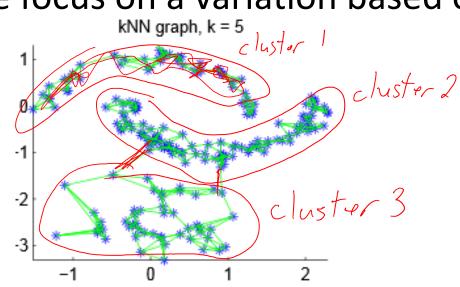
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf

-2

-3

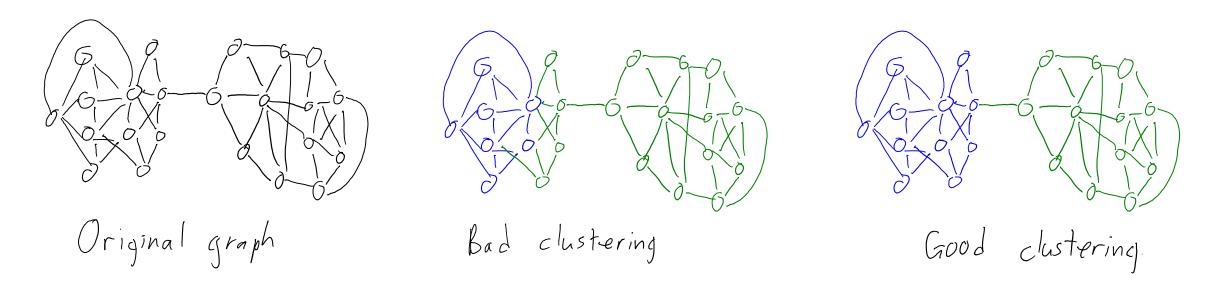
Spectral Clustering

- Most common method for data on graphs: spectral clustering.
- As with ranking, we focus on a variation based on random walks.



Key property we want a 'good' clustering to satisfy:
If we start in cluster 'c', random walk should stay in cluster 'c'.

Random Walks on Graphs



- Graph-based algorithms in terms of random walks:
 - PageRank: how often does a long random walk land no node?
 - Spectral clustering: which groups of nodes does random walk stay in?
 - Graph-based SSL: which label is mostly likely to be visited first?

Biased Random Walks

- Unbiased random walk:
 - Move to a random neighbor, with each one getting equal probability.
 - $p(j \in i) = \frac{1}{d_i}$ number of neighbours of 'degree' of node 'i'

-d di=3

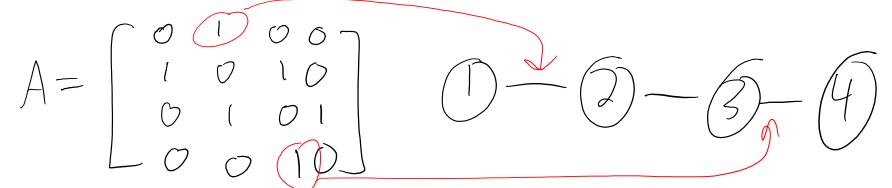
dizl

- What if we have edge weights 'w_{ii}'?
 - In spectral clustering, we want edge weights to be measure of similarity.
 - Edge weights must be non-negative.
 - High edge weight means we prefer nodes to be in the same cluster.
- With edge weights, use biased random walk: "weighted" degree (normal degree is special case where all w:=1)

 $p(j \ll i) = W_{ij}$

Adjacency Matrix

• Define matrix 'A', where 'Aij' when there is edge between 'i' and 'j'.



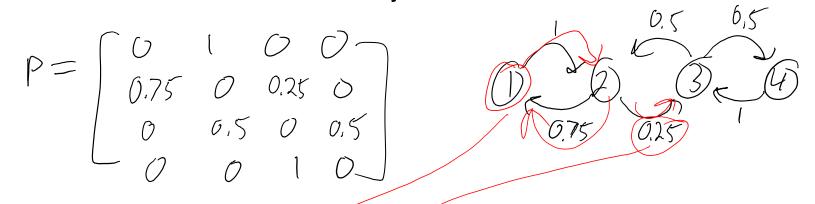
 $A^{3} = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & 2 & 0 \end{bmatrix}$

Powers of adjacency give number of paths of degree length:

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Transition Matrix

• Define a matrix 'P', where ' P_{ii} ' is probability of going from 'i' to 'j'.



• Now powers give probability of landing in 'j' if you start at 'i'.

 $P^{2} = \begin{bmatrix} 0.75 & 0 & 0.25 & 0\\ 0 & 0.875 & 0 & 0.125\\ 0.375 & 0 & 0.625 & 0\\ 0 & 0.5 & 0 & 0.5 \end{bmatrix}$

Multiplication by Transition Matrix

• PageRank finds finds 'left' eigenvector:

 $\mathcal{T}P = \mathcal{T}$ (largest eigenvalue guaranteed to be 1) - It's about finding a 'pi' where transition maintains distribution.

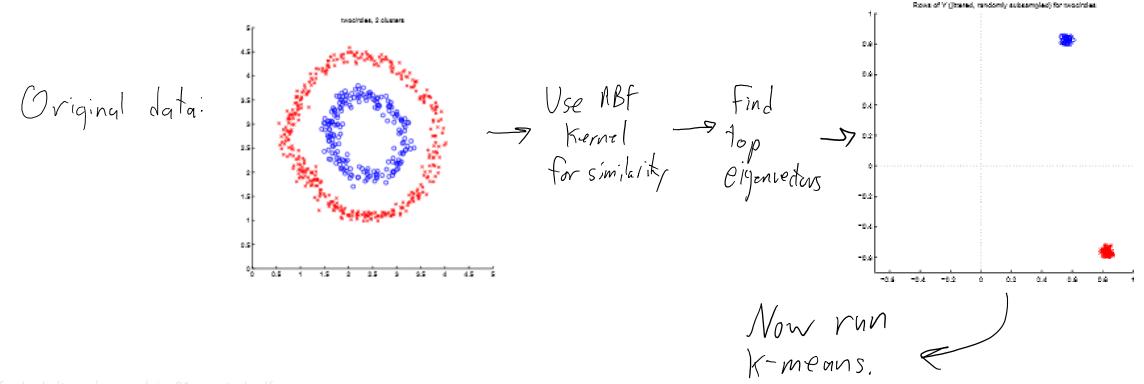
• Spectral clustering finds the usual 'right' eigenvector:

 $P_{11} = T_1$

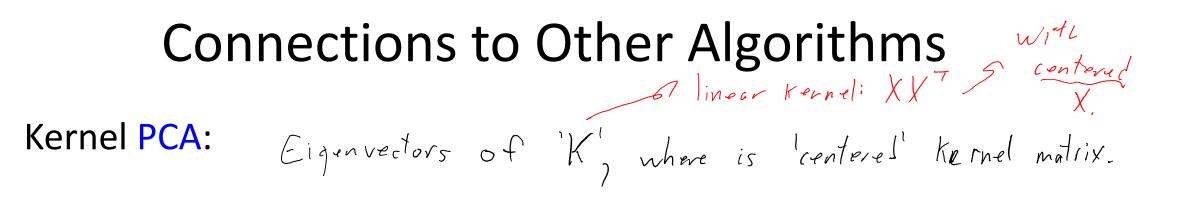
- Largest eigenvalue again guaranteed to be 1, but it's degenerate:
 - If graph is connected, pi is a vector of ones.
 - Multiple connected components: multiple eigenvalues of 1.
 - These eigenvectors give the connected components.
 - Further largest eigenvalues:
 - Eigenvectors will tend to cluster based on connectivity.
 - Area of 'spectral graph theory' explores this.

Spectral Clustering

- Spectral clustering method:
 - Compute eigenvectors of largest eigenvalues of P.
 - Run a clustering algorithm using the eigenvectors.



http://ai.stanford.edu/~ang/papers/nips01-spectral.pd



• Spectral clustering:

Eigenvectors of
$$P = D^{-1}K$$
, where D^{-1} normalizes rows.

• Connection to graph Laplacian and spectral graph theory:

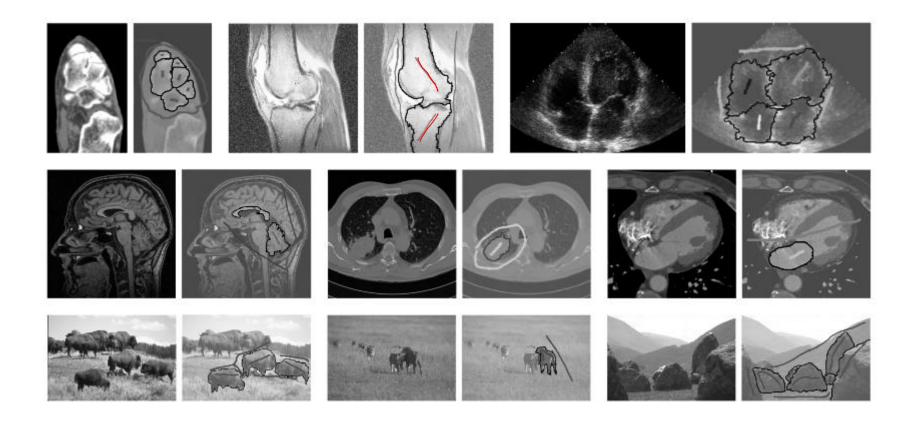
You can equivalently use smallest eigenvectors of
$$I - O'K$$
.
Alternative methods consider 'Laplacian' $L = D - W$
and 'normalized Laplacian' $L = I - D''_2 W D''_2$

Application: Image Segmentation

(a)

(b)

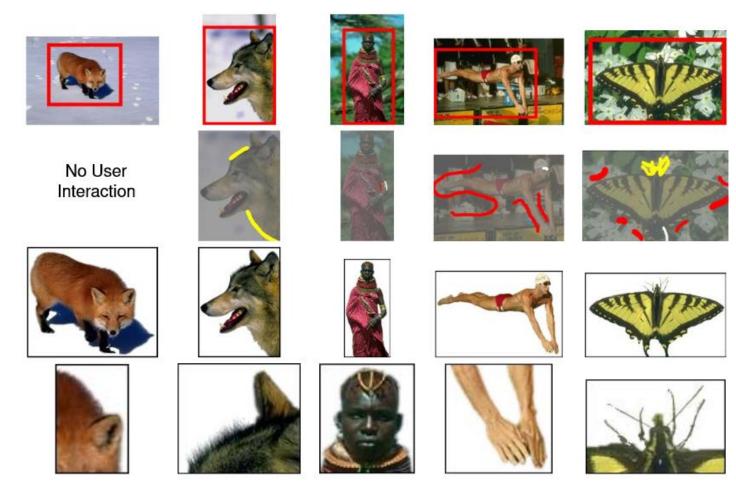
Graph-Based SSL for Image Segmentation



http://cns-web.bu.edu/~lgrady/grady2006random.pdf

More Advanced Graph Cut Methods

• Combining classification model with graph-based SSL:



http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pd

Summary

- Spectral clustering considers clustering on graphs.
- Non-convex clusters can be found on data represented as features.
- Biased random walks lead to one variant of spectral clustering.
- Top eigenvectors give spectral clustering solution.
- Graph Laplacian studied in field of 'spectral graph theory'.
- Next time:
 - Finding in patterns in your genes, and most cited science paper of 1990s.
 (and three of the top 15 all-time).