CPSC 340: Machine Learning and Data Mining

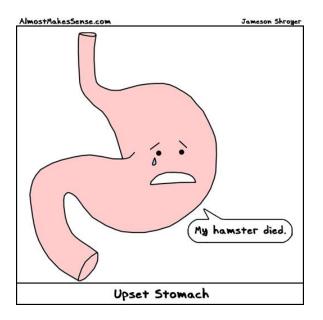
Supervised Learning and Decision Tree Learning September 14, 2015

Admin

- Tutorials have started today:
 - 11am, 2pm, and 4pm in DMP 201.
 - 5pm in DMP 101.
- Office hours tomorrow:
 - 10am in ICICS X836
 - 4pm in ICICS 146
- Assignment 1 due Friday
 - Get further help on Piazza.
 - Q1 might be input as a UBC survey.
 - Setting up Handin for submission.

Motivating Example: Food Allergies

• You frequently start getting an upset stomach



• You suspect an adult-onset food allergy.

Motivating Example: Food Allergies

• To solve the mystery, you start a food journal:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 Sick?
0	0.7	0	0.3	0	0	1
0.3	0.7	0	0.6	0	0.01	1
0	0	0	0.8	0	0	0
0.3	0.7	1.2	0	0.10	0.01	1
0.3	0	1.2	0.3	0.10	0.01	1

- But it's hard to find the pattern:
 - You can't isolate and only eat one food at a time.
 - You may be allergic to more than one food.
 - The quantity matters: a small amount may be ok.
 - You may be allergic to specific interactions.

Supervised Learning

• We can formulate this as supervised learning:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts		Sick
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1
0.3	0	1.2	0.3	0.10	0.01		1

- Input is a set of continuous features.
 - the quantities of food eaten.
- Output is a desired target label:
 - Whether or not we got sick.
- Supervised learning: learn map from features to labels.
 - Given foods, map predicts whether you will get sick.

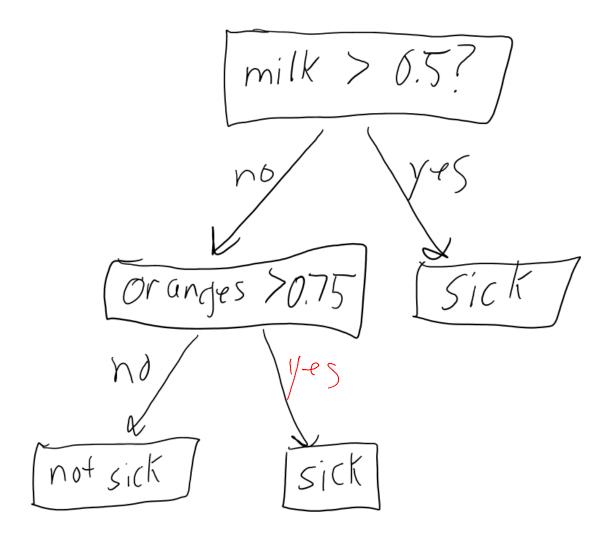
Supervised Learning

- Supervised learning general case:
 - Input: features and corresponding labels for objects.
 - Output: program that maps from features to labels.
- Most useful when:
 - You don't know how to write a program to do task.
 - But have input/output examples.
- The most successful machine learning technique:
 Spam filtering, Microsoft Kinect, speech recognition.
- Today we will learn about one approach:

- Decision trees.

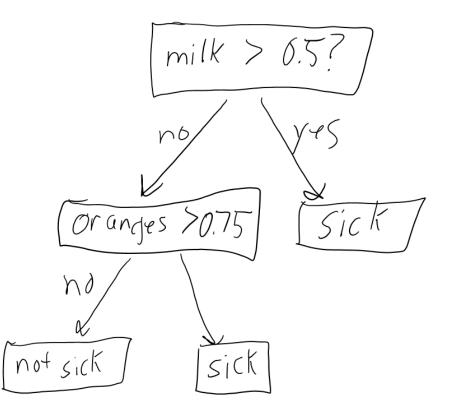
But first
 Is this data IID? No. 1 Sadd "fractions" From previous day What cleaning/preprocessing steps? (more data)
Jadd 'Frannes'
trom previous day
• What cleaning/preprocessing steps? (more data)
-Scaling (convert to grams)
- little data: common all'argic ingredients
- little data: common allergic ingredients (lactose, gluten,) - lote data: "types" of food (balter broad vs. Machonald's)
Machopald's

Decision Tree



Decision Tree

- 1. Start at root note.
- 2. Branch using splitting rule.
- 3. Leaf nodes are labeled.
 - a) If leaf, return label.
 - b) Otherwise, go to 2.

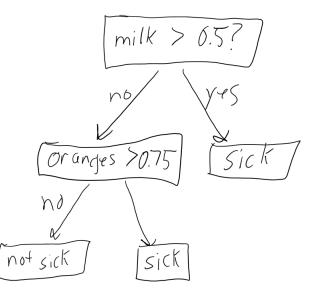


Decision Tree as a Program

• Think of this as a simple program:

```
If (milk > 0.5)
Return 'sick'
Else {
If (oranges > 0.75)
Return 'sick'
Else
Return 'not sick'
```

}

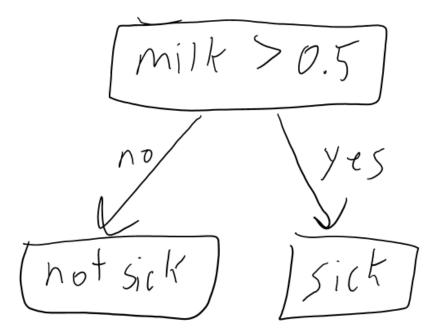


Decision Tree Learning

- We could write decision program by hand.
- But might be hard:
 - Huge number of variables.
 - Sequences of rules might be hard to find.
- Decision tree learning:
 - Use data to automatically write the program.
- Usual 'greedy' procedure:
 - Start with all data and learn one simple rule.
 - Split data based on rule, recurse on subsets.

Learning A Decision Stump

• **Decision stump**: decision tree with one rule.



- How do we find the variable and threshold?
 - 1. Define a 'score' for the rule.
 - 2. Search for the rule with the best score.

Decision Stump: Accuracy Score

- Most intuitive score: classification accuracy.
 - "If we use this rule, how many objects do we label correctly?"
- Computing classification accuracy:
 - Input is a rule like (eggs > 2).
 - Go through all objects, and find out which class is more likely given rule.
 - E.g., (eggs > 2) implies 'sick' more often than 'not sick', and (eggs <= 2) implies 'not sick' more often than 'sick'.
 - Go through all objects again, counting how many times the rule predicts the correct object label.
 - E.g., how many times did (eggs > 2) actually gave 'sick', plus how many times did (eggs <=2) actually gave 'not sick'.
 - Output: sum of these counts divided by number of objects.
- Accuracy score of '1': rule gives perfect prediction.
- Accuracy score of '0.50': rule tells you nothing. (if you only have two classes)

Decision Stump: Rule Search

- Accuracy score evaluates how 'good' a rule is.
- To find the 'best' stump, find the 'best' rule.
- Attempt 1 (exhaustive search):

Compute score of (eggs > 0) Compute score of (eggs > 0.01) Compute score of (eggs > 0.02) Compute score of (eggs > 0.03)

Compute score of (eggs > 99.99)

Compute score of (milk > 0)	•••
Compute score of (milk > 0.01)	•••
Compute score of (milk > 0.02)	•••
Compute score of (milk > 0.03)	•••
	•••
Compute score of (milk > 0.99)	•••

- As you go, keep track of the highest score.
- Return rule with highest score.

Cost of Decision Stumps (Attempt 1)

- How much does this cost?
- Assume we have:
 - 'n' objects (days that we measured).
 - 'd' features (foods that we measured).
 - 't' thresholds (>0, >0.01, >0.02,...)
- Computing the score costs O(n):
 - We need to go through all 'n' examples.
- Total cost is O(ndt):
 - Need to compute score for a total of d*t rules.
- Can we do better?

(if you are not familiar with "O(n)" see notes on webpage)

Cost of Decision Stumps (Attempt 1)

- We can ignore rules outside feature ranges:
 - E.g., we never have (eggs > 50) in our data.
 - These rules can never improve accuracy.
 - Restrict the thresholds to the range of each feature.
- Most of the thresholds give the same score.
 - E.g., if never have (eggs == 0.05) in the data, then
 (eggs > .04) and (eggs > 0.05) have the same score.'
 - Restrict thresholds to values of the features in data.

Decision Stump: Rule Search

- Accuracy score evaluates how 'good' a rule is.
- To learn 'best' stump, find the 'best' rule.
- Attempt 2 (search over features in data):

Compute score of (eggs > 0) Compute score of (eggs > 1) Compute score of (eggs > 2) Compute score of (eggs > 3) Compute score of (eggs > 4) Compute score of (eggs > 5)

Compute score of (milk > 0.5)
Compute score of (milk > 1)
Compute score of (milk > 1.5)
Compute score of (milk > 2)

. . .

. . .

. . .

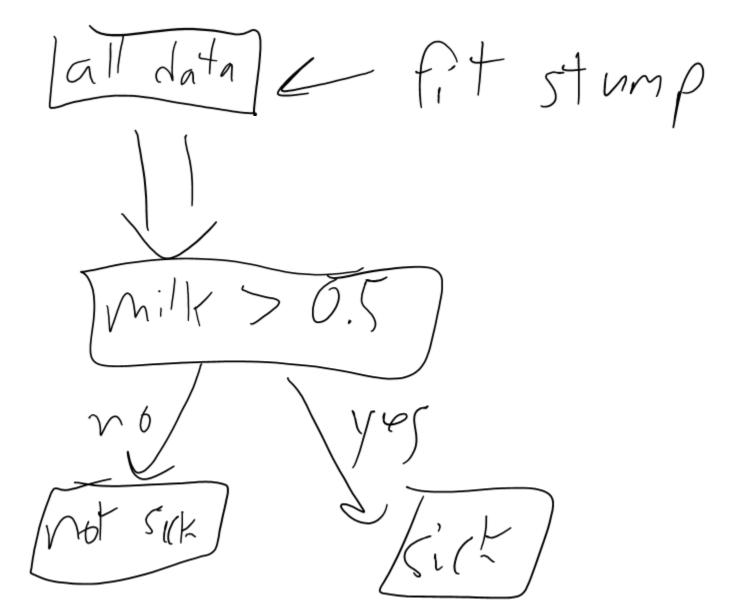
- Now at most 'n' thresholds for each feature.
- So we now consider only O(nd) rules.
- Total cost changes from O(ndt) to O(n²d).

Decision Stump: Rule Search

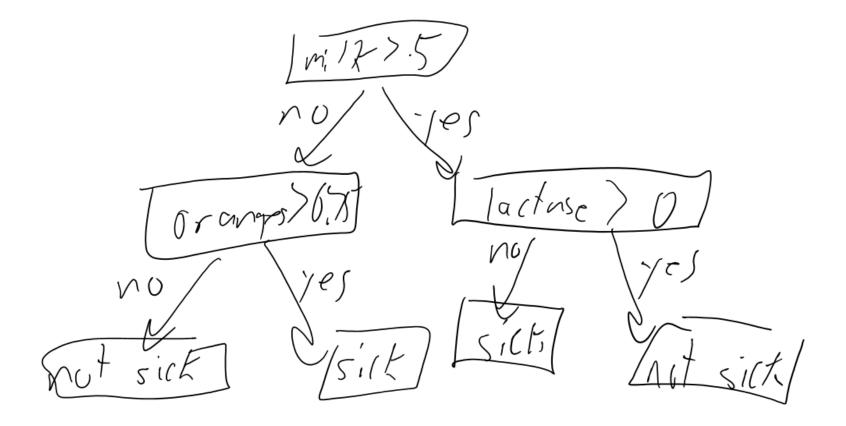
- Do we have to compute score from scratch?
 - Rule (eggs > 1) and (eggs >2) have same score, except when (eggs == 2).
 - Sort the examples based on 'eggs'.
 - Go through the rules in order, updating score.
- Sorting costs O(n log n) per feature.
- You do at most O(n) score updates per feature.
- Total is down from O(n²d) to O(nd log n).
- This is a good runtime:

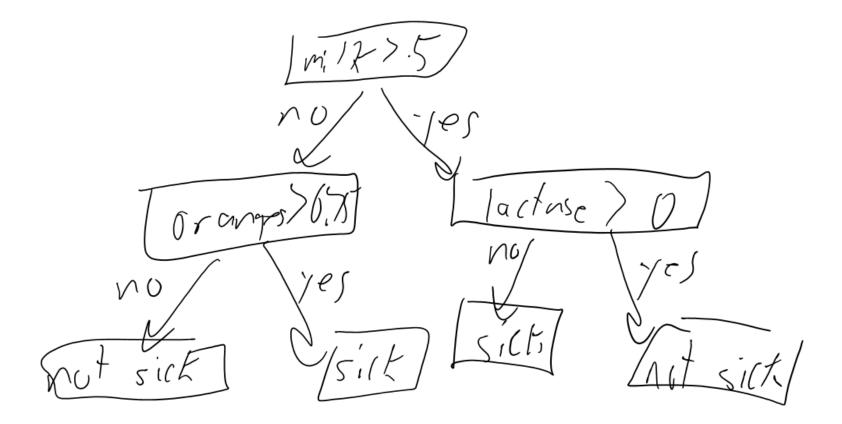
- O(nd) is size of data, this is only slightly bigger.

lall data (it stump



all data C fit stump Milks rot sick take data take data take data here milk fit stamp \$0,5, fit stamp





Stop when:

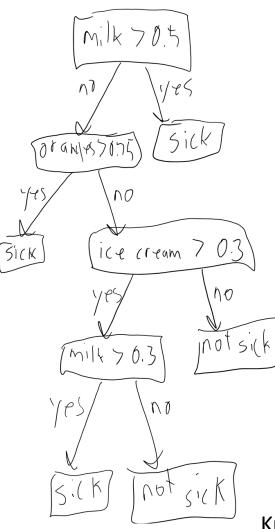
- only have one label left.
- reach user-defined maximum depth.

Issues with Decision Trees

- Advantages:
 - Interpretable.
 - Fast to learn.
 - Very fast to classify
- Disadvantages:
 - Hard to find optimal set of rules.
 - Rules are very simple.
 - Not the most accurate.
- Issues:
 - Can you revisit a feature?
 - More complicated rules?
 - Is accuracy the best score?
 - What depth?

Can you re-visit a feature?

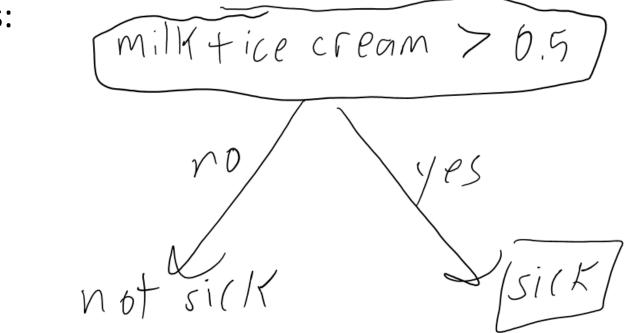
• Yes.



Knowing you had ice cream makes small milk quantities more relevant.

Can you have more complicated rules?

• Yes:



• But searching for best rule is more expensive.

Which Score Function?

- Shouldn't we just use accuracy score?
 - For leafs: yes, just maximize accuracy.
 - For internal nodes: maybe not.
 - There may be no simple rule like (eggs > 0.5) that improves accuracy.
- Most common score in practice: information gain.
 - How much does entropy ("randomness") of labels decrease if I use this rule to split the data?
 - Hope is that later rules on 'less random' data will be able to improve accuracy.

Summary

- Supervised learning: using data to build program that outputs labels from input features.
- Decision trees: making a decision via a sequence of simple rules.
- Decision stumps: very simple decision trees that we can very efficiently fit.
- We can greedily construct decision trees from a sequence of decision stumps.
 - Fast/interpretable, but may not be very accurate.