CPSC 340: Machine Learning and Data Mining

Admin

- Assignment 3 grades posted this weekend (with mark breakdowns).
- Assignment 5:
 - Tutorial slides posted.
 - Due Friday of next week.

Last Time: Loss Functions

- We discussed loss functions:
 - Continuous: Max, Squared, Absolute, Square-Root.
 - Binary labels: logistic, hinge, extreme.
 - Categorical: softmax.
 - Ordinal: ordinal logistic.
 - Counting: Poisson.
- While squared loss is convenient, there are usually better choices.

Last Time: Loss Functions

We also discussed how to use probabilities to derive loss functions:

If
$$\hat{y}_i = w^T x_i$$
 then define some $p(y_i | \hat{y}_i)$ and use $-\log(p(y_i | \hat{y}_i))$ as (or any other model)

- If you aren't happy with existing losses, use this to derive your own.
- This lets us write training in terms of probabilities:

Instead of argmin
$$\frac{1}{2} \sum_{i=1}^{n} (y_i - w^T x_i)^2$$
 we can use argmin $\sum_{i=1}^{n} -\log(p(y_i | w_i x_i))$

Today: Semi-Supervised Learning

Our usual supervised learning framework:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1

• In semi-supervised learning, we also have unlabeled examples:

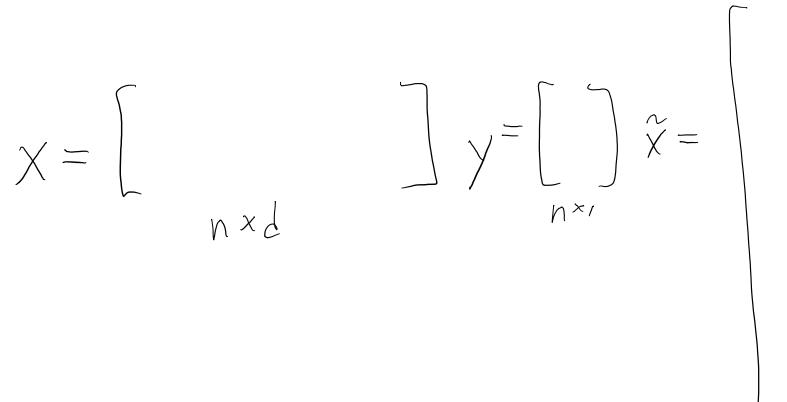
Egg	Milk	Fish	Wheat	Shellfish	Peanuts	
0.3	0	1.2	0.3	0.10	0.01	
0.6	0.7	0	0.3	0	0.01	
0	0.7	0	0.6	0	0	
0.3	0.7	0	0	0.20	0.01	

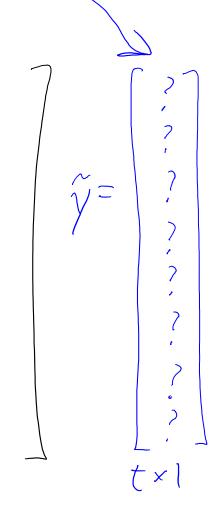
• The semi-supervised learning (SSL) framework:

- This arises a lot:
 - Usually getting unlabeled data is easy and getting labeled data is hard.
 - Why build a classifier if getting labels is easy?
- Common situation:
 - A small number of labeled examples.
 - A huge number of unlabeled examples: t >> n.

Transductive vs. Inductive SSL

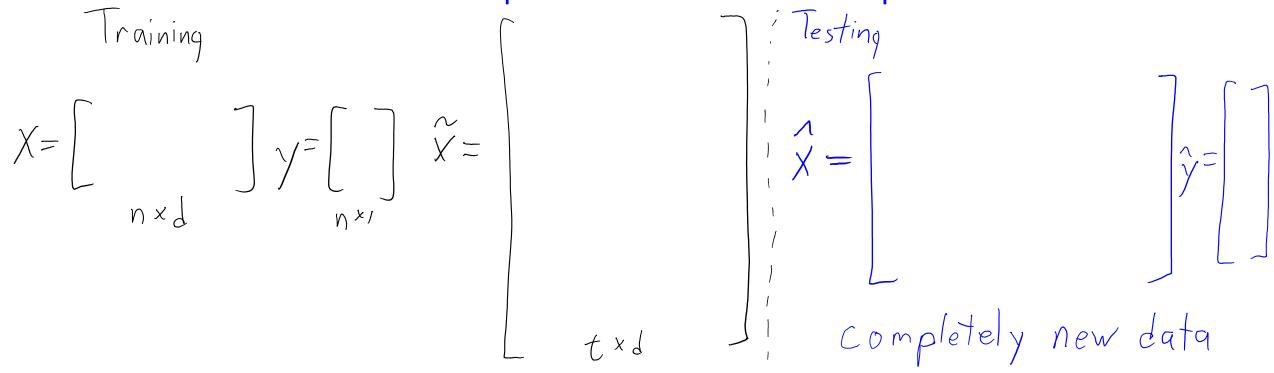
- Transductive SSL:
 - Only interested in labels of the unlabeled examples.



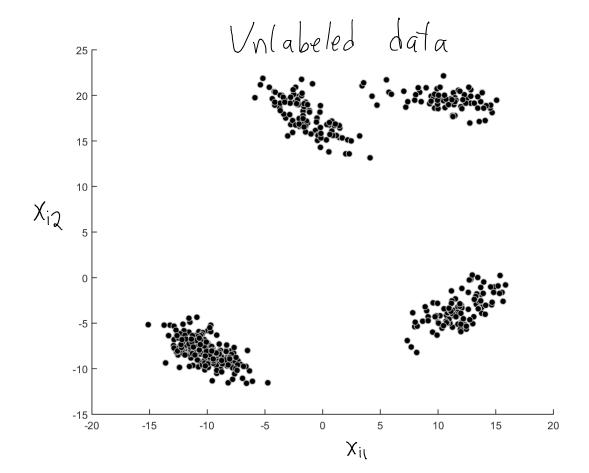


Transductive vs. Inductive SSL

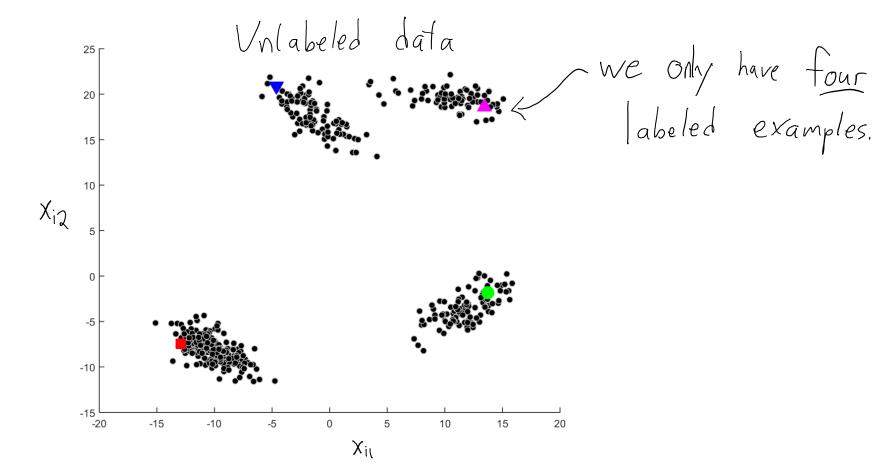
- Transductive SSL:
 - Only interested in labels of the unlabeled examples.
- Inductive SSL:
 - Interested in the test set performance on new examples.



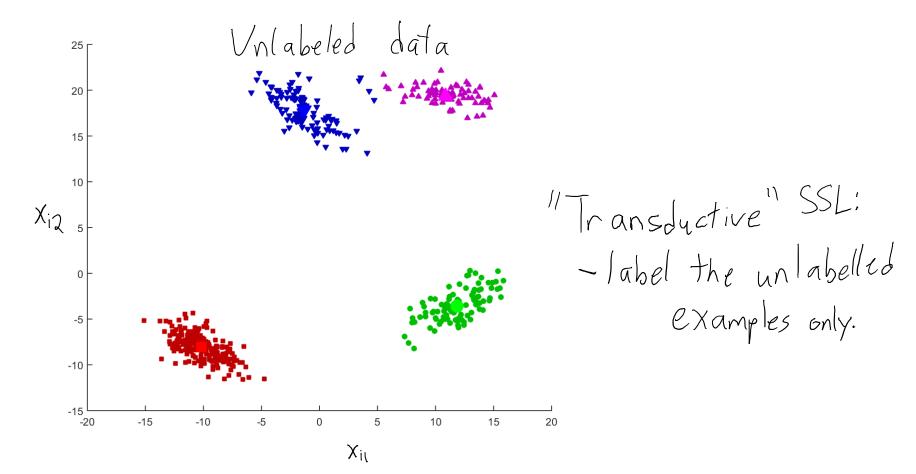
- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



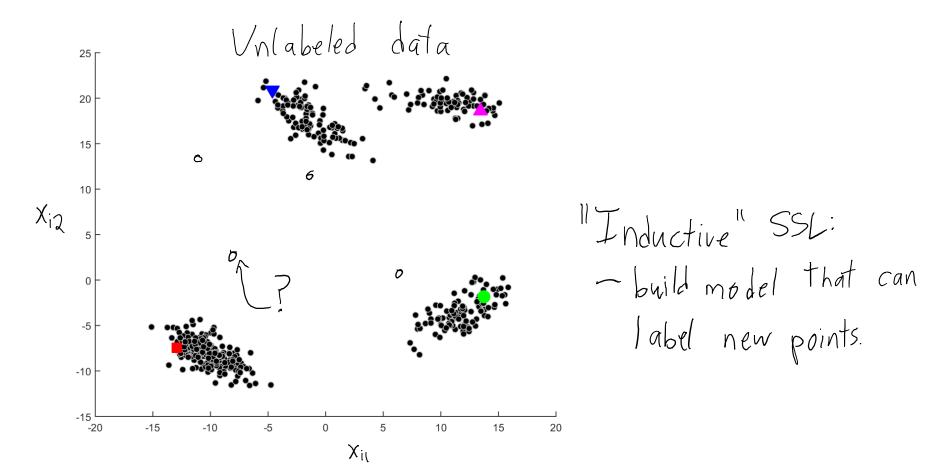
- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



Philosophical Digression: Can we do SSL?

- Will unlabeled examples help in general?
 - No!
- Consider choosing random 'x_i' values, then computing 'y_i'.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of x_i says nothing about y_i .
- Consider 'y_i' somehow influencing data we collect:
 - Now there is information about labels contained in unlabeled examples.
 - Example 1: we try to have an even number of $y_i = +1$ and $y_i = -1$.
 - Example 2: we need to choose non-random 'x_i' to correspond to a valid 'y_i'
 - We are almost always in this case.

Philosophical Digression: Can we do SSL?

- Example where SSL is not possible:
 - Try to detect food allergy by trying 'random' combinations of food.
 - The actual 'random' process isn't important, as long it doesn't depend on 'y_i'.
 - Unlabeled data would be more random combinations:

$$X = \begin{bmatrix} 1 & \text{random} \\ \text{random} \\ \text{values} \end{bmatrix} \quad X = \begin{bmatrix} 1 & \text{bels} \\ \text{of} \\ \text{random} \\ \text{values} \end{bmatrix}$$

You can generate all possible unlabeled data, but it says nothing about labels.

Philosophical Digression: Can we do SSL?

- Example where SSL is possible:
 - Trying to classify images as 'cat' vs. 'dog':

- Unlabeled data would be images of cats or dogs: not random images.
 - Unlabeled data contains information about what images of cats and dogs look like.
 - E.g., clusters or manifolds (or just closeness) in unlabeled images.
- Contrast this with 'cat' vs. 'not cat':
 - If we generate random images then label them, unlabeled data won't help.
 - If we know that half our unlabeled images are cats, unlabeled could help.

SSL Approach 1: Self-Taught Learning

- Self-taught learning is similar to k-means:
 - 1. Fit a model based on the labeled data.
 - Use the model to label the unlabeled data.
 - Use estimated labels to fit model based on labeled and unlabeled data.
 - 4. Go back to 2.
- Obvious problem: it can reinforce errors and even diverge.
- Possible fixes:
 - Only use labels are you very confident about.
 - Regularize the loss from the unlabeled examples:

$$\underset{V}{\text{argmin}} \sum_{i=1}^{n} g(y_i, \hat{y_i}) + \lambda \underset{i=1}{\overset{t}{\sum}} g(\hat{y_i}, \hat{y_i})^{-1}$$

argmin $\sum_{i=1}^{n} g(y_i, y_i) + \lambda \sum_{i=1}^{n} g(y_i, y_i) + \lambda \sum_{i=1}^{n} g(y_i, y_i)$ Scalar λ controls how much we trust predicted labels λ :

SSL Approach 1: Self-Taught Learning

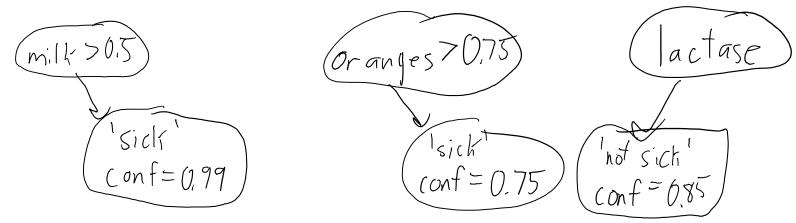
```
Input:
                                       1. Train on {X, y}:
- labeled examples Exy?

- unlabeled examples X

model = fit (X, y)
                                        2. Guess labels:
                                                  \tilde{y} = model.predict(\tilde{X})
                                       3. Train on bigger data set:
                                                 model = fit \left( \left[ \begin{array}{c} X \\ \hat{X} \end{array} \right] , \left[ \begin{array}{c} y \\ \hat{y} \end{array} \right] \right)
```

Yarowsky Algorithm

- Variant of self-taught learning is Yarowsky's algorithm.
- Base classifier is a decision list:
 - List of decision rules and their confidence:



- Use rule with the highest confidence.
 - Or leave unlabeled if nothing has high confidence.

Yarowsky Algorithm

- Variant of self-taught learning is Yarowsky's algorithm:
 - 1. Start with a small number of 'seed' rules:

- 2. Label unlabeled examples.
- 3. Add rules with highest confidence.

If previous word is 'life', label =
$$-1$$
 (conf = 0.986)
If 'paye' is close, label = $+1$ (conf = 0.953)

4. Go back to 2.

Yarowsky Algorithm

- Variant of self-taught learning is Yarowsky's algorithm:
 - Surprisingly effective in some applications.
 - Seed rules for person/place/company identification:

Finding rules with 95% confidence lead to 91% test set accuracy.

SSL Approach 2: Co-Training

- Assumes that we have 2 sets of features:
 - The feature sets should be conditionally independent given the label.
 - Both sets are sufficient to give high accuracy.
 - E.g., image features (set 1) and caption features (set 2).

Co-training:

- 1. Using labeled set, fit model 1 based on set 1, fit model 2 based on set 2.
- 2. Label a random subset of unlabeled examples based on both models.
- 3. Move examples where each classifier is most confident to labeled set.
- 4. Go back to 1.
- Hope is that models 'teach' each other to achieve consensus.
 - Theoretically works if assumptions are satisfied.

SSL Approach 2: Co-Training

$$\chi = \left(\begin{array}{ccc} \chi_1 & \vdots & \chi_2 \\ & \vdots & & \end{array}\right)$$

1. Train models on X, and X2:

$$model1 = fit(X_{i,j})$$
 $model2 = fit(X_{i,j})$

2. Guess labels:

Use random
$$y_1 = \text{model.predict}(\hat{X}_1)$$
 $y_2 = \text{model.predict}(\hat{X}_2)$

SSL Approach 3: Entropy Regularization

- Self-taught and co-training predictions may propagate errors.
- Instead of making predictions, encourage 'predictability'.
- Entropy is a measure of 'randomness' of a probability:

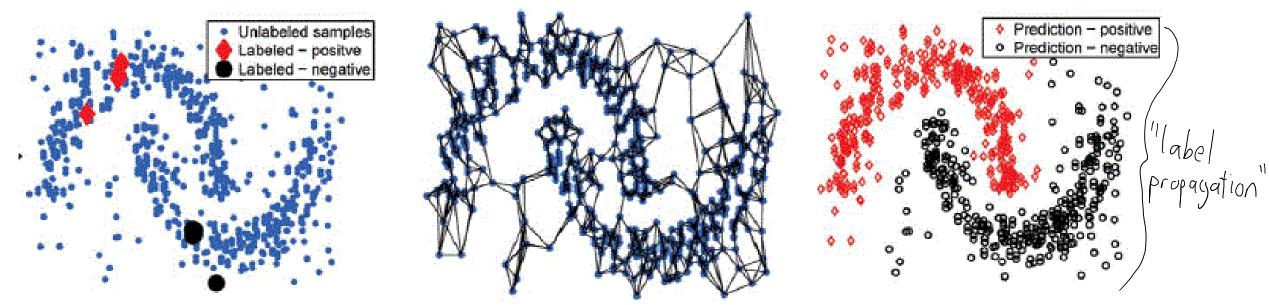
• Entropy regularization of the unlabeled examples' labels:

$$\frac{1}{\sqrt{2}} - \log\left(p(y_i \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) - \sum_{i=1}^{t} \sum_{c=1}^{t} p(y_i = c \mid w_i, x_i) \log\left(p(y_i = c \mid w_i, x_i)\right) \log\left(p(y_i = c \mid w_i, x_i)\right)$$

- Related approach is transductive SVMs: avoid boundaries in dense regions.

SSL Approach 4: Graph-Based Methods

- We can only do SSL because (similar features ⇔ similar labels).
- Graph-based SSL uses this directly:
 - Define weighted graph on training examples (similar to ISOMAP):
 - For example, use k-nearest or r-close neighbours.
 - Weight is how 'important' it is for nodes to share label.

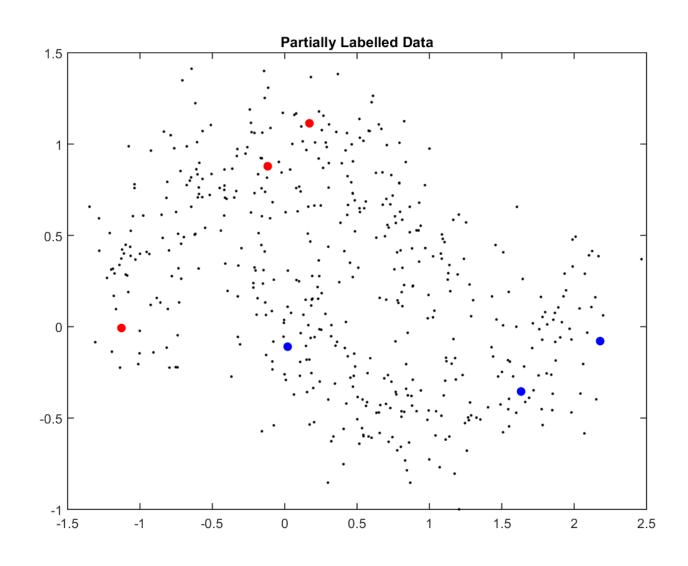


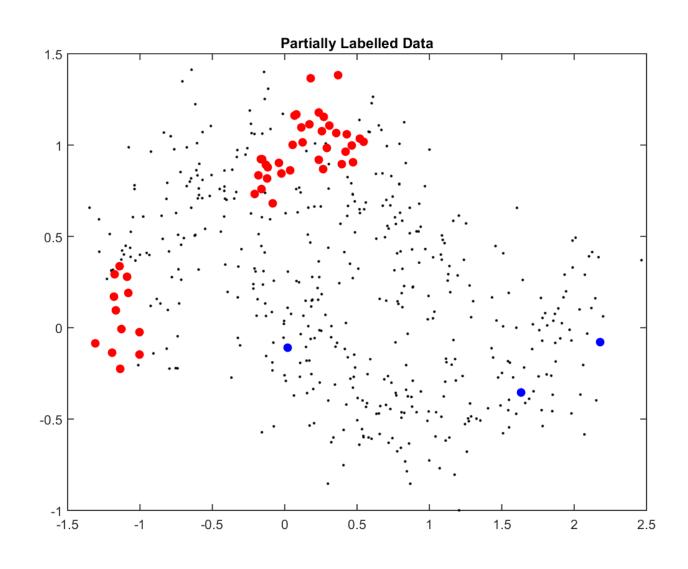
Graph-Based SSL (Label Propagation)

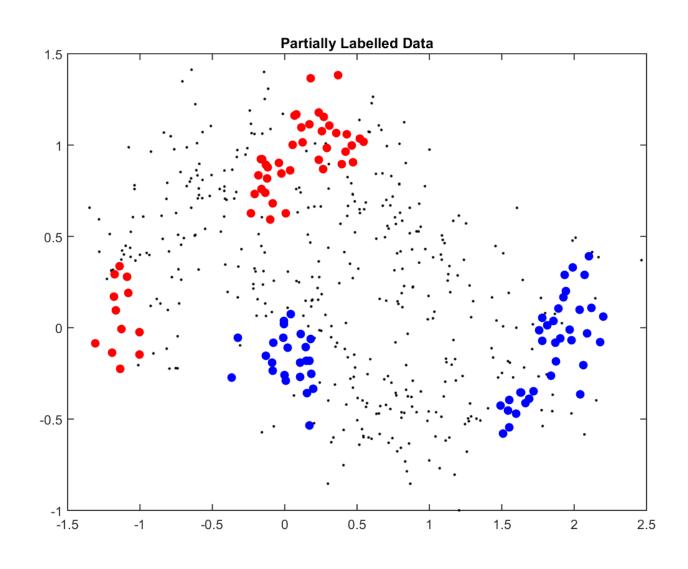
• Treat unknown labels as variables, minimize cost of disagreement:

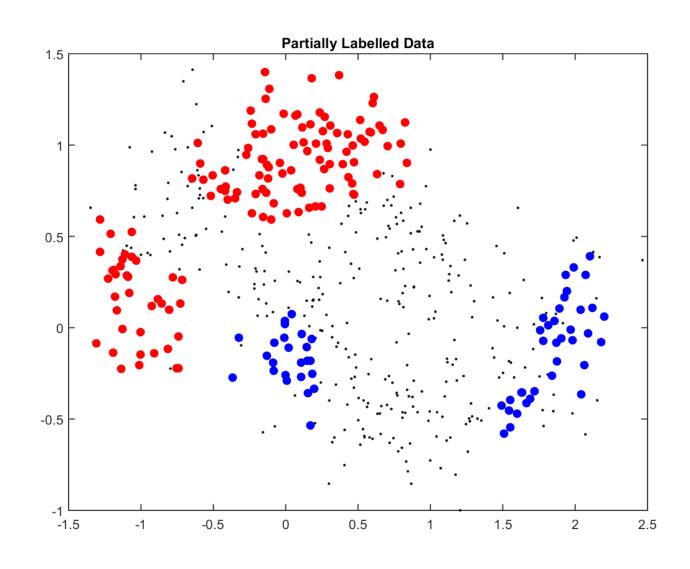
Leads to "label propagation" through graph.

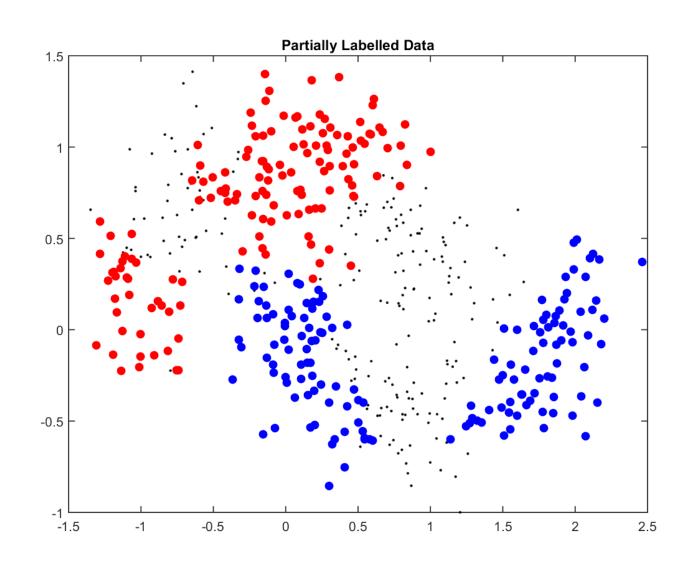
make un labeled neighbours similar to each other.

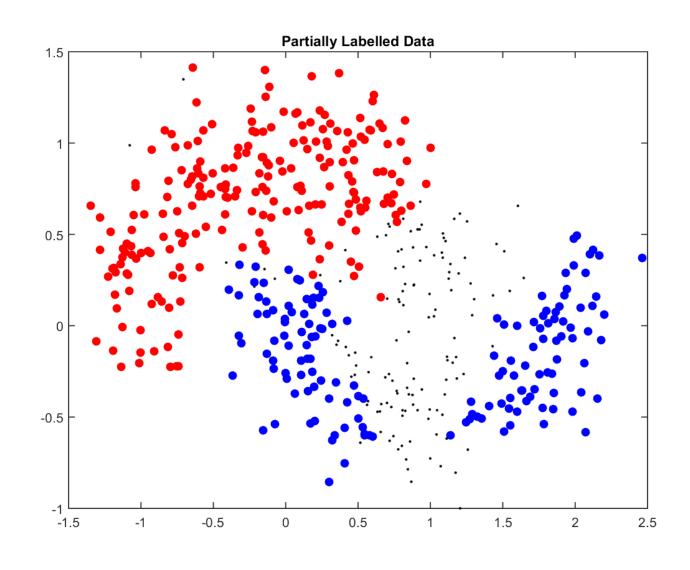


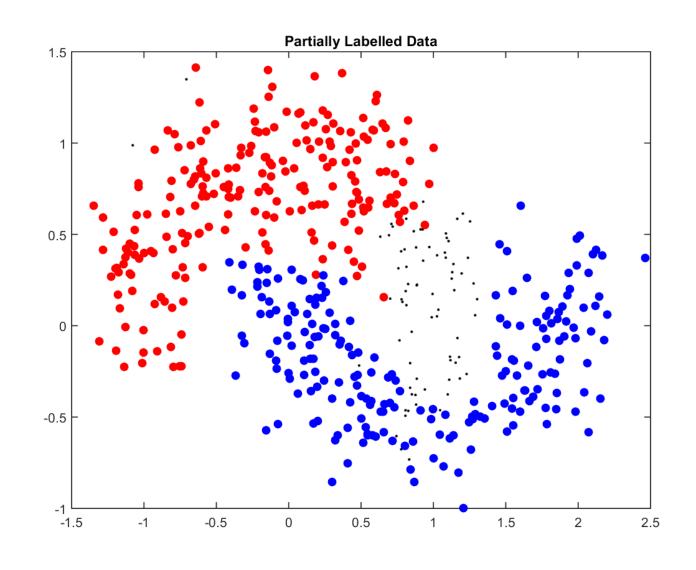


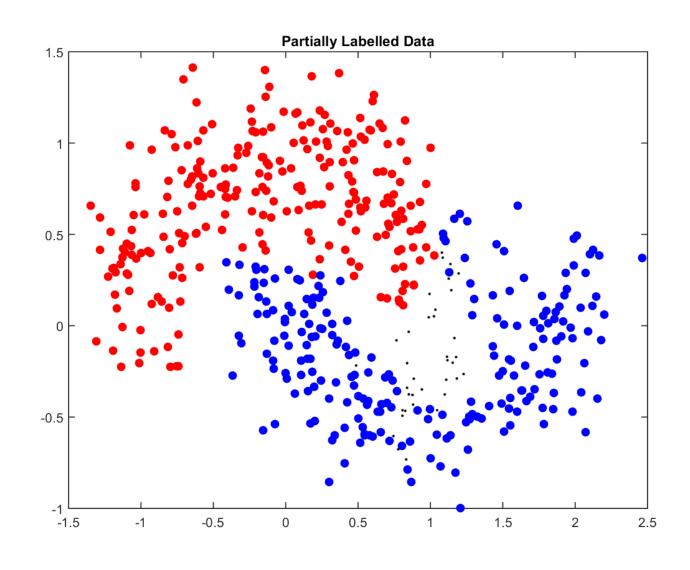


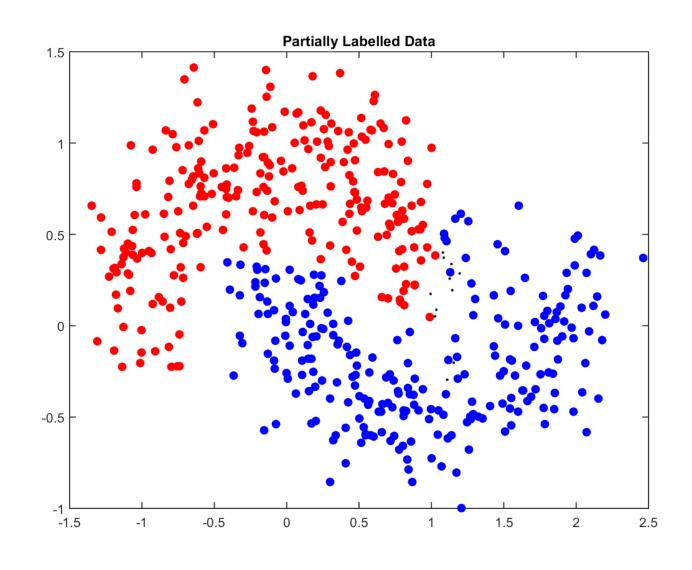


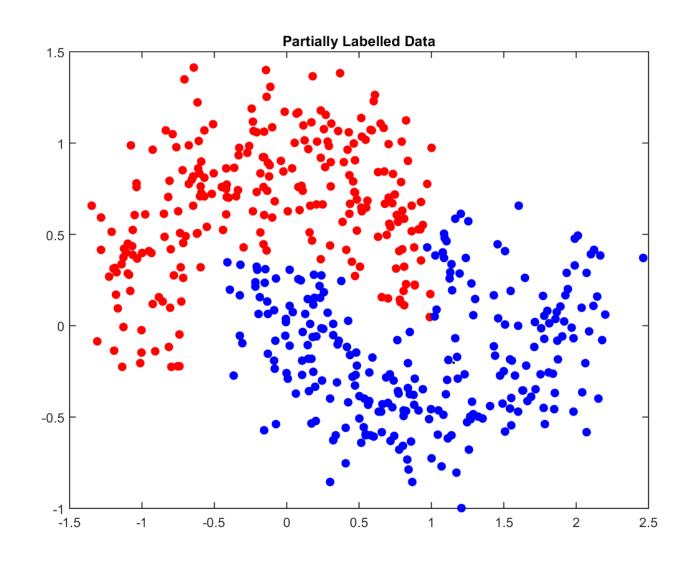












Example: Tagging YouTube Videos

- Comments on graph-based SSL:
 - Transductive method: only estimates the unknown labels.
 - Often surprisingly effective even if you only have a few labels.
 - Do not need features if you have the weighted graph.
 - Often add regularization: encourages 'no decision' if far from labels.

Example:

- Consider assigning 'tags' to YouTube videos (e.g., 'cat').
- Construct a graph based on sequences of videos that people watch.
 - Give high weight if video A is often followed/preceded by video B.
- Use label propagation to tag all videos.

Summary

- Semi-supervised learning uses unlabeled data in supervised task.
- Transductive learning only focuses on labeling this data.
- SSL may or may not help, depending on structure of data.
- Self-taught/Yarowsky/co-training alternate labeling/fitting.
- Entropy regularization encourages 'predictable' labels.
- Graph-based SSL propagates labels in graph (no features needed).

Next time: ranking and the original Google algorithm.