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Admin

 Assignment 5 is posted.

— Due Friday of next week.
— A2.2 update: use k = 10.



Last Time: Convolutional Neural Networks

e Convolutional neural networks:
1. Convolutional layers.
2. Pooling layers.
3. Fully-connected layers.




GoogleNet

 GoogleNet is very deep competitive-winning system.

* Training these systems is very expensive:

— Weeks on clusters of computers with expensive GPUs.

* What if you aren’t Google?

— Some groups release their features/network code.

— Quickly learn to identify new objects by:

e Use features learned from millions of images and thousands classes.

* Or ‘fine-tune’ the entire network with your data.
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Today: Alternatives to Squared Loss

 We’'ve been using squared error as our default ‘loss’:
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e A lot of models we’ve discussed fit in this framework:
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e Square error is differentiable and sometimes has closed-form.

* But, usually squared error is not the right ‘loss’.
— Today we discuss alternatives.



Review: Robust, Brittle, and Logistic Regression

 We previously discussed a few alternatives:
— L1-error and Huber loss are more robust to outliers.
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Review: Robust, Brittle, and Logistic Regression

 We previously discussed a few alternatives:
— L1-error and Huber loss are more robust to outliers.
— Non-convex losses can be even more robust.
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Review: Robust, Brittle, and Logistic Regression

 We previously discussed a few alternatives:
— L1-error and Huber loss are more robust to outliers.
— Non-convex losses can be even more robust.
— Maximum loss gives better performance in worst case.



Review: Robust, Brittle, and Logistic Regression

 We previously discussed a few alternatives:
— L1-error and Huber loss are more robust to outliers.
— Non-convex losses can be even more robust.
— Maximum loss gives better performance in worst case.
— Hinge and logistic losses are better for binary data.
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Review: Robust, Brittle, and Logistic Regression

 We previously discussed a few alternatives:
— L1-error and Huber loss are more robust to outliers.
— Non-convex losses can be even more robust.
— Maximum loss gives better performance in worst case.
— Hinge and logistic losses are better for binary data.

 What about other types of discrete labels?
— Multi-label: {‘cat’, ‘dog’, ‘human’}.
— Categorical: {'fEdmonton’, ‘Paris’, ‘Philadelphia’, ‘Vancouver’}.
— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
— Counts: 602 ‘likes’.
— Ranking: Difficulty(A3) > Difficulty(A4) > Difficulty (A2) > DifficultyA(1).



Probabilistic Models and Loss Functions

* We can use probabilistic models to derive loss functions.
e Main idea: /W X

1. Define probability of each possible label: P(V / \2)

2. Define loss as negative logarithm of the probability. — lgg )p(%. [Q)
e Why???

— We want predictions that maximize the probability of the label y..

— Taking logarithm doesn’t change location of maximum.

— Maximizing logarithm is equivalent to minimizing negative of logarithm.
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Sigmoid Probabilities and Logistic Loss

 Example of going from probabilities to loss function (binary y,):
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Sigmoid Probabilities and Logistic Loss

* Example of going from probabilities to loss function (binary y,):
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Why Logarithm?

 We want loss function to be additive across examples:
A
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* |If training examples are IID, probability is multiplicative:
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* Logarithm of the probability is additive across examples:
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Gaussian Probabilities and Squared Loss
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Multi-Label Data and Independent Logistic Losses

Consider the case of multi-label data like {‘cat’, ‘dog’, ‘human’}.
— Image can have none, some, or all of these labels. E.g., y. = {1,-1,1}.

We can treat this case in a similar way to Iatent-factor models:
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Categorical Data and One vs. All

e Categorical data: we have multiple labels but only one is correct.
— Classifying images as taken in {‘Alberta’, ‘Paris’, ‘Philadelphia’, Vancouver’}.
— In this case, we could have y. = 3.

* We can use same model as previous slide:

* To make a single prediction, take the biggest w.'x.. B T
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— ‘One vs. all’ classifier.



Categorical Data and Softmax Loss

* Disadvantage of ‘one vs. all’:
— Logistic loss focuses on {0,1} decisions, not making WjTXi large for correct y;.
— We want a loss that makes w;'x; big for correct y;, small for others.

e ‘Softmax’ or multinomial logistic regression model:
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* Exponential magnifies large values: most probability is on max.
* Negative of logarithm of probability gives loss function.

— Logistic loss is special case where w,=0.



Unbalanced Data and Extreme-Value Loss

e Consider binary case where:
— One class overwhelms the other class (‘unbalanced’ data).
— Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Ordinal Data and Proportional Odds

* Ordinal data: categorical data where the order matters:
— Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.

* Could do softmax, but softmax ignores the order.
* ‘Proportional odds’ or ‘ordinal logistic regression’:
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Count Data and Poisson Loss

Count data: predict the number of times something happens.
— The number of ‘likes’ that Facebook will get.

Softmax/ordinal require finite number of categories.
We probably don’t want separate parameter for ‘654’ and ‘655’.
Poisson regression: use probability from Poisson count distribution.



Back to discussion of CNNs...



Interpreting CNNs
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Inceptionism

e Start with random noise, move image to amplify class label.
— (And enforce pairwise statistics on image)

optimize
with prior




Inceptionism

e Start with an image, amplify features deep in network.

Horizon Trees

Towers & Pagodas Buildings Birds & Insects



CNNs for Artistic Style




Is this magic?

* For speech recognition and object detection:
— No other methods have ever given the current level of performance.
— But, we also don’t know how to scale up other universal approximators.

* No baseline methods in many deep learning papers/articles/blogs.
— Would simpler methods obtain similar performance?

* Despite the ‘high-level’ abstraction of deep models, easily fooled:
— But progress on fixing ‘blind spots’. T '




CNNs for Rating Selfies

. Our training data
Bad selfies Good selfies




CNNs for Ratmg Selfles
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CNNs for Rating Selfies

score 53.1

score 67.3

score 56.3




Summary

Squared loss is rarely the right measure.

-log(probability) lets us to define loss from any probability.
Softmax is natural loss for categorical data.

Ordinal logistic is natural loss for ordinal data.

Exotic losses like extreme-value or Poisson for certain situations.

Next time: finding all the cat videos on YouTube.



