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Admin

Assignment 2 grades posted.

Midterm back soon.

Assignment 4 out tomorrow.

Tomorrow at 6pm is DataSense’s Data Science Seminar Series:

— IBM Watson Analytics and Panel Discussion.
— https://www.facebook.com/events/975146559243561



Last week: Principal Component Analysis

* PCA represents x; as linear combmatlon of latent vectors:
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* The w_ are ‘latent factors’, and z, is low-dimensional representation.
Why this model? Do we really all this math?
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Colour Opponency in the Human Eye

* Classic model of the eye is with 4 photoreceptors:

Light Section [}
— L-Cones (most sensitive to red). | /T
— M-Cones (most sensitive to green). Guﬁiﬁ*—
— S-Cones (most sensitive to blue). EM;}M,Hﬁltli,ﬁLﬂpg.s
— Rods (more sensitive to brightness). cone__£99999 "“"LT:
* Two problems with this system: fé?l'é’““'““w

— Correlation between receptors (not orthogonal).

 Particularly between red/green.

— We have 4 receptors for 3 colours.

Normalized cone response (linear energy)
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Colour Opponency in the Human Eye

* Bipolar and ganglion cells seem to code using ‘opponent colors’:

— 3-variable orthogonal basis:
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Colour Opponency Representation




But how should we represent faces?
* K-means (vector quantization):
— ‘Grandmother cell’: one neuron = one face. )
— Almost certainly not true: too few neurons. '-f_j-*,*'“'-*',:_ “f’ﬁ’a“"‘, .q
* Principal components analysis (PCA): i
— ‘Distributed representation’. G e il i O O
* We’ll cover artificial neural networks next week. ‘:::-i_:lif~
— Coded by pattern of group of neurons. *“;*1-"*»-’
— PCA uses all variables to make cancelling parts. Gl =TT Lo >
 Non-negative matrix factorization (NMF): —— E—
— ‘Sparse coding’. SEAS B S
— Coded by activation of small set of neurons. __:*’m';ﬂ
— NMF makes object out small number of ‘parts’. "‘“‘*‘
B T AR




Representing Faces

 Why sparse coding?

— ‘Parts’ are intuitive, and brains seem to use sparse representation.

— Energy efficiency if using sparse code.

— Increase number of concepts you can memorize?

* Some evidence in fruit fly olfactory system.
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Warm-up to NMF: Non-Negative Least Squares

* Consider our usual least squares problem:
N 2
ae M\m&__\/ (\/ \\/\/7X<>
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* Assume thaty, and elements of x. are non-negative:
— Could be sizes (‘height’, ‘milk’, ‘/km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).
* We may want elements of w to be non-negative, too:

— No physical interpretation to negative weights.
— If x;; is amount of product you produce, what does w; < 0 mean?

* Non-negativity constraint has interesting property:

— Solution w tends to be sparse.



Non-Negative Least Squares

 The non-negative least squares formulation:
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* This can be solved with projected-gradient iteration:
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* Projected-gradient has similar properties to gradient descent.

— Guaranteed to decrease objective for small enough a..
— Guaranteed to find constrained local minimum.
— Can also add projection to stochastic gradient.



Sparsity and Non-Negative Least Squares

Consider 1D non-negative Ieast squares objective:

{()= 7 mwe)t with w 20
Plotting the (constrained) objectwe function:
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Instead of setting w negative, NNLS will set w to zero.

In higher-dimensions, NNLS also implicitly regularizes non-zero values:
— Positive w; are smaller because no ‘cancellation’ with negative values.



Non-Negative Matrix Factorization (NMF)

e Recall our objective for latent-factor models:
nood
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 We get different models with different constraints:
— K-means: each z, has one ‘1" and the rest are zero.
— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: the w_ have a norm of 1 and have an inner product of zero.

— NMF: all elements of W and Z are non-negative:
* Latent-factors w_are sparse (sparse ‘dictionary’).
* Low-dimensional representation z, is sparse (sparse ‘code’).



We can also fit NMF
with projected-gradient.

Usually, alternate between
updating ‘W’ and Z’.

Not convey, initialization matters:.

— Usually, random initial values.

You can’t initialize w_ the same:
— They would stay the same.
— Use different random values.
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Other Latent-Factor Models

* Recall our objective for latent-factor models (LFM):

n o d
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 We can use our linear regression tricks in this framework:
— Use robust loss function like absolute error (robust LFM).
— Use logistic loss for binary x;; (binary LFM).
— Add regularization of W and/or Z to improve test error (regularized LFM).

— Instead of non-negativity, use L1-regularization to encourage sparsity.



Sparse Coding and Sparse PCA W/@}
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K-SVD: constrain LO-norm of z.. W, >
Literature is messy: can mix/match regularizers/constraints.




Latent-Factor Models for Face Representations
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

— s

"3

B 5y / Typical pre-processing:
Y e Q > center and ‘whiten’ patches.
LA

What are images made of?




Latent-Factor Models for Image Patches

We don’t think this is the right representation:
Few PCs do almost everything.
* Most PCs do almost nothing.

We believe ‘simple cells’ in visual cortex look like:

(b) Principal components. ‘Gabor’ filters



Latent-Factor Models for Image Patches

e Latent factors from sparse coding on B+W and colour patches:
o=l ML =P A EY Sml A=

(a) With centering - gray. (b) With centering - RGB.



Latent-Factor Models for Image Patches

* Latent factors from sparse coding on B+W and colour patches:

(c) With whitening - gray.



Application: Image Inpainting




Recent Work: Structured Sparsity

e ‘Structured sparsity’ considers dependencies in sparsity patterns.
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Recent Work: Structured Sparsity

* ‘Structured sparsity’ considers dependencies in sparsity patterns.
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(b) With 4 x 4 neighborhood.



Summary

Biological motivation for orthogonal and sparse latent factors.
Non-negativity leads to a form of sparsity.

Non-negative matrix factorization leads to sparse LFM.
L1-regularization leads to other sparse LFMs.

Next time: predicting which movies you are going to like.



