CPSC 340: Machine Learning and Data Mining

Outlier Detection Fall 2015

Admin

- Midterm on Friday.
 - Assignment 3 solutions posted.
 - Practice midterm posted (fixed typos in Q1 and Q2 solutions).
 - List of topics posted.
 - In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.
 (you will get 4 pages for the final, so you can keep your midterm pages)
- Assignment 4 out on Monday.
 - Will be due November 13.

Last time: Principal Component Analysis

- PCA represents x_i as linear combination of factors:
- Wc: "principal component" Z:: low dimensional representation of X; • The w_c have a norm of 1, are orthogonal, and are fit consecutively.

 $f(W_{\gamma}Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_j^T z_j)^2$

• Gives a low-dimensional approximation of high-dimensional data.

Trait	Description	
Openness	Being curious, original, intellectual, creative, and open new ideas.	
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.	
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.	
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.	
Neuroticism	Being anxious, irritable, temperamental, and moody.	

Component 1 (0.21% variance)

Motivating Example: Finding Holes in Ozone Layer

• The huge Antarctic ozone hole was "discovered" in 1985.

- It had been in satellite data since 1976:
 - But it was flagged and filtered out by quality-control algorithm.

Outlier Detection

• Outlier detection:

- find observations that are unusually different from the others.

- Some sources of outliers:
 - Errors, contamination of data from different distribution, rare events.
- May want to remove outliers, or interested in the outliers themselves.

Applications of Outlier Detection

- Data cleaning.
- Security and fault detection (network intrusion, DOS attacks).
- Fraud detection (credit cards, stocks, voting irregularities).

Transaction Date	- Posted Date	Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

- Detecting natural disasters (earthquakes, particularly underwater).
- Astronomy (find new classes of stars/planets).
- Genetics (identifying individuals with new/ancient genes).

Classes of Methods for Outlier Detection

- 1. Model-based methods.
- 2. Graphical approaches.
- 3. Cluster-based methods.
- 4. Distance-based methods.

Model-Based Outlier Detection

- Model-based outlier detection:
 - 1. Fit a probabilistic model.
 - 2. Outliers are examples with low probability.

- Simplest approach is z-score:
 - If z > 3, 97% of data is closer to mean?
- Another variation: return big z_i after running PCA.

Problems with Z-Score

- The z-score relies on mean and standard deviation:
 - These measure are sensitive to outliers.

- Possible fixes: use quantiles, or sequentially remove worse outlier.

• The z-score assumes that data is uni-modal...

Global vs. Local Outliers

Х

x x x x y x y x

• Is the middle point an outlier?

××× ××××

- Middle point has the lowest z-score.
 It's not a 'global' outlier, but is a clear 'local' outlier.
- In general, hard to give precise definition of 'outliers' "local" or flori – What about outlier groups?

- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot:
 - Visualization of quantiles/outliers.
 - Only 1 variable at a time.

Side-By-Side (Comparative) Boxplots Age of Best Actor/Actress Oscar Winners (1970-2001)

- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot.
 - 2. Scatterplot:
 - Can detect complex patterns.
 - Only 2 variables at a time.

- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array:
 - Look at all combinations of variables.
 - But laborious in high-dimensions.
 - Still only 2 variables at a time.

https://randomcriticalanalysis.wordpress.com/2015/05/25/standardized-tests-correlations-within-and-between-california-public-schools/

0.06

- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array.
 - 4. Scatterplot of 2-dimensional PCA:
 - 'See' high-dimensional structure.
 - But PCA is sensitive to outliers.
 - There might be info in higher PCs.

http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe,

Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means:
 - Find points that are far away from any mean.
 - Find clusters with a small number of points.

Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters
- Examples:
 - 1. K-means.
 - 2. Density-based clustering:
 - Outliers are points not assigned to cluster.

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap10_anomaly_detection.pdf

Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means.
 - 2. Density-based clustering.
 - 3. Hierarchical clustering:
 - Outliers take longer to join other groups.
 - Also good for outlier groups.

Distance-Based Outlier Detection

- Most of these approaches are based on distances.
- Can we skip the models/plot/clusters and directly use distances?
- Distance-based outlier detection:
 - Use some measure of how close objects are to their neighbours.
- Examples:
 - How many points lie in a radius 'r'?
 - What is distance to kth nearest neighbour?

Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:

- Outlier o₂ has similar density as elements of cluster C₁.
- 'Local outlier factor' and variations:
 - Is point further away from its neighbours, then they are from each other?

Outlierness Ratio

- Let $N_k(x_i)$ be the k-nearest neighbours of x_i .
- Let $D_k(x_i)$ be the average distance of xi to its k-nearest neighbours: $\int_{\mathcal{K}} (x_i) = \frac{1}{\kappa} \sum_{\substack{j \in \mathcal{N}_k(x_i)}} \|x_i - x_j\|$
- 'Outlierness' is ratio of $D_k(x_i)$ to average $D_k(x_i)$ for its neighbours 'j':

• If outlierness > 1, x_i is further away from neighbours than expected.

Outlierness Ratio

• Outlierness and LOF will find o₁ and o₂.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf https://en.wikipedia.org/wiki/Local_outlier_factor

Outlierness with Close Clusters

• If clusters are close, outlierness gives unintuitive results:

- In this example, 'p' has higher outlierness than 'q' and 'r':
 - The green points are not part of the KNN list of 'p' for small 'k'.

Outlierness with Close Clusters

- 'Influenced outlierness' (INFLO) ratio:
 - Include 'reverse' k-nearest neighbours (points that have 'p' in KNN list).
 - Included in the average in the denominator of outlierness ratio.
 - Adds 's' and 't' from bigger cluster that includes 'p':

- Still not perfect, particularly for hierarchical clusters.
 - You should also try multiple values of 'k'.

http://www.comp.nus.edu.sg/~atung/publication/pakdd06_outlier.pdf

Summary

- Outlier detection is task of finding unusually different object.
- Model-based methods check if objects are unlikely in fitted model.
- Graphical methods plots data and use human to find outliers.
- Cluster-based methods check whether objects belong to clusters.
- Distance-based methods measure distance to nearby objects.

- Next time: midterm.
 - Then on Monday, changing PCA so it splits faces into 'eyes', 'mouths', etc.