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Admin

 Midterm on Friday.
— Assignment 3 solutions posted after class.
— Practice midterm posted.
— List of topics posted.
— In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.



Last time: Stochastic Gradient Methods

We want to fit a regression model:
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If ‘e’ and ‘r’ are smooth, gradient descent allows huge ‘d’.
When ‘n’ is huge/infinite, we can use stochastic gradient:
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For convergence, o, must go to zero.

Amazing theoretical properties in terms of test error:
— Even for non-IID data, but in practice often doesn’t live up to expectations.

Nevertheless, widely-used because it allows enormous datasets.



The Story So Far...

Supervised Learning Part 1:

— Methods based on counting and distances.

— Training vs. testing, parametric vs. non-parametric, ensemble methods.
— Fundamental trade-off, no free lunch.

Unsupervised Learning Part 1:

— Methods based on counting and distances.

— Clustering and association rules.

Supervised Learning Part 2:

— Methods based on linear models and gradient descent.

— Continuity of predictions, suitability for high-dimensional problems.

— Loss functions, change of basis, regularization, features selection, big problems.
Unsupervised Learning Part 2:

— Methods based on linear models and gradient descent.



Unsupervised Learning Part 2

 Unsupervised learning:

— We only have x, values, and want to do ‘something’ with them.

 Some unsupervised learning tasks:
— Clustering: What types of x, are there?
— Association rules: Which x; occur together?
— Outlier detection: Is this a ‘normal’ x;?
— Data visualization: What does the high-dimensional X look like?
— Ranking: Which are the most important x.?
— Latent-factors: What ‘parts’ are the x, made from?



Motivation: Vector Quantization

 K-means was originally designed for vector quantization:
— Find a set of ‘means’, so that each object is close to mean.
— Compress the data by replacing each object by its mean:
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— You only need to store means, and cluster ‘c;’ for each object.
— But you lose a lot of information unless number of means is large.



Latent-Factor Models

Wélfé ﬂo alion
* Latent-factor models: o dxl
— We don’t call them ‘means’ pu_, we call them factors w.. s kA
— Approximate each object as a linear combination of factors:
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— We still have ‘k’ by ‘d’” matrix ‘W’ of factors/means.
— Instead of cluster ‘c;/, we have ‘k’ by ‘1’ weight vector ‘z” for each ‘I
— K-means: special case where each (z,= 1) for ‘c’ and (z, = 0) zero otherwise.

e Matrix inner factorization notation:
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« Compresses if ‘k’ is much smaller than ‘d’. ok

— Above assumes features have been standardized (otherwise, need bias).
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e Recall the k-means objective function' )
i g 2 (y = (o, )Y
.= “ J: (
— The variables are the means ‘W’ and clusters c..

* Using the latent-factor approximation we obtain:
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— The variables are the factors ‘W’ and low-dimensional ‘features’ Z.
* Minimizing this is called principal component analysis (PCA):

— The factors/means ‘w_ are called ‘principal components’.



PCA Applications

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
— Outlier detection: if PCA gives poor approximation of x;, could be ‘outlier’.
— Basis for linear models: use ‘Z" as features in regression models.
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Component 2 (0.08% variance)

PCA Applications

— Data visualization: disp

French
Spanish
Slovak
German
Beigium
Czech
UK
Hungarian
Polish
Romanian
Norway
Sweden
Russian
CEU

< 4

® O

lay the z, in a scatterplot:

Component 1 (0.21% variance)

— Interpret factors:

Trait Description

Osannios Being curious, original, intellectual, creative, and open to
P new ideas.

1

C . Being organized, systematic, punctual, achievement-

onsclentioysness oriented, and dependable.
" Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

A Being affable, tolerant, sensitive, trusting, kind,
greeableness Rt

Neuroticism Being anxious, irritable, temperamental, and moody.
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Maximizing Variance vs. Minimizing Error

 PCA has been reinvented many times:

PCA was invented in 1901 by Karl Pearson;“] as an analogue of the principal axis theorem in standard deviation of 3 i‘n rc;ughl}r the
(0.878, 0.478) direction and of 1 in th
orthogonal direction. The vectors
shown are the eigenvectors of the
Karhunen—Loéve transform (KLT) in signal processing, the Hotelling transform in multivanate covariance matrix scaled by the squa

mechanics; it was later independently developed (and named) by Harold Hotelling in the
1930s.2 Depending on the field of application, it is also named the discrete Kosambi-

quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular root of the corresponding eigenvalue,
value decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue decomposition and shifted so their tails are at the
(EVD) of XX in linear algebra, factor analysis (for a discussion of the differences between mean

PCA and factor analysis see Ch. 7 of [3]),_ Eckart—Young theorem (Harman, 1960), or Schmidt

—Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction

decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al_, 1988), spectral

decomposition in noise and vibration, and empirical modal analysis in structural dynamics.

* There are many ways to arrive at the same model:
— Classic ‘analysis’ view: PCA maximizes variance in compressed space.
* You pick the ‘w_’ to explain as much variance as possible.

— We take the ‘synthesis’ view: PCA minimizes error of approximation.

* Makes connection to k-means and least squares.
* We can use tricks from linear regression to fix PCA’s many problems.



PCA with 1 Principal Component

 PCA with one principal component (PC) ‘w’:
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* Very similar to a least squares problem, but note that:
— We have no ‘y;, we are trying to predict each vector feature x; from the z.

— Latent feaures ‘z/ are also variables, we are learning the z, too.
(if you know the z,, equivalent to least squares)
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PCA with 1 Principal Component
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PCA with 1 Principal Component
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PCA with 1 Component




PCA with 1 Component

Our PCA objective function with one PC:
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For small problems use closed-form solution:

— First ‘right singular vector’ of X is a solution.
— Equivalently, eigenvector of X"X with largest eigenvalue.

For problems where ‘d’ is large, alternating minimization:
— Update w given the z, then update the z, given w (similar to k-means)
— Convex in w, convex in z,, but not jointly convex.

— But, only stable local minimum is a global minimum.

When ‘n’ is large, recent provably-correct stochastic gradient methods.



PCA with 1 Component

Our PCA objective function with one PC:
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Even with 1 PC, solution is never unique:
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To address this issue, we usually put a constraint on ‘w’:
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For iterative methods, can do this afterwards (then update the z).
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Same solution methods (closed-form is top ‘k’ singular vectors).
With multiple components, even directions are not unique.



Non-Uniqueness of PC Directions

* We still have the scaling problem:
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* But with multiple PCs, we have new problems:
— Factors could be non-orthogonal (components interfere with each other):

* Usual fix to make the PCs orthogonal: w_'w_ =0 for ¢ # C’.

— Label switching: could swap w_and w, (if swap columns c and ¢’ of z,):

e Usual fix is to fit the PCs sequentially. 1 OHMO \\‘ |
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting

20 @ﬂ/ oThar

Arec%/w\ wi | 6)%

“an ﬁfwfm solution.

(Q rrov owC O>

J‘M ﬂmL O’F/%Ozroy\or/
X2 (PCZ IS % vm; a mw/

an (Q%7Z/V)’\0! SO 7(/02/\)

gﬁW 4 7/\0\//1/\@7[/0\/) as /)[l



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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PCA with Singular Value Decomposition

* Under constraints that w_'w_=1 and w_'w_ = 0, use:
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* You can also quickly get compressed version of new data:
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* |If W was not orthogonal, could get Z by least squares.



Application: Face Detection

‘Eigenfaces’ classically used as basis for face detection:
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Summary

Latent-factor models compress data as linear combination of
‘factors’.

Principal component analysis: most common variant based on
squared reconstruction error.

Orthogonal basis is useful for interpretation and identifying of PCs.

Next time: the discovering a hole in the ozone layer.



