CPSC 340: Machine Learning and Data Mining

Kernel Methods Fall 2015

Admin

- Assignment 3 due Friday:
 - Submit as a single PDF file.
- Practice midterm coming this weekend.
- Monday tutorials:
 - Go through practice midterm.
- Midterm next Friday, October 30.
 - In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.

Regression Framework: (Loss) + (Regularizer)

• Framework for regression models:

- Loss function 'g':
 - Squared error (default choice): $(\gamma_{\star} \sqrt{\gamma_{\star}})^{2}$
 - Absolute error (robust to outliers):
 - Smooth approximation is Huber loss.
 - 0-1 loss (classification not convex)
 - Convex approximation is hinge loss):
 - Smooth approximation is logistic loss.
- Regularization function 'r':
 - L2-regularization (default choice):
 - L1-regularization (feature selection):

 $\frac{drgmin}{w \in \mathbb{R}^d} \sum_{i=1}^n g(y_i) \sqrt[w]{x_i} + \frac{1}{2}r(w).$ We've also discussed choosing features xi: - standardization $|y_{\lambda} - w^{T} \chi_{\lambda}|$ - adding a bias $\int L_{Y_{i}} \neq Sign(w^{T}x_{i})$ - polynomial basis $max \{ U_1 \} - y_1 w^T x_1 \}$ - RBFs (consistent) -global vs. local - Feature selection $\frac{1}{2} ||w||^{2}$

2D View of Linear Classifiers

• 2D Visualization of linear regression for classification:

• Linearly separable: a perfect linear classifier exists.

- Consider a linearly-separable dataset.
 - 'Perceptron' algorithm finds *some* classifier with zero error.
 - But are all zero-error classifiers equally good?

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

Support Vector Machine

• For linearly-separable data, max-margin classifier is solution of

$$\begin{array}{l} \arg(h) & \sum_{i=1}^{n} \mathbb{T}[y_{i} \neq \operatorname{sign}(w_{x_{i}})] + \frac{1}{2} ||w||^{2} \\ & \text{(for sufficiently small } \lambda) \end{array}$$

- Maximum margin classifier (SVM) is 0-1 loss with L2-regularization.
- For non-separable data, usually use L2-regularized hinge loss:

$$\frac{\operatorname{argmin}}{\operatorname{weRd}} \sum_{i=1}^{2} \max\{0, 1-y_i, w_i\} + \frac{2}{2} ||w||^2$$

- This is the standard SVM formulation.
 - Can approximate it with L2-regularized logistic regression.

• Non-separable case:

• Non-separable case:

• Non-separable case: $\frac{\operatorname{argmin}}{\operatorname{werk}^{d}} \sum_{i=1}^{d} \max\{0, 1-y_{i}, w^{T}x_{i}\} + \frac{2}{2} ||w||^{2}$ Xiz 7 controls importance of maximizing margin VS. penalizing margin violations. 6 0 0 Margin

• What about data that is not even close to separable?

- What about data that is not even close to separable?
 - It may be separable under change of basis (or almost separable).

- What about data that is not even close to separable?
 - It may be separable under change of basis (or almost separable).

- What about data that is not even close to separable?
 - It may be separable under change of basis (or almost separable).

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials:

$$y_i = w_0 + w_1 x_1 + w_2 x_1^2.$$

- We can fit these models using a change of basis: $\begin{array}{c}
 \chi = \begin{pmatrix} 0.2 \\ -0.5 \\ 1 \\ 4 \\ \end{array} \\
 \begin{array}{c}
 \chi \\ \gamma \\ \gamma \end{array} = \begin{pmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 4 & (4)^2 \\ \end{array}$
- How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

• Approach 1: use polynomial basis for each variable.

 $X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \xrightarrow{7} X_{poly} = \begin{bmatrix} 1 & 0.2 & (0.2)^2 & 0.3 & (0.3)^2 \\ 1 & 1 & (1)^2 & 0.5 & (0.5)^2 \\ 1 & -0.5 & (-0.5)^2 & -0.1 & (-0.1)^2 \end{bmatrix}$

- But this is restrictive: ullet
 - We should allow terms like ' x_1x_2 ' that depend on feature interaction.
 - But number of terms in X_{poly} is huge:
 - Degree-5 polynomial basis has O(d⁵) terms:

 x_{1}^{5} x_{1}^{4} x_{2}^{4} x_{1}^{4} x_{3}^{7} x_{1}^{7} $x_{d_{1}}^{7}$ x_{1}^{3} x_{2}^{7} x_{1}^{3} x_{3}^{7} x_{1}^{7} x_{2}^{7} x_{2}^{7} x_{2}^{7} x_{3}^{7} x_{2}^{7} x_{2}^{7} x_{3}^{7} x_{3}^{7} x_{2}^{7} x_{3}^{7} x_{3}^{7}

• If 'n' is not too big, we can do this efficiently using the kernel trick.

Equivalent Form of Ridge Regression

X:nxd

x TX: dxl

- Recall L2-regularized least squares model:
- We showed that the solution is given by:

$$W = (X^{T}X + \gamma T)^{-1}X^{T}y$$

• An equivalent way to write solution is: $w = \chi^{T} (\chi \chi^{T} + \lambda T)^{T} \chi \chi^{T} \cdot h \cdot h$ $w = \chi^{T} (\chi \chi^{T} + \lambda T)^{T} \chi \chi^{T} \cdot h \cdot h$

Key observation behind kernel trick:

- If we have K and \widehat{K} , we don't need the features.

Gram Matrix

- 'K' contains the inner products between all training examples.
- ' \widehat{K} contains the inner products between training and test examples. – If we have some way to compute $x_i^T x_i$, we don't need x_i and x_i .

Polynomial Kernel

• Consider two examples x_i and x_i for a 2-dimensional dataset:

$$X_{j} = (X_{1j}, X_{j2})$$
 $X_{j} = (X_{j1}, X_{j2})$

• And consider a particular degree-2 basis:

$$(X_{poly})_{j} = (x_{j1}^{2}, \sqrt{2} x_{j1} x_{j2}, x_{j2}^{2}) \quad (x_{poly})_{j} = (x_{j1}^{2}, \sqrt{2} x_{j1} x_{j2}, x_{j2}^{2})$$

• We can compute inner product without forming $(x_{poly})_i$ and $(x_{poly})_j$: $(\chi_{poly})_i^{\top}(x_{poly})_j = (\chi_{j,1}^2 \sqrt{2} \chi_{j,1} \chi_{j,2} \chi_{j,2}^2)^{\intercal}(\chi_{j,1}^2 \sqrt{2} \chi_{j,1} \chi_{j,2} \chi_{j,2}^2)^{\intercal}$ $= \chi_{j,1}^2 \chi_{j,1}^2 + \chi_{j,1} \chi_{j,2} \chi_{j,2} \chi_{j,2}^2 \chi_{j,2}^2$ $= (\chi_{j,1} \chi_{j,1} + \chi_{j,2} \chi_{j,2})^2$ $= (\chi_{j,1}^{\top} \chi_{j,1})^2$

Polynomial Kernel with Higher Degrees

• If we want all degree-4 monomials, raise to 4th power:

• For lower-order terms like x_{i1} or bias, add constant inside power: $(|+x_{i}^{T}x_{j})^{2} = |+x_{i}^{T}x_{j} + (x_{i}^{T}x_{j})^{2}$ $= (|, x_{i1}, x_{i2}, x_{i1}^{2}, \sqrt{2} + x_{i1}^{T}x_{i2}, x_{i2}^{2})^{T} (|, x_{j1}, x_{j2}, x_{j1}^{2}, \sqrt{2} + x_{j1}^{T}x_{j2}, x_{j2}^{2})$ $= (x_{pdy})^{T} (x_{poly})^{T}$ $where (x_{poly})^{T} = (|, x_{i1}, x_{i2}, x_{i1}^{2}, \sqrt{2} + x_{i1}^{T}x_{i2}, x_{i2}^{T})^{T}$

 $\left(\begin{array}{c} \left(\begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array}\right)^{\mathsf{Y}} = \left(\begin{array}{c} \left(\mathbf{x} \\ \mathbf{y} \end{array}\right)^{\mathsf{T}} \left(\begin{array}{c} \left(\mathbf{x} \\ \mathbf{y} \end{array}\right)^{\mathsf{T}} \right)^{\mathsf{T}} \left(\begin{array}{c} \left(\mathbf{x} \\ \mathbf{y} \end{array}\right)^{\mathsf{T}} \right)^{\mathsf{T}}$

• These formula still work for any dimension of the x_i

Kernel Trick

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \widehat{K} :

– Make predictions using:

- Cost is O(n²d + n³), even though number of features is O(d^p).
- Many algorithms have kernelized versions: SVMs, logistic, KNN, etc.

Kernel Trick

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret K(i,j) as a similarity measure between objects.
 - We don't need x_i and x_i if we can compute 'similarity' between objects:
 - 'String' kernels, 'graph' kernels, 'image' kernels, etc.
- We call a kernel 'valid' if there exists feature-space representation.
 - This might be very high-dimensional or even infinite-dimensional.
 - Characterizing valid kernels theoretically: "Mercer's theorem".
 - In practice, there are a few tricks to memorize.
- Most common non-linear kernels:
 - Polynomial kernel: $(\beta + \chi^{T} z)^{p}$
 - RBF kernel:

$$e_{XP}\left(-\frac{||_{X}-z||^{2}}{2\sigma^{2}}\right)$$
 "universal Kernel"

Motivation: Finding Gold

- Kernel methods first came from mining engineering ('Kriging'):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a regression model (typically RBF kernel).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Summary

- Loss plus regularizer describes a huge number of ML models.
- Support vector machines maximize margin to nearest data points.
- High-dimensional bases allows us to separate non-separable data.
- Kernel trick allows us to use high-dimensional bases efficiently.
- Kernels let us use similarity between objects, rather than features.
- Next time:
 - Fitting linear models with huge number of training examples.
 - Predicting the future part 2.

