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Admin

• Assignment 3 due Friday:

– Submit as a single PDF file.

• Practice midterm coming this weekend.

• Monday tutorials:

– Go through practice midterm.

• Midterm next Friday, October 30.

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided. 

http://www.october212015.com/



Regression Framework: (Loss) + (Regularizer)

• Framework for regression models:

• Loss function ‘g’:
– Squared error (default choice):
– Absolute error (robust to outliers):

• Smooth approximation is Huber loss.

– 0-1 loss (classification – not convex)
• Convex approximation is hinge loss):
• Smooth approximation is logistic loss.

• Regularization function ‘r’:
– L2-regularization (default choice):
– L1-regularization (feature selection):



2D View of Linear Classifiers

• 2D Visualization of linear regression for classification:

• Linearly separable: a perfect linear classifier exists.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– ‘Perceptron’ algorithm finds some classifier with zero error.

– But are all zero-error classifiers equally good?
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– Maximum-margin classifier: choose the farthest from both classes.
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Support Vector Machine

• For linearly-separable data, max-margin classifier is solution of

(for sufficiently small λ)

• Maximum margin classifier (SVM) is 0-1 loss with L2-regularization.

• For non-separable data, usually use L2-regularized hinge loss:

• This is the standard SVM formulation.
– Can approximate it with L2-regularized logistic regression.



Support Vector Machines for Non-Separable

• Non-separable case:
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Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
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Multi-Dimensional Polynomial Basis

• Recall fitting polynomials:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

• Approach 1: use polynomial basis for each variable.

• But this is restrictive:

– We should allow terms like ‘x1x2’ that depend on feature interaction.

– But number of terms in Xpoly is huge:

• Degree-5 polynomial basis has O(d5) terms:

• If ‘n’ is not too big, we can do this efficiently using the kernel trick.



Equivalent Form of Ridge Regression

• Recall L2-regularized least squares model:

• We showed that the solution is given by:

• An equivalent way to write solution is:

• Computing w with second formula is faster if n << d:
– since XXT is ‘n’ by ‘n’ while XTX is ‘d’ by ‘d’.



Predictions using Equivalent Form

• Given test data  𝑋, predict  𝑦 using:

• Key observation behind kernel trick:

– If we have K and  𝐾,  we don’t need the features.



Gram Matrix

• The Gram matrix ‘K’ is defined by:

• ‘K’ contains the inner products between all training examples.

• ‘ 𝐾 contains the inner products between training and test examples.
– If we have some way to compute xi

Txj, we don’t need xi and xj.



Polynomial Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• And consider a particular degree-2 basis:

• We can compute inner product without forming (xpoly)i and (xpoly)j:



Polynomial Kernel with Higher Degrees

• If we want all degree-4 monomials, raise to 4th power:

• For lower-order terms like xi1 or bias, add constant inside power:

• These formula still work for any dimension of the xi



Kernel Trick

• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and  𝐾:

– Make predictions using:

• Cost is O(n2d + n3), even though number of features is O(dp).

• Many algorithms have kernelized versions: SVMs, logistic, KNN, etc.



Kernel Trick

• Kernel trick lets us fit regression models without explicit features:
– We can interpret K(i,j) as a similarity measure between objects.

– We don’t need xi and xj if we can compute ‘similarity’ between objects:
• ‘String’ kernels, ‘graph’ kernels, ‘image’ kernels, etc.

• We call a kernel ‘valid’ if there exists feature-space representation.
– This might be very high-dimensional or even infinite-dimensional.

– Characterizing valid kernels theoretically: “Mercer’s theorem”.

– In practice, there are a few tricks to memorize.

• Most common non-linear kernels:
– Polynomial kernel:

– RBF kernel:



Motivation: Finding Gold

• Kernel methods first came from mining engineering (‘Kriging’):

– Mining company wants to find gold.

– Drill holes, measure gold content.

– Build a regression model (typically RBF kernel).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php



Summary

• Loss plus regularizer describes a huge number of ML models.

• Support vector machines maximize margin to nearest data points.

• High-dimensional bases allows us to separate non-separable data.

• Kernel trick allows us to use high-dimensional bases efficiently.

• Kernels let us use similarity between objects, rather than features.

• Next time:

– Fitting linear models with huge number of training examples.

– Predicting the future part 2.

http://www.imdb.com/title/tt0096874/
http://www.october212015.com/


