CPSC 340:
Machine Learning and Data Mining

Kernel Methods
Fall 2015



Admin

Assignment 3 due Friday:
— Submit as a single PDF file.

Practice midterm coming this weekend.
Monday tutorials:

— Go through practice midterm.
Midterm next Friday, October 30.

— In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.



Regression Framework: (Loss) + (Regularizer)

* Framework for regression models:
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* Loss function ‘g’:
— Squared error (default choice): (y —w'x, 72

— Absolute error (robust to outliers): | = _ w T /
* Smooth approximation is Huber loss. yﬁ
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— 0-1 loss (classification — not convex) 7 [\/ 7 g. W X>] bqs
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* Convex approximation is hinge loss): v
* Smooth approximation is logistic loss. Max i U }/ “ — @ B ? (oms 571“”‘7[ )
* Regularization function ‘r’ 1 _ alobal ys local
— L2-regularization (default choice): \w H ’
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— L1-regularization (feature selection): / v/ ] II Feuture selec



2D View of Linear Classifiers

e 2D Visualization of linear regression for classification:
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* Linearly separable: a perfect linear classifier exists.



Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— ‘Perceptron’ algorithm finds some classifier with zero error.
— But are all zero-error classifiers equally good?




Maximum-Margin Classifi

* Consider a linearly-separable dataset.

er

— Maximum-margin classifier: choose the farthest from both classes.

[

(\/—\\[Nﬂ&ﬁ C’/\ES')X\NK \/\/(JH\ M

l/\/\mfg]ll\/\*

ofL classid e with
smal Mqrq’m,



Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Support Vector Machine

For linearly-separable data, max-margin classifier is solution of

N
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(for sufficiently small A)
Maximum margin classifier (SVM) is 0-1 loss with L2-regularization.

For non-separable data, usually use L2-regularized hinge loss:
argm

R Zj max 10, - Wﬂxg + 27: I

N
This is the standard SVM formulation.
— Can approximate it with L2-regularized logistic regression.



Support Vector Machines for Non-Separable

* Non-separable case:




Support Vector Machines for Non-Separable

* Non-separable case:




Support Vector Machines for Non-Separable

* Non-separable case:
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?




Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or almost separable).
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or almost separable).
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or almost separable).
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Multi-Dimensional Polynomial Basis

e Recall fitting polynomials:
1
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* We can fit these models using a change of basis:
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e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

 Approach 1: use polynomial basis for each variable.
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* But thisis restrictive:
— We should allow terms like ‘x,x,” that depend on feature interaction.

— But number of terms in X, is huge:
* Degree-5 polynomial basis has O(d>) terms: R
5 3 Y 22 3.2 3 7 S L(>< . 5
x\ ) X\ XQ)XI XB) YXA X[ X27X[ Xé) X Xi7"’“7><27>(2 3>—/”r“'wu ‘J

* If ‘n’ is not too big, we can do this eff|C|entIy using the kernel trick.



Equivalent Form of Ridge Regression

Recall L2-regularized least squares model: X n x (é
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Computing w with second formula is faster if n << d:
— since XX"is ‘n’ by ‘n” while X"™X is ‘d’ by ‘d".
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Predictions using Equivalent Form foot vt

e Given test data X, predict y using: %Y
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where K= XXT and K =XX

* Key observation behind kernel trick:

— If we have K and K, we don’t need the features.
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Gram Matrix

* The Gram matrix ‘K’ is defined by:
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* ‘K’ contains the inner products between all training examples.

‘K contains the inner products between training and test examples.
— If we have some way to compute x;'x;, we don’t need x; and x;.



Polynomial Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
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* And consider a particular degree-2 basis:
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Polynomial Kernel with Higher Degrees

* |f we want all degree-4 monomials, raise to 4" power:
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* For lower-order terms like X;p OF bias, add constant inside power:
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* These formula still work for any dimension of the x;



Kernel Trick

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K:
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— Make predictions using: Wﬂw
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* Costis O(n%d + n3), even though number of features is O(dP).
* Many algorithms have kernelized versions: SVMs, logistic, KNN, etc.



Kernel Trick

* Kernel trick lets us fit regression models without explicit features:
— We can interpret K(i,j) as a similarity measure between objects.
— We don’t need x; and x; if we can compute ‘similarity’ between objects:

* ‘String’ kernels, ‘graph’ kernels, ‘image’ kernels, etc.

 We call a kernel ‘valid’ if there exists feature-space representation.
— This might be very high-dimensional or even infinite-dimensional.
— Characterizing valid kernels theoretically: “Mercer’s theorem”.
— In practice, there are a few tricks to memorize.

e Most common non-linear kernels:
— Polynomial kernel:  ( f, + )
— RBF kernel: 9]
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Motivation: Finding Gold

* Kernel methods first came from mining engineering (‘Kriging’):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a regression model (typically RBF kernel).
Input Process Qutput




Summary

Loss plus regularizer describes a huge number of ML models.

Support vector machines maximize margin to nearest data points.
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Next time:
— Fitting linear models with huge number of trammg examples
— Predicting the future part 2. A R

High-dimensional bases allows us to separate non-separable data.

trick allows us to use high-dimensional bases efficiently.
s let us use similarity between objects, rather than features.
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