CPSC 340: Machine Learning and Data Mining

Feature Selection Fall 2015

Norms in 1-Dimension

• We can view absolute value, |x|, as 'size' or 'length' of a number:

- It satisfies three intuitive properties of 'length':
 - 1. Only '0' has a 'length' of zero.
 - 2. If you multiply 'x' by constant ' α ', length gets multiplied by $|\alpha|$.
 - 3. Length of 'x+y' is not more than length of 'x' plus length of 'y'.
 "Triangle inequality"

Norms in 2-Dimensions

- In 1-dimension, only the absolute value satisfies the 3 properties.
- In 2-dimensions, there is no unique function satisfying them.
- We call any function satisfying them a 'norm':
 - These are measures of 'length' in 2-dimensions.
- Three most common examples:

Norms in d-Dimensions

• These norms also satisfy the 3 properties in d-dimensions:

$$L_{2}: ||r||_{2} = \sqrt{\frac{1}{2}} r_{1}^{2}$$

$$L_{1}: ||r||_{1} = \frac{1}{2} |r_{1}|$$

$$L_{1}: ||r||_{1} = \max_{j=1}^{2} |r_{j}|$$

$$L_{j}: ||r||_{p} = \max_{j=1}^{2} \sum_{i=1}^{2} |r_{i}|_{j}^{2}$$

If 'r' is a vector containing residual (y; - u'x;) of a linear regression model; norm of residual measures 'size' of error in some way! L'all errors are equal L: bigger errors are more important. Ly only biggest error is important.

Summary of Last Lecture

- 1. Error function (L2, L1, Huber) affects how errors are 'weighted'.
- 2. L1 and L ∞ error functions are non-differentiable:
 - Finding 'w' minimizing these errors is harder.
- 3. We can approximate these with differentiable functions:
 - L1 can be approximated with Huber.
 - L^{∞} can be approximated with log-sum-exp.
- 4. Gradient descent finds local minimum of differentiable function.
- 5. For convex functions, any local minimum is a global minimum.
 - Non-convex minimization is very hard, but some people do it anyways.
 - Starting from different initializations can help!

Motivation: Allergy Testing with Regression

• Recall the food allergy example:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1

Motivation: Allergy Testing with Regression

• Instead of sick/not-sick, consider measuring immunoglobin levels:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••	lgE
0	0.7	0	0.3	0	0		700
0.3	0.7	0	0.6	0	0.01		740
0	0	0	0.8	0	0		50
0.3	0.7	1.2	0	0.10	0.01		950

- Now formulated as a regression problem.
- Instead of prediction, want to find out which foods cause high IgE.
 - 'Feature selection' (similar to finding association rules).
 - Similar to choosing degree in polynomial basis, but there is no ordering.

Feature Selection

- General feature selection problem:
 - Given our usual 'X' and 'y':

teaturp !!!

- We think some features/columns of 'X' are irrelevant to predict 'y'.
- Output could be:
 - Set of 'relevant' features. (milk', 'or anges', 'ice cream')
 - A model that uses the 'best' set of features.
- One of most important problems in ML/statistics, but very very messy.
 - We focus on linear regression, but ideas apply for classification/non-linear.

Choose the Largest Regression Weights?

- Simple/common approach to feature selection:
 - 1. Fit least squares weights 'w' using all the features.
 - 2. Choose the features 'j' with biggest weights, $|w_i|$.
- Intuitive: big $|w_j|$ means ' x_{ij} ' has big affect on ' y_i '.
 - E.g., we expect ' w_j ' for 'milk' feature to be high: high milk => high IgE.
- Only makes sense if feature have independent effects:
 - Otherwise, systematically misses relevant variables.
- Example:
 - You are allergic to 'lactose' and to a protein in 'milk'.
 - But you only ever see 'lactose' and 'milk' together.
 - Linear regression could give big weight to 'milk' and smaller weight to 'lactose'.
 - Or could be reversed, or both could be medium-sized.

Choose the Largest Correlations?

- Another simple/common approach to feature selection:
 - For each feature 'j', compute similarity between all ' x_{ii} ' and ' y_i '.
 - E.g., correlation, distance, mutual information, etc.
 - Return top 'k' features, or all features above some threshold.
- Not sensitive to milk-lactose issue:
 - Uses independent statistic on each variable.
 - Finds that 'milk' and 'lactose' are relevant.
- Sensitive to the Taco Tuesday issue:
 - You could find that 'Tuesday' is very correlated with IgE level.
 - But only because you go to Taco Tuesdays:
 - If you knew the value of 'Taco', the variable 'Tuesday' is irrelevant.
- This approach systematically includes irrelevant variables.

Philosophical Digression

- Is 'Tuesday' actually a relevant variable?
 - If you don't know the value of 'taco', *it is relevant* for prediction.
 - So 'relevance' is relative to what other information is available.
- A second issue with this example is causality:
 - 'Tuesday' does not directly cause an increase in IgE, so it is not relevant.
 - But if you don't have an 'intervention' like 'forced not to go to taco Tuesdays', you may never be able to determine this.
 - Similarly, 'histamine' is relevant for predicting IgE, but IgE causes histamine.
- If the effect size is very small, is the variable relevant?
 - Presumably, any variable could give some information about y_i.
 - We are probably *only interested in non-trivial* effect sizes.

Common Approaches to Feature Selection

- 3 main approaches to feature selection:
 - 1. Hypothesis testing.
 - 2. Search and score.
 - 3. L1-Regularization.
- None is ideal, but good to know advantages/disadvantages.

- 1. Hypothesis testing or 'constraint-based' approaches:
 - Fixes 'largest correlation' method to address Taco Tuesday.
 - Assumes we have test of conditional dependence:
 - Usually, 'partial' correlation or 'conditional' mutual information.

Hypothesis Testing in Action

AR. q., high cosine similarity

- Testing whether 'taco' is relevant:
 - Test if 'taco' and 'IgE' are dependent:
 - Yes, they are.
 - Next test if 'taco' and 'lgE' are dependent, given 'Tuesday':
 - Yes, they still are: return 'relevant'.
- Testing whether 'Tuesday' is relevant:
 - Test if 'Tuesday' and 'IgE' are dependent:
 - Yes, they are.
 - Next test if 'Tuesday' and IgE' are dependent, given 'taco':
 - No, they are not: return 'not relevant'.

Feature Selection Approach 1: Hypothesis Testing

- Constraint-based determination of whether 'j' is relevant:
 - 1. Start with an empty 'conditioning set' 'S'.
 - 2. Test whether ' x_{ij} ' and ' y_i ' are dependent.
 - If not, return 'not relevant'.
 - 3. Choose some variable and add it to 'S'.
 - 4. Test whether ' x_{ii} ' and 'yi' are conditionally dependent given 'S'.
 - If not, return 'not relevant'.
 - Otherwise, return to step 3 until we have added all variables to 'S'.
 - 5. If all variables are in 'S', return 'relevant'.

Hypothesis Testing Issues

- Advantages:
 - Deals with Taco Tuesday issue.
 - Algorithm can *explain* decisions.
 - Allows fancy non-parametric measures of dependence.
- Disadvantage:
 - Usual warning about testing multiple hypotheses.
 - You could be 'dependent' but with trivial effect size.
 - Does not deal with milk-lactose issue:
 - Could say they are both irrelevant.
- milk independent of Igt given lactose I actose independent of Igt given milk. • 'Faithfulness' assumption: pretend things like this can't happen.
 - Hard to determine optimal order that you add variables to 'S'.

Feature Selection Approach 2: Search and Score

- Two components behind search and score methods:
 - Score: function that says how 'good' a set of variables are.
 - Search: find set of variables with a high score.
- Usual score functions:
 - 1. Validation/cross-validation error:
 - Good if your main goal is prediction.
- then are so many combinations then are so many combinations you will find Some combination where an inrelevant variable happens to improve to improve • Prone to false positives: tends to add irrelevant variables due to overfitting.
 - 2. L0 "norm":
 - Balance training error against number of non-zero features. •

LO-Norm

Why do we care about (w; == D)!

 $Y_{i} = u_{i} x_{i} + w_{i} x_{i} + \cdots$

if(w, z=0)

 $S_{O}(w_{i}==0)$ is

removing feature ","

equivalent to

1gnorp

- The LO "norm" is the number of non-zero values.
 Not actually a norm: violates 2 of 3 properties.
- L0-norm regularization for features selection:

- Balances between training error and number of features.
 - Different values of λ give the common feature selection scores:
 - Akaike information criterion (AIC).
 - Bayesian information criterion (BIC).
 - Both recover correct features under strong assumptions.

Search and Score Issues

- Advantages:
 - Deals with Taco Tuesday issue.
 - Takes into account size of the effect.
- Disadvantages:
 - Difficult to define 'correct' score:
 - Cross-validation often selects too many.
 - L0-norm selects too few/many depending on λ .
 - Only partially deals with milk-lactose issue:
 - L0-norm will only pick one of them.
 - Cross-validation could pick one or both.
 - Under most scores, it's hard to find optimal features.

Practical Search Methods

- Usual search procedures:
 - 1. Exhaustive search:
 - Returns optimal solution, but only feasible if 'd' is very small.
 - 2. Forward selection:
 - Start with no features, add the one that increase the score the most, repeat.
 - Sub-optimal, but often works well.
 - 3. Backward selection:
 - Start with all features, remove the one that decreases the score the most, repeat.
 - 4. Stagewise: combine forward/backward selection.

Feature Selection Approach 3: L1-Regularization (LASSO)

• Consider regularizing by the L1-norm:

- Like L2-norm, it's convex and has many magical properties.
- Like LO-norm, it encourages elements of 'w' to be exactly zero.

- We call a vector with many elements set to 0 a sparse vector.
- We can simultaneously regularized and select features.
 And it's very fast, too.

Sparsity and Least Squares

• Consider 1D least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i - w x_i)^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola):

- This variable does not look relevant (minimum is close to 0).
 - If it's really irrelevant, minimum will move to 0 as 'n' goes to infinity.
 - But for finite 'n', minimum of parabola is unlikely to be exactly zero.

Sparsity and LO-Regularization

• Consider 1D LO-regularized least squares objective: $f(w) = \begin{cases} \frac{1}{2} \frac{2}{2} (y_i - wx_i)^2 & \text{if } w = 0 \\ \frac{1}{2} \frac{2}{2} (y_i - wx_i)^2 + \frac{1}{2} \text{if } w = 0 \\ \frac{1}{2} \frac{2}{2} (y_i - wx_i)^2 + \frac{1}{2} \text{if } w = 0 \end{cases}$

• This is a convex 1D quadratic function with a discontinuity at 0:

- L0-regularization minimum is often exactly at the 'discontinuity' at 0:
 - It sets the feature to exactly 0, removing it from the model.
 - But this is not a convex function.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

minimum

This is a convex 1D quadratic function of 'w' (i.e., a parabola):

- L2-regularization moves it a bit closer to zero.
 - But there is nothing special about being 'exactly' zero.
 - L2-regularization will still tend to select this feature.

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective: $f(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2 + \frac{1}{2} |w| = \sum_{i=1}^{n} (y_i - wx_i)^2 + \frac{1}{2} |w$

• This is a convex piecwise-quadratic function of 'w' with 'kink' at 0:

minimum

- L1-regularization minimum is often exactly at the 'kink' at 0:
 - It sets the feature to exactly 0, removing it from the model.
 - Big λ means kink is 'steep'. Small λ makes 0 unlikely to be minimum.

L2-Regularization vs. L1-Regularization

- L2-Regularization:
 - Insensitive to changes in data.
 - Significantly-decreased variance:
 - Lower test error.
 - Closed-form solution.
 - Solution is unique.
 - All 'w' tend to be non-zero.
 - Can learn with *linear* number of irrelevant features.
 - E.g., O(d) relevant features.

- L1-Regularization:
 - Insensitive to changes in data.
 - Significantly-decreased variance:
 - Lower test error.
 - Requires iterative solver.
 - Solution is not unique.
 - Many 'w' tend to be zero.
 - Can learn with **exponential** number of irrelevant features.
 - E.g., O(log(d)) relevant features.

L1-Regularization Issues

- Advantages:
 - Deals with Taco Tuesday issue.
 - Takes into account effect size.
 - Convex (fast with specialized methods).
 - Performs regularization at the same time.
- Disadvantages:
 - Tends to give false positives (selects too many variables).
 - Only partially deals with milk-lactose issue:
 - Could pick one or both.

Extensions of L1-Regularization

- "Elastic net":
 - Use L2-regularization *and* L1-regularization:
 - Nice properties of L1-regularization plus:
 - Solution is unique.
 - Addresses milk-lactose issue (selects both).
- "Bolasso":
 - Run L1-regularization on boostrap samples.
 - Take features that are non-zero in all samples.
 - Much less sensitive to false positives.
- There are *many* non-convex regularizers:
 - Less prone to false positives.
 - But computing global minimum is hard.

Summary

- Norms are a way to measure 'size' or 'length' in higher dimensions.
- Feature selection is task of choosing the relevant features.
- Obvious approaches have systematic problems.
- Hypothesis testing: find set 'S' that makes yi and xij independent.
- Search and score: find features that optimize some score.
- L1-regularization: simultaneously regularize and select features.

• Next time:

- Finding 'important' e-mails, and beating naïve Bayes on spam filtering.