CPSC 340: Machine Learning and Data Mining

Regularization Fall 2015

Admin

• No tutorials/class Monday (holiday).

Radial Basis Functions

- Alternative to polynomial bases are radial basis functions (RBFs):
 - Basis functions that depend on distances to training points.
 - A non-parametric basis.
- Most common example is Gaussian RBF:

$$k(x_{i}, x_{j}) = \frac{1}{902in} exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{20^{2}}\right)$$

- $RBF: \begin{cases} k(x_{1,7}x_{1}) & k(x_{1,7}x_{2}) & \cdots & k(x_{1,7}x_{n}) \\ k(x_{2,7}x_{1}) & k(x_{2,7}x_{2}) & \cdots & -k(x_{2,7}x_{n}) \\ \vdots & \vdots & \vdots \\ k(x_{n,7}x_{1}) & k(x_{n,7}x_{2}) & \cdots & k(x_{n,7}x_{n}) \end{cases}$ • Variance σ^2 controls have much nearby vs. far points contribute. Affects fundamental trade-off.
- There are universal consistency results with these functions: - In terms of bias-variance, achieves irreducible error as 'n' goes to infinity.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

https://overthehillsports.wordpress.com/tag/hicham-el-guerroui/le

Predicting 100m times 500 years in the future?

Male 100 m Sprint Prediction

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif

Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.git in the terms with the http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/

Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.
- Fundamental theorem of ML:
 - If training same error, pick model less likely to overfit.
 - Formal version of Occam's problem-solving principle.
 - Also suggests we should select linear model.
- No free lunch theorem:
 - There *exists possible datasets* where you should select the green model.

Let's Collect more data. 6 \bigcirc lfirst available present. Emp mensurement

No Free Lunch, Consistency, and the Future New data shows that green model is not perfort, But, with universally consistent estimator, we can use more data to get closer to

Application: Climate Models

- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says 'yes'.

Will Earth continue to warm over next 100 years? (Really NFL zone)
 We should be more skeptical about models that predict future events.

Application: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *different* ways, we expect the test error to be lower, so this gives more confidence:

- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- If all near-future predictions agree, they are likely to be accurate.
- As we go further in the future, variance of average will be higher.

Regularization

 $\begin{array}{c} \operatorname{argmin} \quad 1 \quad \stackrel{\frown}{\underset{i=1}{\sum}} \left(\begin{array}{c} y_i & -w^T x_i \end{array} \right)^2 + \frac{1}{2} \begin{array}{c} z \\ z \end{array} \right)^2 \\ w \in \mathbb{R}^d \quad 2 \end{array}$

• Ridge regression is a very common variation on least squares:

- The extra term is called L2-regularization:
 - Objective balances getting low error vs. having small slope 'w'.
 - E.g., you allow a small increase in error if it makes slope 'w' much smaller. "

- Regularization parameter $\lambda > 0$ controls level of regularization:
 - High λ makes L2-norm more important compared to than data.
 - Theory says choices should be in the range O(1) to $O(n^{-1/2})$.
 - In practice, set by validation set or cross-validation.

Why use L2-Regularization?

- It's a weird thing to do, but L2-regularization is magic.
- 6 reasons to use L2-regularization:
 - 1. Does not require X'X to be invertible.
 - 2. Solution 'w' is unique.

how low can we

- 3. Solution 'w' is less sensitive to changes in X or y (like ensemble methods)
- 4. Makes iterative (large-scale) methods for computing 'w' converge faster.
- 5. Significant decrease in variance, and often only small increase in bias.
 - This means you typically have lower test error.
- 6. Stein's paradox: if $d \ge 3$, 'shrinking' estimate moves us closer to 'true' w.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.
 - 3. Move misses towards '0', by small amount proportional to distances.
- On average, darts will be closer to center.

Ridge Regression Calculation
Objective:
$$f(w) = \frac{1}{2}(y - \chi_w)^T(y - \chi_w) + \frac{1}{2}w^Tw.$$

Gradient: $\nabla F(w) = \chi^T\chi_w - \chi^Ty + \lambda w$
Setting to zero: $\chi^T\chi_w + \lambda w = \chi^T\gamma_2$ or
 $(\chi^T\chi + \lambda I)w = \chi^T\gamma.$
Pre-multiply by $(\chi^T\chi + \lambda I)^T = \chi^T\gamma.$
 $W = (\chi^T\chi + \lambda I)^T \chi^T\gamma.$

• Consider least squares problem with outliers:

This is probably what we want. XXXXXX

A this is what least Squares will actually do!

• Least squares is very sensitive to outliers.

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence 'w' much more than other points.

Outliers (large error) influence 'w' much more than other points. • - Good if outlier means 'plane crashes', bad if it means 'data entry error'.

Robust Regression

- Robust regression objectives put less focus on far-away points.
- For example, use absolute error:

$$\frac{\chi_{\text{gmin}}}{\chi_{\text{K}}} = \frac{\chi_{\text{M}}}{\chi_{\text{K}}} = \frac{\chi_{\text{M}}}{\chi_{\text{M}}}$$

- Now decreasing 'small' and 'large' errors is equally important.
- Norms are a nice way to write least squares vs. least absolute error:

Define 'residual' vector 'r'
with elements
$$r_i = (y_i - w^T x_i)$$
.
 $\frac{1}{2} (y_i - w^T x_i)^2 = \frac{1}{2} r_i^2$
 $= r^T r$
 $= 1|r||_i^2 = r^T r$
 $residuals$
 $Least absolute errori
 $\frac{1}{2} |y_i - w^T x_i| = \frac{1}{2} |r_i|$
 $= 1|r||_i^2$$

Summary

- Predicting future is hard, ensemble predictions are more reliable.
- Regularization improves test error because it is magic.
- Outliers can cause least squares to perform poorly.
- Robust regression using L1-norm is less sensitive.

- Next time:
 - How to fine the L1-norm solution, and what if features are irrelevant?