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Admin

• Re-download a3.pdf (Q1.3 has changed).

• Re-download a3.zip (newsgroups.mat was updated).

• Should we have office hours tomorrow?

• Midterm moved to October 30.



Problem: y-intercept
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Incorporating a Bias Variable

• The simplest way to add the y-intercept is changing X:

• Column of ‘1’ values allows us to write as basic linear model:



Gradient Vector

• The gradient vector has the partial derivatives as elements:

• Element ‘j’ gives the slope if we move along dimension ‘j’.

• Gradient direction points in local direction of steepest increase.

• Negative gradient points in local direction of steepest decrease.

• If 𝛻 f(w) = 0, it means that the function is flat (stationary point).
https://www.khanacademy.org/math/multivariable-calculus/partial_derivatives_topic/gradient/v/gradient-1



Householder Notation
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Least Squares (Matrix Notation)

• To derive the d-dimensional least solution, need matrix notation.

• First let’s define the usual suspects:



Least Squares (Matrix Notation)

• Let’s define the ‘residual’ vector:

• From the definition of matrix-vector product, we have:

• So we can write least squares as:



Least Squares (Matrix Notation)



Least Squares Solution (Normal Equations)



Least Squares Issues

• Issues with least squares model:

– XTX might not be invertible.

– It is sensitive to outliers.

– It always uses all features.

– Data can might so big we can’t store XTX.

– It might predict outside known range of yi values.

– It assumes a linear relationship between xi and yi.



Example: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

• Gives linear model in each region.

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

• Gives linear model in each region.

– Generative models: fit multivariate continuous distribution to (xi,yi).

• E.g., multivariate Gaussian distribution (this choice still gives a linear model).

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

• Gives linear model in each region.

– Generative models: fit multivariate continuous distribution to (xi,yi).

• E.g., multivariate Gaussian distribution (this choice still gives a linear model).

– Non-parametric models: 

• Take mean yi value among k-nearest neighbours.

• Variation on KNN: weight yi values by distance.
(Closest points get highest weight.)

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

• Gives linear model in each region.

– Generative models: fit multivariate continuous distribution to (xi,yi).

• E.g., multivariate Gaussian distribution (this choice still gives a linear model).

– Non-parametric models: 

• Take mean yi value among k-nearest neighbours.

• Variation on KNN: weight yi values by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

• Gives linear model in each region.

– Generative models: fit multivariate continuous distribution to (xi,yi).

• E.g., multivariate Gaussian distribution (this choice still gives a linear model).

– Non-parametric models: 

• Take mean yi value among k-nearest neighbours.

• Variation on KNN: weight yi values by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for given x, fit least squares with errors weighted by 
distance from xi to x. (Better behaviour than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Change of Basis

• What if instead of a linear function, we want a quadratic function?

• We can do this by changing X (change of basis):

• Now fit least squares with this matrix:

• It’s a linear function of w, but a quadratic function of x.



Change of Basis



General Polynomial Basis

• We can have a polynomial of degree of ‘d’ by using a basis:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials.



General Polynomial Basis



Degree of Polynomial and Fundamental Trade-Off

• As degree increases:

– Training error goes down.

– Training error becomes worse 
approximation of test error.

• Usual approach to selecting degree:

– Validation or cross-validation.

http://zoonek2.free.fr/UNIX/48_R/11.html



Bias-Variance Decomposition

• Explicit form of fundamental trade-off for test set squared error:

• Bias: how closely expected model approximates f(x) (part 1).

• Variance: how sensitive model is to the training set (part 2).

• Irreducible error σ2: randomness in yi that no method can predict.



Summary

• Normal equations give solution to linear least squares problem.

• Tree/generative/non-parametric methods exist for regression.

• Change of basis allows linear models to model non-linear data:

– Discussed polynomial and radial basis functions.

• Bias-variance trade-off is example of fundamental trade-off.

• Next time:

– Predicting the future, and fixing more problems with least squares.


