CPSC 340: Machine Learning and Data Mining

Basis and Regularization Fall 2015

Admin

- Re-download a3.pdf (Q1.3 has changed).
- Re-download a3.zip (newsgroups.mat was updated).
- Should we have office hours tomorrow?
- Midterm moved to October 30.

Problem: y-intercept

Problem: y-intercept

Problem: y-intercept

Incorporating a Bias Variable

• The simplest way to add the y-intercept is changing X:

$$X = \begin{pmatrix} 0, | \\ 0, 2 \\ 0, 5 \end{pmatrix} \longrightarrow X = \begin{bmatrix} 1 & 0.1 \\ 1 & 0.2 \\ 0.5 \end{bmatrix}$$

• Column of '1' values allows us to write as basic linear model:

$$Y_{i} = \beta + wX_{i}$$

$$= W_{1} + w_{2}\overline{X}_{i2}$$

$$= W_{1}\overline{X}_{i} + w_{2}\overline{X}_{i2}$$

$$= w^{T}\overline{X}_{i}$$

Gradient Vector

• The gradient vector has the partial derivatives as elements:

- Element 'j' gives the slope if we move along dimension 'j'.
- Gradient direction points in local direction of steepest increase.
- Negative gradient points in local direction of steepest decrease.
- If ∇ f(w) = 0, it means that the function is flat (stationary point).

Householder Notation

Use greek letters for scalars: X = 1, B = 3.5, T = 1Vse first/last lower-case letters for vectors: $W = \begin{bmatrix} 0,1\\0,2 \end{bmatrix}, X = \begin{bmatrix} 0\\1\\0,2 \end{bmatrix}, Y = \begin{bmatrix} 2\\1\\0,2 \end{bmatrix}, Y = \begin{bmatrix} 2\\$ Indues use i,j, and K. When I write Xing I mean Sizes use minid, and p.e ngrab row i of X, and make a column vector. Sets use S, T, V, V. Functions use f, g, and h.

Householder Notation

Our ultimate least squares notation:

$$f(w) = \frac{1}{2} || X_w - y ||^2.$$
But, if we agree on notation we can quickly understand:

$$g(x) = \frac{1}{2} || A_x - b ||^2.$$
If we use random notation, we get things like:

$$H(\beta) = \frac{1}{2} || R\beta - P ||^2.$$
Is this the same model?

Least Squares (Matrix Notation)

- To derive the d-dimensional least solution, need matrix notation.
- First let's define the usual suspects:

$$Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} \qquad W = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{d} \end{bmatrix} \qquad X = \begin{bmatrix} x_{11} & y_{12} & \cdots & y_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix} = \begin{bmatrix} -x_{1} \\ -x_{2} \\ \vdots \\ \vdots \\ x_{n} \end{bmatrix} \qquad N \times d \qquad N \times d$$

Least Squares (Matrix Notation)

- Let's define the 'residual' vector:
- $r = \begin{bmatrix} y_1 w^T x_1 \\ y_2 w^T x_2 \\ \vdots \\ y_n w^T x_n \end{bmatrix} 7 \qquad 50 \qquad \sum_{i=1}^{n} (y_i w^T x_i)^2 \\ = \sum_{i=1}^{n} r_i^2 = r^T r.$ • From the definition of matrix-vector product, we have:

 $X_{w} = \begin{pmatrix} w & x_{1} \\ w & x_{2} \\ \vdots \\ \vdots \\ w & x_{n} \end{pmatrix} \xrightarrow{50} \Gamma = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} \xrightarrow{\left(w & x_{1} \\ w & x_{2} \\ \vdots \\ w & x_{n} \end{pmatrix}} = y - X_{W}.$ $\sum_{i=1}^{N} \left(\begin{array}{c} y_{i} - w_{i} \\ y_{i} \end{array} \right)^{2} = r_{i}^{T} r_{i}^{T} = \left(\begin{array}{c} y_{i} - y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} - y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \\ y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y_{i} \end{array} \right)^{T} \left(\begin{array}(\begin{array}{c} y$

• So we can write least squares as:

residuals r; to be close to 2 ero

Least Squares (Matrix Notation)

Objective is $f(w) = \frac{1}{2}(y - X_w)f(y - X_w)$ $= \frac{1}{2} \left(\begin{array}{c} \gamma \\ \gamma \end{array} - \left(\begin{array}{c} \chi_{w} \end{array} \right)^{\Gamma} \right) \left(\begin{array}{c} \gamma \\ \gamma \end{array} - \left(\begin{array}{c} \chi_{w} \end{array} \right)^{\Gamma} \right)$ $(A_X)^{T} = \chi^{T} A^{T}$ $=\frac{1}{2}\left(y^{T}-w^{T}\chi^{T}\right)\left(y-\chi_{W}\right)$ $\chi \left(\frac{1}{\sqrt{-\chi_{u}}} + \frac{1}{\sqrt{\chi_{u}}} \right)$ $=\frac{1}{2}\left(\begin{array}{c}T\\Y\end{array}\right)-\begin{array}{c}T\\Y\end{array}\right)$ $\gamma^{7}X_{h} = w^{7}X_{y}^{7}$ $=\frac{1}{2}\left(\frac{1}{2}\sqrt{2}-2\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}+\sqrt{2}\sqrt{2}\sqrt{2}\right)$ $t^{T}=5$

Least Squares Solution (Normal Equations)

$$f(w) = \frac{1}{2}(y^{T}y - 2w^{T}X^{T}y + w^{T}X^{T}Xw) \quad Like \quad \int w[aw] = a.$$

$$\nabla f(w) = 0 - \chi^{T}y + \chi^{T}Xw. \quad \int d(aw^{2}) = 2aw.$$

$$If \quad \forall f(w) = 0, \quad \text{then we must have}$$

$$\chi^{T}Xw = \chi^{T}y.$$
Assuming $(\chi^{T}X)$ is invertible, 'pre-multiply' by $(\chi^{T}X)^{-1}$

$$(\chi^{T}\chi)^{-1}(\chi^{T}\chi)w = (\chi^{T}\chi)^{-1}\chi^{T}y$$

$$(\chi^{T}\chi)^{-1}(\chi^{T}\chi)w = (\chi^{T}\chi)^{-1}\chi^{T}y$$

Least Squares Issues

- Issues with least squares model:
 - $X^T X$ might not be invertible.
 - It is sensitive to outliers.
 - It always uses all features.
 - Data can might so big we can't store $X^T X$.
 - It might predict outside known range of y_i values.
 - It assumes a linear relationship between x_i and y_i.

O(nd²) (ost of computing (nd²) (vit: d'elements, each is inher product of n'

XER XER XTERdxn

(th ntd

XTXERCEXJ

Example: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

HIGH JUMP PROGRESSION MEN AND WOMEN (mean of top ten)

SHOT PUT PROGRESSION MEN (7.26 kg) AND WOMEN (4 kg) (mean of top ten

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Gives linear model in each region.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Gives linear model in each region.
 - Generative models: fit multivariate continuous distribution to (x_i, y_i) .
 - E.g., multivariate Gaussian distribution (this choice still gives a linear model).

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Gives linear model in each region.
 - Generative models: fit multivariate continuous distribution to (x_i, y_i) .
 - E.g., multivariate Gaussian distribution (this choice still gives a linear model).
 - Non-parametric models:
 - Take mean y_i value among k-nearest neighbours.
 - Variation on KNN: weight y_i values by distance. (Closest points get highest weight.)

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Gives linear model in each region.
 - Generative models: fit multivariate continuous distribution to (x_i, y_i) .
 - E.g., multivariate Gaussian distribution (this choice still gives a linear model).
 - Non-parametric models:
 - Take mean y_i value among k-nearest neighbours.
 - Variation on KNN: weight y_i values by distance.
 - 'Nadaraya-Waston': weight *all* y_i by distance to x_i.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel/egression-with-variable-window-width/content/ksr_vw.m

- We can adapt our classification
 - Regression tree: tree with mean
 - Gives linear model in each region.
 - Generative models: fit multivari
 - E.g., multivariate Gaussian distribu
 - Non-parametric models:
 - Take mean y_i value among k-neare
 - Variation on KNN: weight y_i values
 - 'Nadaraya-Waston': weight *all* y_i b
 - 'Locally linear regression': for given x, fit least squares with errors weighted by distance from x_i to x. (Better behaviour than KNN and NW at boundaries.)

Change of Basis

- What if instead of a linear function, we want a quadratic function?
- $y_{i} = \frac{w_{o}}{b} + \frac{w_{i} x_{i}}{w} + \frac{w_{2} x_{i}^{2}}{w}$ We can do this by changing X (change of basis):

W= (Xroly Xpoly) Xpoly Y

- Now fit least squares with this matrix:
- It's a linear function of w, but a quadratic function of x.

Change of Basis Ô Ď \bigcap \bigcirc 6 0 0 Û linear least symares (\mathcal{I}) linear least Squares with quadratic basis y= waxi + waxi + wa $\gamma_{\lambda} = W_{1} \times_{\lambda} + W_{0}$

General Polynomial Basis

• We can have a polynomial of degree of 'd' by using a basis:

$$X_{poly} = \begin{bmatrix} 1 & X_1 & (X_1)^2 & \dots & (X_1)^d \\ 1 & X_2 & (X_2)^2 & \dots & (X_2)^d \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_n & (X_n)^2 & \dots & (X_n)^d \end{bmatrix}$$

- There are polynomial basis functions that are numerically nicer:
 - E.g., Lagrange polynomials.

General Polynomial Basis

Degree of Polynomial and Fundamental Trade-Off

- As degree increases:
 - Training error goes down.
 - Training error becomes worse approximation of test error.

Usual approach to selecting degree:
 Validation or cross-validation.

Bias-Variance Decomposition

- Explicit form of fundamental trade-off for test set squared error:
- Synared error for test paint xi is Assume $y_i = f(x_i) + \xi_i$ for some $E[(y_{1} - \hat{f}(x_{1})] = Bias[\hat{f}(x_{1})]^{2} + Var[\hat{f}(x_{1})] + g^{2}$ function f, and random error Where $Bias[f(x_i)] = E[f(x_i)] - f(x_i)$ E with mean of O and variance o? Assume we have some way to $Var[f(x_i)] = E[(f(x_i) - ELf(x_i)]]^2$ take a training $E(x_{i,1}y_{i}), (x_{2}y_{2}), \dots, (x_{n}y_{n})$, and expectations are with and produce a model $y_i = f(x_i)$. respect to training data. • Bias: how closely expected model approximates f(x) (part 1).
- Variance: how sensitive model is to the training set (part 2).
- Irreducible error σ^2 : randomness in y_i that no method can predict.

Summary

- Normal equations give solution to linear least squares problem.
- Tree/generative/non-parametric methods exist for regression.
- Change of basis allows linear models to model non-linear data:
 Discussed polynomial and radial basis functions.
- Bias-variance trade-off is example of fundamental trade-off.
- Next time:
 - Predicting the future, and fixing more problems with least squares.