CPSC 340:
Machine Learning and Data Mining

Basis and Regularization
Fall 2015



Admin

Re-download a3.pdf (Q1.3 has changed).
Re-download a3.zip (hewsgroups.mat was updated).
Should we have office hours tomorrow?

Midterm moved to October 30.
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Problem: y-intercept
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Incorporating a Bias Variable

 The simplest way to add the y-intercept is changing X:
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Gradient Vector

* The gradient vector has the partial derivatives as elements:

V(W)= | Y

Element ‘j" gives the slope if we move along dimension .

Gradient direction points in local direction of steepest increase.
Negative gradient points in local direction of steepest decrease.
If V f(w) =0, it means that the function is flat (stationary point).
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Least Squares (Matrix Notation)

Syﬁ/‘4/<‘-}

 To derive the d-dimensional least' solution, need matrix notation.
V.= ly
* First let’s define the usual suspects:
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Least Squares (Matrix Notation)
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* From the definition of matrix-vector product, we have: @ We wal
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Least Squares (I\/Iatrlx Notation)
Objective is $2= 1 (y _XWQ% - %)
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Least Squares Solution (Normal Equations)
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Least Squares Issues

* |ssues with least squares model: an/
— X"™X might not be invertible. >< £ /@
— It is sensitive to outliers. B Y2
— It always uses all features. / X ¢ /ﬁ
— Data can might so big we can’t store X™X. B &%J
— It might predict outside known range of y, values. )( / X = ﬁ
— It assumes a linear relationship between x, and y.. ([ o id
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Example: Non-Linear Progressions in Athletics

* Are top athletes going faster, higher, and farther?

100m PROGRESSION MEN AND WOMEN (mean of top ten)
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Adapting Counting/Distance-Based Methods

We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

* Gives linear model in each region. T
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
* Gives linear model in each region.

— Generative models: fit multivariate continuous distribution to (x,y,).

* E.g., multivariate Gaussian distribution (this choice still gives a linear model).




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

* Gives linear model in each region.

— Generative models: fit multivariate continuous distribution to (x,y,).

* E.g., multivariate Gaussian distribution (this choice still gives a linear model).

— Non-parametric models:
* Take mean y, value among k-nearest neighbours.

* Variation on KNN: weight y, values by distance.
(Closest points get highest weight.)

KNeighborsRegressor (k = 5, weights = 'uniform’)
— : : :




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

* Gives linear model in each region.

— Generative models: fit multivariate continuous distribution to (x,y,).

* E.g., multivariate Gaussian distribution (this choice still gives a linear model).

— Non-parametric models:

* Take mean y, value among k-nearest neighbours.
* Variation on KNN: weight y, values by distance.
* ‘Nadaraya-Waston’: weight all y, by distance to x..
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Adapting Counting/Distance-Based Methods -

loc,, /
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* We can adapt our classificatiol . d=2,9=0.5 e
— Regression tree: tree with mean Z\
* Gives linear model in each region. N ////A/
— Generative models: fit multivari/_ = will o
W
* E.g., multivariate Gaussian distriby & « 7
— Non-parametric models: o
P v éa%“/”\//c
* Take mean y, value among k-neare . | . J
* Variation on KNN: weight y. values 0 - 10 15
* ‘Nadaraya-Waston’: weight all y, b} *

‘Locally linear regression’: for given x, fit least squares with errors weighted by
distance from x, to x. (Better behaviour than KNN and NW at boundaries.)



Change of Basis

What if instead of a linear function, we want a quadratic function?

y«i: W —r Wl ij — \/I/QXAQ.
We can do this by changing X (change of basis):
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Now fit least squares with this matrix: 7

It’s a linear function of w, but a quadratic function of x.



Change of Basis
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General Polynomial Basis

* We can have a polynomial of degree of ‘d’ by using a basis:
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* There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials.



General Polynomial Basis

Degree 7




Degree of Polynomial and Fundamental Trade-Off

* As degree increases: a _

— Training error goes down.

1.0

— Training error becomes worse
approximation of test error.
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* Usual approach to selecting degree:

-1.0

— Validation or cross-validation.




Bias-Variance Decomposition

* Explicit form of fundamental trade-off for test set squared error:
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* Bias: how closely expected model approximates f(x) (part 1).

* Variance: how sensitive model is to the training set (part 2).
* Irreducible error 62: randomness in y, that no method can predict.



Summary

Normal equations give solution to linear least squares problem.
Tree/generative/non-parametric methods exist for regression.

Change of basis allows linear models to model non-linear data:
— Discussed polynomial and radial basis functions.

Bias-variance trade-off is example of fundamental trade-off.

Next time:

— Predicting the future, and fixing more problems with least squares.



