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Admin

• Assignment 3 out today.

– Longer than other assignments, but due on October 23rd.

• Midterm moved to October 30.

– Covers Assignments 1-3.

– Practice midterm coming.



User-Product Matrix



Clustering User-Product Matrix

• Normally think of clustering by rows:



Clustering User-Product Matrix

• We could cluster by columns:

• Apply clustering to XT.



Association Rules

• Association rules (S => T): all ‘1’ in cluster S => all ‘1’ in cluster T. 



Amazon Product Recommendation

• Amazon Product Recommendation works by columns:
– Conceptually, you take the user-product matrix:

– And transpose it to make a product-user matrix:

– Find similar products as nearest neighbours among products.
• Cosine similarity used to judge how ‘close’ 



Supervised Learning Round 2: Regression

• We’re going to revisit supervised learning:

• Previously, we assumed yi was discrete:
– For example, yi = ‘spam’ or yi = ‘not spam’.

– ‘Classification’.

• How we do we handle a continuous yi?
– For example, yi = 10.34 cm.

– ‘Regression’.



Example: Dependent vs. Explanatory Variables

• We want to discover relationship between factor and mortality:

– Does number of lung cancer deaths change with number of cigarettes?

– Does number of skin cancer deaths change with latitude?

http://www.cvgs.k12.va.us:81/digstats/main/inferant/d_regrs.html
https://onlinecourses.science.psu.edu/stat501/node/11



Example: Dependent vs. Explanatory Variables

• We want to discover relationship between factor and mortality:

– Does number of lung cancer deaths change with number of cigarettes?

– Does number of skin cancer deaths change with latitude?

– Does number of gun deaths change with gun ownership?

http://www.vox.com/2015/10/3/9444417/gun-violence-united-states-america



Handling Continuous Target Label

• One way to handle continuous yi: discretize.

– E.g., for ‘age’ could use {‘age ≤ 20’, ‘20 < age ≤ 30’, ‘age > 30’}.

– Now can apply methods for classification to do regression.

– But coarse discretization loses resolution.

– And fine discretization requires lots of data.

• We can adapt classification methods to perform regression.

– Next time: regression trees, generative models, non-parametric models.

• Today: one of oldest, but still most popular/important methods:

– Linear regression based on squared error.



Linear Regression in 1 Dimension

• Assume we only have 1 feature:

– For example, xi is number of cigarettes, yi is number of lung cancer deaths.

• Linear regression models yi is a linear function of xi:

• The parameter ‘w’ is the weight or regression coefficient of xi.

• As xi changes, slope ‘w’ affects the rate that yi increases/decreases:

– Positive ‘w’: yi increase as xi increases.

– Negative ‘w’: yi decreases as xi increases.



Linear Regression in 1 Dimension



Least Squares Objective

• Our linear model:

• Classic way to set slope ‘w’ is minimizing sum of squared errors:

• There are some justifications for this choice.

– Assuming errors are Gaussian or using ‘central limit theorem’.

• But usually, it is done because it is easy to compute.



Least Squares Objective

• Classic way to set slope ‘w’ is minimizing sum of squared errors:



Least Squares Objective

• Classic way to set slope ‘w’ is minimizing sum of squared errors:



Minimizing a Differential Function

• Derivative-based approach to minimizing differentiable function ‘f’:

1. Take the derivative of ‘f’.

2. Find points ‘w’ where the derivative is equal to 0.

3. Take the value among these points with the smallest f(w).
(This assumes minimizer exists, if not sure then check that f’’(w) > 0.)



Least Squares Objective

• Solving for ‘w’ that minimizes sum of squared errors:



Least Squares Objective

• Checking that this is minimum:



Motivation: Combining Explanatory Variables

• Smoking is not the only contributor to lung cancer.

– For example, environmental factors like exposure to asbestos.

• How can we model the combined effect of smoking and asbestos?

• We can do this with a  higher-dimensional linear function:

• Now we have a weight wj for each feature ‘j’.

• If we have ‘d’ features, the d-dimensional linear model is:



Least Squares in d-Dimensions

• The ‘d’-dimensional linear model:

• The general linear least squares model:

• This is different than fitting each wj individually.



Least Squares in 2-Dimensions



Least Squares in 2-Dimensions



Partial Derivatives and Gradient Vector

• Consider a multivariate real-valued function ‘f’.

• Partial derivative with respect to ‘j’:

– Derivative if we treat all other variables as fixed constants.

• Gradient is vector with partial derivative ‘j’ in position ‘j’: 



Partial Derivatives and Gradient Vector

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Partial Derivatives and Gradient Vector

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Partial Derivatives and Gradient Vector

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Minima of Multivariate Functions

• To minimize a multivariate function (in principle):

1. Find stationary points where 𝛻 f(w) = 0 (generalizes of f’(w) = 0).

2. Take the value among these points with smallest f(w).

(This again assumes minimizer exists. If not sure, need to check that ‘Hessian’ 
matrix 𝛻2 f(w) of second partial derivatives has non-negative eigenvalues.)



Least Squares Gradient



Summary

• Regression considers the case of a continuous yi.

• Least squares is a classic method for fitting linear models.

• Differentiation leads to a closed-form solution for slope ‘w’.

• Gradient is vector containing partial derivatives wrt all variables.

• Next time:

– Non-linear regression methods.


