
University of British Columbia
Department of Computer Science

Learning Influence Diffusion Probabilities under the
Independent Cascade with Independent Decay over Time

CPSC 534L Project Report

Group Members:
Saeid Naderiparizi - 98712169
Polina Zablotskaia - 97560163

Setareh Cohan - 98701162

January 5, 2018

1

CONTENTS

1 Abstract 3

2 Introduction 3

3 Related Work 4

4 Time-varying Model 5
4.1 Preliminaries . 5
4.2 Model Definition . 5
4.3 Proof of Submodularity . 6
4.4 Equivalency to TVIC . 6

5 Learning Probabilities under ICIDT 6
5.1 Preliminaries . 6
5.2 Problem Formulation . 7
5.3 Learning Methods . 8

5.3.1 Gradient Descent . 8
5.3.2 Expectation Maximization . 9

6 Experiments 10
6.1 Dataset . 10
6.2 Implementation Details . 11
6.3 Evaluation . 11

7 Results 11

8 Conclusions 11

9 Future Work 12

2

1 ABSTRACT

Influence maximization is a well-studied problem of finding a small set of
highly influential individuals in a social network such that the spread of in-
fluence under a certain diffusion model is maximized. We first propose a dif-
fusion model that incorporates the phenomenon that the power of influence
decreases with elapsed time under the independent cascade model. We then
learn the parameters of this model to get the influence probabilities. The mo-
tivation for doing this is that influence probabilities are usually not known for
real-world social networks. We use two different datasets and two optimiza-
tion algorithms which are Gradient Descent and Expectation Maximization.
We evaluate the efficiency of our approach. In the end, we show the distribu-
tion error in time prediction .

2 INTRODUCTION

Recently, the rapidly increasing popularity of social networks has created opportunities to study
models that simulate the spread of information in such networks. Examples of information spread
in social networks are buying a product after a friend buys that product, sharing a post after a friend
shares that post and retweeting a tweet of someone. In social networks, the weight or diffusion prob-
ability of an edge between user A to user B, is a measure of the influence from user A to user B. The
higher the influence, the greater the value of the diffusion probability.

Probabilistic models such as Independent Cascade(IC) and the Linear Threshold(LT) have been used
to study the spread of influence [7]. In the IC model, each edge is assigned with a diffusion proba-
bility and time increments in discrete steps. At time zero only a subset of nodes are active which are
called the seed set. Each active neighbor v of u gets exactly one chance for activating u and succeeds
with a probability of Pvu corresponding to edge vu. The active neighbors of vertex u can try to acti-
vate u in any order. When no new nodes can be activated, the diffusion process ends.
In the LT model, each edge uv of the graph is assigned to a value buv which captures the extent of
influence on v from u. There exists a constraint that sum of weights of incomings edges to each node
is not greater than one,

∑
{u|u→v∈E } bvu ≤ 1. All nodes u randomly pick an activity threshold θu ∈ [0,1].

Just like the IC model, time increments in discrete steps. At time zero we have only a subset of nodes
active called the seed set. At time t > 0, node u gets active if the sum of weights of its incoming edges
is greater than its threshold. When no new nodes can be activated, the diffusion process ends.

The power of influence depends on the elapsed time intuitively. For instance, if someone posts a
funny picture on a website her friends are more likely to repost it the same week rather than three
month later. We can argue that power of influence decreases over time. This motivated us to define
probabilities which decay exponentially over time.

After we designed a time-decaying model based on the IC model, we proved that the influence spread
function under this model is monotone and submodular. As shown in [8], we know that optimal solu-
tions on monotone and submoldular functions can be approximated efficiently by a greedy solution.

3

Hence, we started working on a greedy algorithm that approximates the optimal solution to the in-
fluence maximization under our model. During this phase, we found a work by Ohsaka et al. in
which they have proposed a model called Time-varying IC(TVIC) model which is a general case of
our model [9] and they provide a scalable greedy algorithm for this mode.
Realizing that our model was already fully studied, we decided to focus on learning the probabil-
ities of our model. The motivation behind this decision is that we need diffusion probabilities of
edges both in our model and in TVIC, however these probabilities are usually not available for real
networks. In this project, we will learn the probabilities of our model which we call Independent
Cascade with Independent Decay over Time(ICIDT).

3 RELATED WORK

Kempe et al. [7] formulated the influence maximization problem as a discrete optimization problem.
They showed that this problem is NP-hard for IC model and the expected number of activated ver-
tices with respect to an initial vertex set (called the seed set) is a monotone and submodular function.
This implied that the optimal solution to influence maximization problem can be efficiently approx-
imated within a ration of (1− 1

e −ε) by a greedy algorithm [8]. More effective and scalable approaches
to influence maximization have been proposed by [3] and [4]. However, these methods do not con-
sider the effect of time on influences.

After proposing ICIDT model and showing that the influence function under this model is monotone
and submodular, we started to work on finding an efficient greedy algorithm that well approximates
the optimal solution. Meanwhile, we figured there are various diffusion models concerned with time.
Although most of these consider the time difference between two vertices known as the time-delay
[2][10][6], some works discuss the effect of elapsed time on influences [9][6].

The time-varying IC model (TVIC) proposed by Ohsaka et al. [9] formulates both time-delay and
time-decaying phenomenon. In section 4.4 we show that our model is a special case of TVIC.

As mentioned earlier, IC model, TVIC model and our model(ICIDT) all require diffusion probabili-
ties to be known in advance. This information may not be available for real networks, however, these
probabilities can be estimated from a set of information diffusion cascades that are observed as time-
sequences of activated nodes [6][11][1]. Saito et al. use the Expectation Maximization algorithm to
predict diffusion probabilities [11]. Although the algorithm does reasonably well in predicting these
probabilities, this approach is difficult to scale for large datasets. Goyal et al. propose static and time-
dependent models that capture influence along with algorithms for learning the various parameters
of the model they have presented [6]. However, they use a very specific formulation to model influ-
ence and learn parameters of this specific model. Hence, their approach is not general and cannot be
directly applied to all other formulations of influence maximization problem. Furthermore, Saito et
al. [12] address the problem of estimating diffusion probabilities of a probabilistic model as a func-
tion of node attributes from the observed diffusion data.

To our knowledge, there are no works on learning the diffusion probabilities of time-varying models.
This motived us to propose a method for estimating the diffusion probabilities in the ICIDT model

4

that we proposed.

4 TIME-VARYING MODEL

In this section, we define ICIDT model and then we show that the influence function under our model
is monotone and submodular.

4.1 PRELIMINARIES

We extend the IC model [5][7]. In this model, for each directed link e = (v, w), a real value pv w is
specified such that 0 < pv w < 1 in advance. Here, pv w is referred to as the diffusion probability
through link (v, w) The diffusion process proceeds from a given initial active seed set S as follows.
When a node v becomes active at time-step t , it is given a single chance to activate each currently
inactive child node w , and the attempt succeeds with probability pv w . If multiple parents of a node
become active at the same time t∗, their activation attempts are sequenced in an arbitrary order,
but all the attempts are performed at time-step t∗. Whether v succeeds or not, it will not make any
further attempts to activate w in the next time-steps. The process terminates if no more activations
are possible.

4.2 MODEL DEFINITION

Assume that we have an influence graph G = (V ,E) where V is the set of vertices and E is the set of
edges of the graph. Each directed edge (u, v) ∈ E is assigned a probability puv which we call the initial
influence probability. Each node v ∈V is assigned a user-specific decay factor,λv . Assume node u was
activated at time tu . The probability of u influencing its neighbor v at time t , based on our model is

Pr [v getting activated at time t |u is activated at time tu] =
{

puv e−λu (t−tu) if t − tu <=∆
0 otherwise

We can see that in our model, the probability of u getting activated by v goes to zero if the elapsed
time is greater than a window size ∆.

Having graph G , we can define the influence function corresponding to the expected number of
nodes that will be activated once the seed set S is activated in terms of possible worlds as follows:

σ(S) = ∑
X∈PW

Pr [X]σX (S)

A possible world X is a graph (V ,E ′) where E ′ ⊆ E and each (u, v) ∈ E ′ is assigned a delay, duv ∈N∪{0}.
For generating deterministic possible world graph from the probabilistic influence graph G , we toss
at most ∆ coins for each node such that the probability of getting a "head" in the k-th coin toss is
puv e−λu k where k ≤ T , and 0 otherwise. We set duv to the number of coin tosses until seeing the first
"head" if it happens within our window T , and 0 otherwise.

5

4.3 PROOF OF SUBMODULARITY

In order to show that the influence function σ(.) under ICIDT is monotone and submodular, we will
look at the definition of this function in terms of possible worlds which was discussed earlier.

σX (S) is the number of all reachable nodes from seed set S in possible world X , independent of the
delays on the edges of X . Therefore, σX (S) is the same as it was in the IC model and hence, we can
conclude that σX (S) is monotone and submodular just as in [7].
We know that σ(S) is a linear combination of σX (S) for different possible worlds with positive . This
implies that σ(S) is monotone and submodular.

4.4 EQUIVALENCY TO TVIC

It can be shown that ICIDT model is a special case of TVIC model. In this model, probability of v
becoming active at time t when u has been activated at time tu is as below:

Pr [v becoming active at time t | u is active at timetu] = puv (t) fuv (t − tu) (4.1)

Here, fuv (t − tu) represents the time-delay effect on the edge {uv} and puv (t) is a non-increasing
function on elapsed time.

Comparing the probability 4.1 with ICIDT, we can say that probability of v becoming active at time
t when u has been activated at time tu under ICIDT is equal to 4.1 when we only consider the non-
increasing function on elapsed time and set the time-delay effect on edges to one.

At this point, we decided not to give up on our model and switch our focus to learn the diffusion
probabilities on edges since we found no other works on this subject, and also these diffusion prob-
abilities are usually not available for real-world networks.

5 LEARNING PROBABILITIES UNDER ICIDT

5.1 PRELIMINARIES

For a given directed network or graph G = (V ,E) where V is the set of nodes or vertices and E is the
set of links or edges. If u and v are different vertices of the graph and there exists an edge from u to v ,
we show this edge by (u, w). For each node v in the graph G , we define F (v) as the set of child nodes
of v as follows:

F (v) = w : (v, w) ∈ E .

Similarly, we define B(v) to be the set of parent nodes of v as follows:

F (v) = u : (u, v) ∈ E .

6

In this section, we define the mathematical notation and formulate the problem of learning the pa-
rameters of our model. Looking back at our model, the probability of node w getting activated at
time tw by node v which is activated at time tv is

pv w e−λv (tw−tv)

where pv w is the initial influence probability and λv is the user specific decay factor.

In order to learn the edge probabilities, we need to learn its two parameters which are the initial in-
fluence probability of each edge and the user specific decay factor of each node. However, in order to
make the problem simpler, we only learn the initial influence probabilities and assume that the de-
cay factor is equal for all nodes and is a known value. Details on the value of decay factor is available
in the Experiments section.

5.2 PROBLEM FORMULATION

Here, we will formulate the problem of learning the initial influence probabilities and thus learning
the edge probabilities.

Assume that we know the precise information for each past cascade, meaning which node was in-
fluenced at what time. The total number of these cascades is S. Ts represents the time when the
diffusion process for cascade s ends. We represent the set of nodes which become active at time t
under the cascade s as Ds(t). The cumulative set of nodes which become active by the time t under
cascade s are represented by Cs(t). Therefore we can say that Cs(t) =⋃t=T

t=0 D(t).

Let P s
w (t +1) represent the probability of w getting activated at time t +1 under the diffusion cascade

s. In order to derive P s
w (t + 1), we need to look back at our model and see what nodes are able to

activate w . Based on our model, if a node is activated at some time t , it can activate its neighbors
with a probability that decays over time and goes to zero after time ∆. It means that every node is
contagious for its neighbors during a time window of size∆. Using this information, we can formulate
P s

w (t +1) as below:

Pw (t +1) = 1−
∆−1∏
τ=0

∏
v∈B(w)∩D(t−τ)

(1−pv w e−τ/η) (5.1)

Now, we will define the likelihood of probabilities given the cascades. Assume v is a parent of w . In
the case taht v ∈ D(t) and w ∉ C (t + 1), we know that the node v definitely failed in activating the
node w through the link (v w). In the two cases below, we cannot obtain any information about the
activation attempt through v w :

• v ∉ D(t).

• v ∈ D(t) and w ∈C (t).

Therefore, for an episode D (which is basically the set of observed data) we can define the likelihood
function with respect to θ = {pv w }:

L(θ;D) =
T−1∏
t=0

[(∏
w∈D(t+1)

Pw (t +1)

)(
∆−1∏
τ=0

∏
v∈D(t−τ)

∏
w∈F (v)\C (t+1)

(1−pv w e−τ/η)

)]

7

Let {Ds : s = 1, ...,S} be the set of S different diffusion cascades. We can define log likelihood which
will be our objective function with respect to θ:

L(θ) =
S∑

s=1
log(θ,Ds) =

S∑
s=1

Ts−1∑
t=0

[∑
w∈Ds (t+1)

logP (s)
w +

∆−1∑
τ=0

∑
v∈D(t−τ)

∑
w∈F (v)\C (t+1)

log(1−pv w e−τ/η)

]
(5.2)

where Pw (t +1) can be calculated using Eq.5.1.

Our problem now is finding the set of information diffusion probabilities, θ∗, that maximize the log
likelihood in Eq.5.2:

θ∗ = argmax L(θ).

5.3 LEARNING METHODS

We use 2 different methods for finding the maximum likelihood estimate for the log likelihood for-
mulated in Eq. 5.2. In this section, we describe each of the optimization strategies.

5.3.1 GRADIENT DESCENT

One of the most straight forward ways of maximizing a function is Gradient Descent. Here, L(θ) is
the function we want to maximize with respect to θ. First, we initialize θ to some random estimates.
Then, we iteratively find the gradient of the log likelihood function L for the current estimates of θ
and move in the direction of the gradient with a certain step size α. Since we move in the direction
of gradient at each iteration, we move in the direction in which the function increases the most.
Therefore, we converge a local maxima. Formally, the iteration can be presented as below:

θi+1 = θi −αg (L(θi)) (5.3)

where i is the current gradient descent iteration, g (L(θi)) is the gradient of the likelihood function for
the current estimate of θ (θi) and α is the current step size. The equation below gives the expression
for g (L(θi)):

∂L

∂pv w
=

S∑
s=1

[

1

P (s)
w

∂P (s)
w

∂pv w
+Z (s)

v w

]
if v ∈ B(w) & tv < tw

0 otherwise

where ∂P (s)
w

∂pv w
can be calculated as

∂P (s)
w

∂pv w
=

∆−1∏
τ=0

∏
v ′∈B(w)∩D(tw−τ−1)

v ′ 6=v

(1−pv ′w e−τ/η)

e−(tw−tv−1)/η if t (s)
v ∈ [t (s)

w −∆−1, t (s)
w −1]

0 otherwise

8

and Zv w is equal to

Z (s)
v w =−

min{tw−tv−2,∆−1}∑
τ=0

1

1−pv w e−τ/η
e−τ/η

The size of step size can be constant over all the iterations or it can be decreased as the iterations
continue.

5.3.2 EXPECTATION MAXIMIZATION

Another way of maximizing the likelihood is using Expectation Maximization method. This method
is used by Saito et al. [11] to learn the diffusion probabilities under the IC model. Expectation Max-
imization is an iterative method for finding the Maximum Liklihood Estimate(MLE) of a likelihood
function. This method iteratively applies the Expectation step(E step) and the Maximization step(M
step). In the E step we need to caculate the Q-function which is the expected value of the log likeli-
hood function, with respect to the conditional distribution of the latent variables and observations.
Then, in the M step, we find the parameters that maximize the Q-function.

For our model, there are no explicit latent variables. Instead we treat the probabilities P s
w (t +1) as

the latent variables and the parameters to be estimated are the initial influence probabilities, pv w .
The Expectation Maximization we use iteratively performs the below two steps until the Q-function
converges, i.e. the change in the parameter estimates becomes less than a certain threshold.

• E step: Calculate the expected value of the log likelihood function L(θ), with respect to the
conditional distribution of P s

w (t +1) under the current estimate of the parameters pv w

Q(θ|θt) = EZ |X ,θt [log (L(θ; X , Z))] (5.4)

where Z is the altent variable in the equation above.

• M step: Update the value of estimate of the parameters pv w

θ(t+1) = argmax
θ

Q(θ|θt) (5.5)

The Expectation Maximization algorithm is sensitive tot he initial estimate and is also prone to con-
verging a local maxima instead of a global maxima. Just like with Gradient Descent, multiple random
starting points and averaging over all outputs is used to alleviate these problems.

The Q-function in our problem is

Q(θ|θ̂) =
S∑

s=1

Ts−1∑
t=0

∑
v∈Ds (t)

∆−1∑
τ=0

[∑
w∈F (v)∩Ds (t+1+τ)

(
p̂v w e−τ/η

P̂ (s)
w

log(pv w e−τ/η)+ (1− p̂v w e−τ/η

P̂ (s)
w

) log(1−pv w e−τ/η)

)

+ ∑
w∈F (v)\Cs (t+τ+1)

log(1−pv w e−τ/η)

]
(5.6)

where θ̂, p̂v w and P̂ s
w (t +1) represent the current estimates of θ, pv w and P s

w (t +1) respectively.

9

Next, in order to perform the M step, we can set the value of the gradient of Q-function with respect
to θ to zero. Let S+

v,w be the set of episodes s which satisfy both v ∈ Ds(t) for some t ∈ [0,Ts] and w ∈
Ds(t +τ+1),0 ≤ τ<∆ (which means t (s)

w − t (s)
v ≤∆). And let S−

v,w be the set of episodes s which satisfy

both v ∈ Ds(t) for some t ∈ [0,Ts] and w ∈ Ds(t +1+d) for some d ≥∆ (which means t (s)
w − t (s)

v >∆).
Also, let A(x) = ex/η:

∂Q

∂pv w
= 0 (5.7)

⇒ ∑
s∈S+

v,w

[
t (s)

w −t (s)
v −1∑

τ=0

p̂v w e−τ/η

P̂ (s)
w

∗ 1

pv w
−

(
1− p̂v w e−τ/η

P̂ (s)
w

)
∗ e−τ/η

1−pv w e−τ/η

]

− ∑
s∈S−

v,w

[
t (s)

w −t (s)
v −1∑

τ=0

e−τ/η

1−pv w e−τ/η

]
= 0

(5.8)

⇒ ∑
s∈S+

v,w

[
t (s)

w −t (s)
v −1∑

τ=0

p̂v w e−τ/η

P̂ (s)
w

∗
(

1

pv w
+ e−τ/η

1−pv w e−τ/η

)]
= ∑

s∈S−
v,w

[
t (s)

w −t (s)
v −1∑

τ=0

e−τ/η

1−pv w e−τ/η

]

⇒ ∑
s∈S+

v,w

[
t (s)

w −t (s)
v −1∑

τ=0

p̂v w

P̂ (s)
w ∗eτ/η

∗
(

1

pv w
+ 1

eτ/η−pv w

)]
= ∑

s∈S−
v,w

[
t (s)

w −t (s)
v −1∑

τ=0

1

eτ/η−pv w

]

⇒ ∑
s∈S+

v,w

[
t (s)

w −t (s)
v −1∑

τ=0

p̂v w

P̂ (s)
w ∗eτ/η

∗ eτ/η

pv w (eτ/η−pv w)

]
= ∑

s∈S−
v,w

[
t (s)

w −t (s)
v −1∑

τ=0

1

eτ/η−pv w

]

6 EXPERIMENTS

In this section we describe the experimental setup used to benchmark our results. In particular, we
describe each aspect of the setup - the dataset used, implementation details, the algorithms consid-
ered and the evaluation metrics used.

6.1 DATASET

We used two different datasets:

• Twitter with 1.7 million users and 308 million edges.

– Reduced to 9000 users and approximately 33000 edges.

• Facebook with 4000 nodes and 88000 edges.

– We used the structure of the network from the Facebook dataset and generated the corre-
sponding graph. We needed to assign the initial influence probabilities to each edge since
the dataset does not provide these values. We decided to randomly assign the diffusion
probabilities in the range (0,1) for each edge.

10

6.2 IMPLEMENTATION DETAILS

We have implemented gradient descent in two different programming languages namely Python and
C++. Originally we have chosen Python due to it high feasibility in working with large datasets and
the availability of various libraries for the data processing. This helped us a lot with the huge Twitter
dataset, however we soon encountered the main Python drawback, such as very slow computational
performance. Due to that reason we were unable to fairly estimate performance of our algorithm and
had to switch to more efficient C++. After developing new algorithm implementation on C++, we had
significant boost of computational time which eventually allowed us to partially estimate obtained
results for the Facebook graph where we have simulated the spread.

6.3 EVALUATION

In order to evaluate our work, we decided to perform two actions:

• First, we need to check the accuracy of our learning method. To do this, we real social network
graph and generate the cascades by choosing edge probabilities randomly. Then, we learn the
probabilities and compare them with the real, known ones.

Even though having highly inaccurate probabilities does not necessarily mean that we cannot
model social network’s information cascade well, it is a good metric for knowing how we do on
the learning side.

• We also evaluate the behavior of the cascades when they are simulated with the learned prob-
abilities. To do so, we consider the cascades up to a particular time T as our training set and
compare the cascades generated from the learned probabilities with the real cascades from
time T onwards.

7 RESULTS

We haven’t been able to obtain all the desired data to evaluate our model, however for the simulated
cascades data, we were able to compare the learned probabilities with randomly generated. To do
so we decided to look at the predicted activation timestamps. On Figure 7.1 X-axis is the error in
predicting time and Y-axis is the probability of the model making that error. Note that we observe an
error measured in hours, which clearly shows that obtained results have quite high accuracy, even
though model makes mistakes.

8 CONCLUSIONS

We proposed a diffusion model that captures effect of elapsed time on diffusion probabilities called
ICIDT. We then showed that the diffusion function under this model is monotone and submodular.
We then addressed the problem of inferring diffusion probabilities under this model. Particularly,

11

Figure 7.1: Error distribution

we planned to use two different optimization techniques - Gradient Descent and Expectation Max-
imization to learn these probabilities from past cascades. In the end, we only tried Gradient De-
scent because of lack of time. We evaluated our results by two different approaches on two different
datasets.

9 FUTURE WORK

Currently, we learn the probabilities in ICIDT. Also, for simplicity, we only learn the initial diffusion
probabilities. Next thing we can do is to learn the user specific decay factors along with the initial
diffusion probabilities. We should note that learning user specific decay factor will introduce new
challenges.
Our final goal could be to learn probabilities of TVIC since this model is a more general form of our
model and also, there are no works on this model towards learning the diffusion probabilities as far
as we know.

To make our current results better, we can do is to make our initial random guesses of initial prob-
abilities smaller and make the number of cascades bigger. Also, we could try Stochastic Gradient
Descent to converge faster. Moreover, we could implement the Expectation Maximization and eval-
uate results of this method. We could also try other optimization methods.

12

REFERENCES

[1] CAO, T., WU, X., HU, T. X., AND WANG, S. Active learning of model parameters for influence
maximization. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (2011), Springer, pp. 280–295.

[2] CHEN, W., LU, W., AND ZHANG, N. Time-critical influence maximization in social networks
with time-delayed diffusion process.

[3] CHEN, W., WANG, C., AND WANG, Y. Scalable influence maximization for prevalent viral mar-
keting in large-scale social networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining (2010), ACM, pp. 1029–1038.

[4] CHEN, Y.-C., PENG, W.-C., AND LEE, S.-Y. Efficient algorithms for influence maximization in
social networks. Knowledge and information systems 33, 3 (2012), 577–601.

[5] GOLDENBERG, J., LIBAI, B., AND MULLER, E. Talk of the network: A complex systems look at the
underlying process of word-of-mouth. Marketing letters 12, 3 (2001), 211–223.

[6] GOYAL, A., BONCHI, F., AND LAKSHMANAN, L. V. Learning influence probabilities in social net-
works. In Proceedings of the third ACM international conference on Web search and data mining
(2010), ACM, pp. 241–250.

[7] KEMPE, D., KLEINBERG, J., AND TARDOS, É. Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining (2003), ACM, pp. 137–146.

[8] NEMHAUSER, G. L., WOLSEY, L. A., AND FISHER, M. L. An analysis of approximations for maxi-
mizing submodular set functionsâĂŤi. Mathematical Programming 14, 1 (1978), 265–294.

[9] OHSAKA, N., YAMAGUCHI, Y., KAKIMURA, N., AND KAWARABAYASHI, K.-I. Maximizing time-
decaying influence in social networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (2016), Springer, pp. 132–147.

[10] RODRIGUEZ, M. G., BALDUZZI, D., AND SCHÖLKOPF, B. Uncovering the temporal dynamics of
diffusion networks. arXiv preprint arXiv:1105.0697 (2011).

[11] SAITO, K., NAKANO, R., AND KIMURA, M. Prediction of information diffusion probabilities for
independent cascade model. In Knowledge-based intelligent information and engineering sys-
tems (2008), Springer, pp. 67–75.

[12] SAITO, K., OHARA, K., YAMAGISHI, Y., KIMURA, M., AND MOTODA, H. Learning diffusion prob-
ability based on node attributes in social networks. In International Symposium on Methodolo-
gies for Intelligent Systems (2011), Springer, pp. 153–162.

13

	Abstract
	Introduction
	Related Work
	Time-varying Model
	Preliminaries
	Model Definition
	Proof of Submodularity
	Equivalency to TVIC

	Learning Probabilities under ICIDT
	Preliminaries
	Problem Formulation
	Learning Methods
	Gradient Descent
	Expectation Maximization

	Experiments
	Dataset
	Implementation Details
	Evaluation

	Results
	Conclusions
	Future Work

