
ZU064-05-FPR paper Monday 11th July, 2016 15:48

Under consideration for publication in J. Functional Programming 1

Gradual Type-and-Effect Systems

FELIPE BAÑADOS SCHWERTER and RONALD GARCIA
University of British Columbia

(e-mail: {fbanados, rxg}@cs.ubc.ca)

ÉRIC TANTER
University of Chile

(e-mail: etanter@dcc.uchile.cl)

Abstract

Effect systems have the potential to help software developers, but their practical adoption has been
very limited. We conjecture that this limited adoption is due in part to the difficulty of transitioning
from a system where effects are implicit and unrestricted to a system with a static effect discipline,
which must settle for conservative checking in order to be decidable.

To address this hindrance, we develop a theory of gradual effect checking, which makes it possible
to incrementally annotate and statically check effects, while still rejecting statically inconsistent
programs. We extend the generic type-and-effect framework of Marino and Millstein with a notion
of unknown effects, which turns out to be significantly more subtle than unknown types in traditional
gradual typing. We appeal to abstract interpretation to develop and validate the concepts of gradual
effect checking. We also demonstrate how an effect system formulated in the framework of Marino
and Millstein can be automatically extended to support gradual checking.

We use gradual effect checking to develop a fully gradual type-and-effect framework, which
permits interaction between static and dynamic checking for both effects and types.

Contents

1 Introduction 2
2 Background and Motivation 3

2.1 Effect Systems 4
2.2 Gradual Typing 5
2.3 Towards Gradual Effect Checking 6
2.4 Gradual Effects in Action 6
2.5 Generic Effect Systems 7

3 Gradual Effects as an Abstract Interpretation 10
3.1 The Challenge of Gradual Effects 10
3.2 Fundamental Concepts 10
3.3 Lifting Predicates to Consistent Privilege Sets 12
3.4 Lifting Functions to Consistent Privilege Sets 12

4 A Generic Framework for Gradual Effects 14
4.1 The Source Language 14
4.2 The Internal Language 17

ZU064-05-FPR paper Monday 11th July, 2016 15:48

2 Bañados et al.

4.3 Translating Source Programs to the Internal Language 23
5 Example: Gradual Effects for Exceptions 25
6 A Conservative Operational Semantics 30

6.1 Safety and soundness 30
6.2 Making Tags Redundant at Runtime 31
6.3 Conservative Semantics is a Conservative Approximation 35
6.4 Type Safety of the Conservative Semantics 38
6.5 Redundancy of Tags in the Conservative Semantics 39

7 Gradual Typing and Gradual Effects: Gradual Type-and-Effect Systems 39
7.1 Extending Gradual Typing for Tag Annotations 40
7.2 Combining Gradual Typing and Gradual Effect Checking 44

8 Related Work 52
9 Conclusion 53
A Detailed definitions of Section 6 56
B Detailed definitions of Section 7 60

1 Introduction

Type-and-effect systems enable static reasoning about the computational effects of pro-
grams. Effect systems were originally introduced to safely support mutable variables in
functional languages (Gifford & Lucassen, 1986), but more recently, effect systems have
been developed for a variety of effect domains, e.g., I/O, exceptions, locking, atomicity,
confinement, and purity (Gosling et al., 2003; Abadi et al., 2006; Benton & Buchlovsky,
2007; Abadi et al., 2008; Rytz et al., 2012, 2013; Gordon et al., 2013).

To abstract from specific effect domains and account for effect systems in general,
Marino & Millstein (2009) developed a generic effect system, which we denote M&M
throughout this paper. In their framework, effect systems are seen as granting and checking
privileges. Genericity is obtained by parameterizing the type system and runtime semantics
of a language over the privileges available and how they are adjusted and checked during
type checking. Marino & Millstein (2009) demonstrate that several effect systems from the
literature can be formulated as instantiations of the generic framework.

The generic effect system underlies the design of the Scala effect checker plugin, which
extends the M&M framework with a form of effect polymorphism (Rytz et al., 2012).
Several specific effect systems for this plugin include IO effects, exceptions, and more
recently, state effects (Rytz et al., 2013).

Despite their obvious advantages for static reasoning, the adoption of effect systems
has been rather limited in practice. While effect polymorphism supports the definition of
higher-order functions that are polymorphic in the effects of their arguments (e.g., map),
writing fully-annotated effectful programs is complex, and is hardly ever done.1

We conjecture that an important reason for the limited adoption of effect systems is
the difficulty of transitioning from a system where effects are implicit and unrestricted to

1 Pure functional languages like Haskell and Clean are notable exceptions.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 3

a system with a fully static effect discipline. Another explanation is that effect systems
are necessarily conservative and therefore occasionally reject valid programs. We follow
the line of work on gradual verification of program properties (e.g., gradual typing (Siek
& Taha, 2006, 2007), gradual ownership types (Sergey & Clarke, 2012), gradual type-
state (Wolff et al., 2011; Garcia et al., 2014)), and develop a theory of gradual effect
systems. Our contributions are as follows:

• We shed light on the meaning of gradual effect checking, and its fundamental differ-
ences from traditional gradual typing (Section 3) , by formulating it in the framework
of abstract interpretation (Cousot & Cousot, 1977). Using abstract interpretation,
we clearly and precisely specify otherwise informal design intentions about gradual
effect systems. Key notions like the meaning of unknown effects, consistent privilege
sets, and consistent containment between them, are defined in terms of abstraction
and concretization operations.

• We extend the generic effect system of Marino and Millstein into a generic frame-
work for gradual effects. As with gradual typing, our approach relies on a translation
to an internal language with explicit checks and casts. The nature of these checks and
casts is, however, quite different. We prove the type safety of the internal language
and the preservation of typability by the translation (Section 4).

• We demonstrate how an effect system formulated in the M&M framework can be
immediately extended to support gradual checking by lifting existing adjust and
check functions to the gradual setting (Section 3).

• We present a concrete instantiation of the generic framework to gradually check
exceptions (Section 5). The resulting system is compact and provides a tangible and
self-contained example of gradual effect checking.

• Our initial gradual effect checking semantics requires that all values carry tag infor-
mation at runtime. We develop a conservative operational semantics which does not
require values to be tagged, trading off the annotation overhead for precision with
respect to the effect discipline (Section 6).

• We combine gradual effect checking and gradual typing to provide a gradual type-
and-effect system that provides a programmer-directed combination of static and
dynamic checking of both effects and types (Section 7).

We believe this work can help effect system developers extend their designs with support
for gradual checking, thereby facilitating their adoption.

This article differs from our previous ICFP article (Bañados Schwerter et al., 2014) in
several ways. Most importantly, the last two contributions listed above are original; they
are described in detail in Section 6 and Section 7, respectively. We also fix an error in our
type safety theorem for gradual effect checking.

2 Background and Motivation

In this section, we introduce static effect checking; we introduce gradual typing; and we
give an intuition for how gradual effect checking is related to both. We finish with a brief
introduction to the M&M generic framework for type-and-effect systems.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

4 Bañados et al.

2.1 Effect Systems

Effect systems classify the computational effects that an expression performs when evalu-
ated. To illustrate this idea, consider a simple functional language with integers, booleans,
and references. We focus on three mutable state effects: alloc, read and write.

A value such as 7 or (λx : Int . x) has no effect; neither does an arithmetic expression
whose sub-expressions are also values, such as 7+ 12. Conversely, creating a reference
such as ref 6 has type Ref Int and effect alloc. Similarly, an assignment expression
such as x := 2 has type Unit and effect write, and dereferencing a reference !x has the
type of the reference content, and effect read.

Since functions are values they have no effects, but they may perform effects when
applied. To modularly check effects, then, function types are annotated with the effects of
the function body. For instance, the function f :

f = λx : Ref Int . ! x

has type (Ref Int)
{read}−−−−→Int because a read effect happens during the application of the

function. Note that the effect may not happen during some applications of a function, for
instance (assuming y : Bool is in scope):

g = λx : Ref Int . if y then x := 3;0 else 1

has type (Ref Int)
{write}−−−−−→Int because its applications may perform a write effect.

Of course, an expression can induce more than one effect, hence the use of effect sets in
the annotations. Though the language does not define any notion of subtyping on types
themselves, effect sets induce a natural notion of subtyping (Tang & Jouvelot, 1995).
Consider the following higher-order function:

h : ((Ref Int)
{read,alloc}−−−−−−−−→Int)

...−→Int

This function restricts the effects of its function argument to {read,alloc}. Intuitively,
it is valid to apply h to f , whose effect set is {read}, because that would not violate the
expectations of h. In other words:

(Ref Int)
{read}−−−−→Int<: (Ref Int)

{read,alloc}−−−−−−−−→Int

because the effects of the former are a subset of the latter. Conversely, it is invalid to apply
h to g.

From effects to privileges. Following Marino & Millstein (2009), we interpret effect
systems in terms of privilege checking: to each effectful operation corresponds a privilege
required to perform it. For instance, we can view alloc, read and write as the privileges
required to respectively allocate, dereference and assign a reference. In this framework,

the function type (Ref Int)
{read}−−−−→Int is interpreted as the type of a function that requires

the read privilege in order to be applied. Effect checking ensures that sufficient privileges
have been granted to perform effectful operations.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 5

2.2 Gradual Typing

Gradual Typing, introduced by Siek & Taha (2006), combines the flexibility of dynamic
checking with the guarantees of static checking, allowing the programmer to annotate
parts of the program with their types and to defer at will to runtime checking when static
information is insufficient. The appeal of gradual typing has inspired the development of
gradual approaches to a variety of type disciplines, including objects (Siek & Taha, 2007;
Ina & Igarashi, 2011; Takikawa et al., 2012), ownership types (Sergey & Clarke, 2012),
typestate (Wolff et al., 2011; Garcia et al., 2014), and information flow typing (Disney &
Flanagan, 2011).

In Siek & Taha (2006), unannotated programs are given a default unknown type (denoted
?). For example, function (λx . x) is automatically transformed into (λx : ? . x). Important
goals of gradual typing are to provide static guarantees for fully-annotated parts of the
code, to avoid runtime checks and to provide developers with the benefits of both static
and dynamic checking in a single language.

The type consistency relation A standard type system depends on a set of implicit type
equality restrictions. For example, a function application is valid if the type of the argument
is equal to the type of the function parameter. A gradual type system loosens this restriction
by replacing type equality with a type consistency relation (∼).

Intuitively, the type consistency relation accepts programs optimistically. A gradual type
system only rejects those programs with contradictory static information: Through type
consistency, gradual typing accepts programs missing type information, because there’s a
chance that they may be right (so runtime checks must be performed). For example, in
function (λ f : ? . f 4), the type of f is statically unknown, and is accepted because f may
be a function accepting integer arguments. Type consistency is used in a typing rule such
as the following:

T-App
Γ;Σ ` e1 : T1 Γ;Σ ` e2 : T2 T1 ∼ T2−→T3

Γ;Σ ` e1 e2 : T3
With a proper definition of type consistency, this rule can still be used to reject clearly

incorrect programs. An application (4 2) is rejected, because Int 6∼ T1−→T3. For fully
annotated programs, a gradual type system provides the same guarantees as a static type
system.

Definition 1 (Type Consistency)
The type consistency relation is defined as follows:

T ∼ T
T ∼ T T ∼ ? ?∼ T

T1 ∼ T ′1 T2 ∼ T ′2
T1−→T2 ∼ T ′1−→T ′2

Casts as runtime checks Whenever static information is insufficient to determine whether
a program is safe or unsafe, the program must be checked at runtime. A gradual system
introduces type casts to check type invariants. Type casts make explicit the optimistic static
assumptions made by a gradual type system, and check them during execution.

For example, the program ((λ f : ? . f 4) 2) is statically accepted by a gradual type
system, even though the argument 2 is not a function. This is because the function itself

ZU064-05-FPR paper Monday 11th July, 2016 15:48

6 Bañados et al.

may be validly applied in a different context, for example to an argument like λx : Int . x.
To evaluate this example program, gradual typing systems first translate the program to
an internal language with type casts. The type system for the internal language is more
restrictive, as it is allowed to appeal to type consistency only for casts. With this restriction,
casts become the only language construct where a type inconsistency may occur. In our
example, application f 4 is translated to (〈Int−→?⇐ ?〉 f) 4. At runtime, this cast triggers
an execution error.

2.3 Towards Gradual Effect Checking

Programming in the presence of a statically checked discipline brings stronger guarantees
about the behavior of programs, but doing so is demanding. In addition, one is limited
by the fact that the checker is conservative. Recently, several practical effect systems
have been applied to existing libraries, and the empirical findings highlight the need to
occasionally bypass static effect checking.

For instance, the JavaUI effect system (Gordon et al., 2013), which prevents non-UI
threads from accessing UI objects or invoking UI-thread-only methods, cannot be used to
verify libraries that dynamically check which thread they are running on and adapt their
behavior accordingly. As explained by the authors, the patterns of dynamic checks they
found in existing code go beyond simple if-then-else statements and so cannot be handled
simply by specializing the static type system. While JavaUI lives with this limitation, the
Scala effect plugin (Rytz et al., 2012) has recently been updated with an @unchecked

annotation to simply turn off effect checking locally. The use of this annotation however
breaks the guarantees offered by the effect system, since there are no associated runtime
checks.

This paper develops gradual effect checking, following the core design principles that
are common to all gradual checking approaches: (a) The same language can support both
fully static and fully dynamic checking of program properties. (b) The programmer has
fine grained control over the static-to-dynamic spectrum. (c) The gradual checker statically
rejects programs on the basis that they surely go wrong; programs that may go right are
accepted statically, but subject to dynamic checking. (d) Runtime checks are minimized
based on static information. (e) Violations of properties are detected as runtime errors—
there are no stuck programs.

2.4 Gradual Effects in Action

Recall the function g defined in Section 2.1, which requires {write} privileges. The
program h g is rejected because h only accepts functions that require {read,alloc}
privileges. Even if the programmer knows that for a particular use of g, the if condition y
is false—and thus needs no write privilege after all—the program is rejected.

In direct analogy to the unknown type ? introduced by Siek & Taha (2006) for gradual
typing, we introduce statically unknown privileges, denoted ¿, to our language. One can
ascribe unknown privileges to any expression e, using the notation e :: ¿. For instance, if g
is defined as:

g = λx : Ref Int . if y then (x := 3;0) :: ¿ else 1

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 7

then it is given the type (Ref Int)
{¿}−−→Int. The application h g is now statically accepted

by the gradual effect system. At runtime, if only the else branch is ever executed, then
no error occurs. If, on the other hand, the programmer wrongly assumed that g would
not require the write privilege and the then branch is executed, an effect error is raised,
preventing the assignment to x.

The ascription expression e :: ¿ introduces dynamic checking semantics. Statically, it
hides the privileges required by e from the surrounding context, and allows the subexpres-
sions of e to attempt effectful operations. At runtime, checks occur to ensure that the static
privileges that e requires are available as needed.

One can partially expose (and hence dynamically check) required privileges by ascribing
specific privileges in addition to ¿. For instance, e ::{read,¿} statically reveals that e
requires the read privilege, but hides other potential requirements.2

The static-to-dynamic spectrum We have illustrated the use of gradual effect checking
from the point of view of “softening static checking”—introducing islands of dynamicity in
an otherwise static verification process. Gradual verification is about supporting both ends
of the static-to-dynamic spectrum as well as any middle ground. We now discuss gradual
effect checking from the point of view of “hardening dynamic checking”—introducing
static checks in an otherwise dynamic verification process.

A fully-dynamic effectful program corresponds to a gradually-typed program in which
all effectful operations are wrapped by a :: ¿ ascription.3 Static checking trivially succeeds
because all expressions hide their required privileges. Forbidden effects are only detected
at runtime. Then, the programmer can progressively introduce static privilege annotations
(function argument types, ascriptions) and remove :: ¿ ascriptions, statically revealing re-
quired privileges. The static checker may reject the program if inconsistencies are detected,
or it may accept the program and runtime errors may occur. As more static information is
revealed, fewer dynamic checks are required. The effect discipline is hardened.

2.5 Generic Effect Systems

To avoid re-inventing gradual effects for each possible effect discipline, we build on the
generic effect framework of Marino & Millstein (2009), which we briefly describe in this
section.

The M&M effect framework defines a parameterized typing judgment Φ;Γ;Σ ` e : T . It
checks an expression under a set of privileges Φ, representing the effects that are allowed
during the evaluation of the expression e. For instance, here is the generic typing rule for
functions:

T-Fun
Φ1;Γ,x : T1;Σ ` e : T2

Φ;Γ;Σ ` (λx : T1 . e)
ε

: {ε}(T1
Φ1−→T2)

2 In a static effect system, an effect ascription e ::{read} is directly analogous to a type
ascription (Pierce, 2002). Static effect ascriptions were introduced by Gifford & Lucassen (1986).

3 This corresponds to the translation of terms from the untyped λ -calculus to the gradually-typed
λ -calculus, which assigns type ? to every expression (Siek & Taha, 2006)

ZU064-05-FPR paper Monday 11th July, 2016 15:48

8 Bañados et al.

Since a function needs no specific permissions, any privilege set Φ will do. The function
body itself may require privileges Φ1 and these are used to annotate the function type. We
explain the tag ε shortly.

A given privilege discipline (mutable state, exceptions, etc.) is instantiated by defining
two operations, a check predicate and an adjust function. The check predicate determines
whether the current privileges are sufficient to evaluate non-value expressions. To achieve
genericity, the checkC predicate is indexed by check contexts C, which represent the non-
value expressions. The adjust function modifies the available privileges for evaluating the
subexpressions of a given expression form. This function takes the current privileges and
returns the privileges used to check the considered subexpression. To achieve genericity,
the adjustA function is indexed by adjust contexts A, which represent the immediate con-
text around a given subexpression.

To increase its overall expressiveness, the framework also incorporates a notion of tags ε ,
which represent auxiliary static information for an effect discipline (e.g. abstract locations).
Expressions that create new values, like constants and lambdas, are indexed with tags. The
check and adjust contexts contain tag sets π so that checkC and adjustA can leverage static
information about the values of subexpressions. To facilitate abstract value-tracking, type
constructors are annotated with tagsets, so types take the form T ≡ πρ . For more precise
control, effect disciplines can associate tags to privileges e.g., read(ε1), read(ε2), etc. 4

For example, a check predicate for controlling mutable state is defined as follows:

check!π(Φ) ⇐⇒ read ∈Φ

checkrefπ(Φ) ⇐⇒ alloc ∈Φ

checkπ1:=π2(Φ) ⇐⇒ write ∈Φ

checkC(Φ) holds for all other C

In this case, only state-manipulating expressions have interesting check predicates, which
simply require the corresponding privilege. A tag set π that sits in an expression position of
a check context represents the class of values that could appear in that position at runtime.
A more complex check predicate could make use of the information in the tag sets, for
example, to limit access to memory for an individual value (through its tag annotation). For
example, we could annotate some individual references with an imm tag (for immutability).
A predicate like

checkπ1:=π2(Φ) ⇐⇒ write ∈Φ and imm 6∈ π1

would reject programs that attempt to update these individual references, but still accept
assignments to references where imm is guaranteed to not happen.

Since the assignment expression involves evaluating two subexpressions (the reference
and the new value), there are two adjust contexts. The ↓:=↑ context corresponds to eval-
uating the reference to be assigned, and the π :=↓ context corresponds to evaluating the
assigned value. The ↓ symbol denotes the subexpression for which privileges should be
adjusted. The ↑ symbol denotes a subexpression that would be evaluated after the current
expression.

4 Gradual effects are compatible with effect systems that do not need tags. See Section 5.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 9

For certain disciplines, like mutable state, the adjust function is simply the identity
for every context. But one could, for example, require that all subexpressions assigned
to references must be effect-free by defining adjust as follows:

adjustπ:=↓(Φ) = /0

adjustA(Φ) = Φ otherwise

All typing rules in the generic system use check and adjust to enforce the intended effect
discipline. For instance, here is the typing rule for assignment:

T-Asgn

adjust↓:=↑(Φ) ;Γ;Σ ` e1 : π1Ref T1
adjustπ1:=↓(Φ) ;Γ;Σ ` e2 : π2ρ2
checkπ1:=π2(Φ) π2ρ2 < : T1

Φ;Γ;Σ ` (e1 :=e2)ε
: {ε}Unit

The subexpressions e1 and e2 are typed using adjusted privilege sets. Their corresponding
types have associated tagsets πi that are used to adjust and check privileges. Note that in
accord with left-to-right evaluation, adjustπ1:=↓ knows which tags are associated with typ-
ing e1. Finally, checkπ1:=π2 verifies that assignment is allowed with the given permissions
and the subexpression tag sets. Subtyping is used here only to account for inclusion of
privilege sets between function types.

For maximum flexibility, the framework imposes only two constraints on the definitions
of check and adjust:

Property 1 (Privilege Monotonicity)
• If Φ1 ⊆Φ2 then checkC(Φ1) =⇒ checkC(Φ2);
• If Φ1 ⊆Φ2 then adjustA(Φ1)⊆ adjustA(Φ2).

Property 2 (Tag Monotonicity)
• If C1 vC2 then checkC2(Φ) =⇒ checkC1(Φ);
• If A1 v A2 then adjustA2

(Φ)⊆ adjustA1
(Φ).

Privilege monotonicity captures the idea that once an expression has sufficient privileges
to run, one can always safely add more. This corresponds to effect subsumption in many
particular effect systems. In contrast, tag monotonicity captures the idea that more tags
implies more uncertainty about the source of a runtime value. The v relation holds when
contexts have the same structure and the tagsets of the first context are subsets of the
corresponding tagsets of the second context. For example, refπ1 v refπ2 if and only if
π1 ⊆ π2. In summary, check and adjust are order-preserving with respect to privileges and
order-reversing with respect to tags. For example, the order-reversing constraint on tags
can be used in adjust to limit the privileges available for assignment to a particular set
of locations, or to limit the side effects for the arguments of a particular set of operators.
The restrictions for tags in check can be used to limit the set of values that can perform an
effectful operation to those carrying at most a particular set of tags, and thus to introduce
fine-grained “per-value” effect restrictions.

The framework can be instantiated with any pair of check and adjust functions that
satisfy both privilege and tag monotonicity. The resulting type system is safe with respect
to the corresponding runtime semantics: no runtime privilege check fails, so no program
gets stuck.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

10 Bañados et al.

3 Gradual Effects as an Abstract Interpretation

In this section we present a formal analysis of gradual effects, guided by the design prin-
ciples presented in Section 2.3. We use abstract interpretation (Cousot & Cousot, 1977) to
define our notion of unknown effects, and find that as a result the formal definitions capture
our stated design intentions, and that the resulting framework for gradual effects is quite
generic and highly reusable.

3.1 The Challenge of Gradual Effects

The central concept underlying gradual effects is the idea of unknown privileges, ¿. This
concept was inspired by the notion of unknown type ? introduced by Siek & Taha (2006),
but this concept is not as straightforward to understand and formalize.

First, gradual types reflect the tree structure of type names. Siek and Taha treat gradual
types as trees with unknown leafs. Two types are deemed consistent whenever their known
parts match up exactly. For instance, the types ?→ Int and Bool→ ? are consistent
because their → constructors line up: ? is consistent with any type structure. In contrast,
privilege sets are unordered collections of individual effects, so a structure-based definition
of consistency is not as immediately apparent.

Second, under gradual typing, the unknown type always stands for one type, so casts
always associate an unknown type with one other concrete type. On the contrary, the
unknown privileges annotation ¿ stands for any number of privileges: zero, one, or many.

Third, simple types are related to the final value of a computation. In contrast, privileges
are related to the dynamic extent of an expression as it produces a final value. As such,
defining what it means to gradually check privileges involves tracking steps of computa-
tion, rather than wrapping a final value with type information.

Finally, as we have seen in Section 2.1, effect systems naturally induce a notion of sub-
typing, which must be accounted for in a gradual effect system. In general, subtyping char-
acterizes substitutability: which expressions or values can be substituted for others, based
on static properties. In prior work, Siek and Taha demonstrate how structural subtyping and
gradual typing can be combined (Siek & Taha, 2007), but the criteria for substitutability
differ substantially between structural types and effects, so it is not straightforward to adapt
Siek and Taha’s design to suit gradual effects.

Our initial attempts to adapt gradual typing to gradual effects met with these challenges.
We found abstract interpretation to be an informative and effective framework in which to
specify and develop gradual effects. The rest of this section develops the notion of unknown
effect privileges and consistent privilege sets. The rest of the paper then uses the framework
as needed to support the notions required to formalize gradual effect checking.

3.2 Fundamental Concepts

This subsection conceives gradual effects as an instance of abstract interpretation. We
do not assume any prior familiarity with abstract interpretation: we build up the relevant
concepts as needed.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 11

For purpose of discussion, consider again the effect privileges for mutable state from
Section 2.1:

Φ ∈ PrivSet = P({read,write,alloc})
Ξ ∈ CPrivSet = P({read,write,alloc,¿})

We already understand privilege sets Φ, but we want a clear understanding of what
consistent privilege sets Ξ—privilege sets that may have unknown effects—really mean.
Consider the following two consistent privilege sets:

Ξ1 = {read} Ξ2 = {read,¿}

The set Ξ1 is completely static: it refers exactly to the set of privileges {read}. The set
Ξ2 on the other hand is gradual: it refers to the read privilege, but leaves open the possi-
bility of other privileges. In this case, the ¿ stands for several possibilities: no additional
privileges, the write privilege alone, the alloc privilege alone, or both write and alloc.

Thus, each consistent privilege set stands for some set of possible privilege sets. To
formalize this interpretation, we introduce a concretization function γ , which maps a con-
sistent privilege set Ξ to the concrete set of privilege sets that it stands for.5

Definition 2 (Concretization)
Let γ : CPrivSet→P(PrivSet) be defined as follows:

γ(Ξ) =

{
{Ξ} ¿ /∈ Ξ

{(Ξ\{¿})∪Φ |Φ ∈ PrivSet} otherwise .

Reconsidering our two example consistent privilege sets, we find that

γ(Ξ1) = {{read}}

γ(Ξ2) =

{
{read,write},{read,alloc},
{read},{read,alloc,write}

}
Since each consistent privilege set stands for a number of possible concrete privilege sets,
we say that a particular privilege set Φ is represented by a consistent privilege set Ξ if
Φ ∈ γ (Ξ).

If we consider these two resulting sets of privilege sets, it is immediately clear that Ξ1 is
more restrictive about what privilege sets it represents (only one), while Ξ2 subsumes Ξ1

in that it also represents {read}, as well as some others. Thus, Ξ1 is strictly more precise
than Ξ2, and so γ induces a precision relation between different consistent privilege sets.

Definition 3 (Precision)
Ξ1 is less imprecise (i.e. more precise) than Ξ2, notation Ξ1 v Ξ2, if and only if γ(Ξ1)⊆ γ(Ξ2)

Precision formalizes the idea that some consistent privilege sets imply more information
about the privilege sets that they represent than others. For instance, {read} is strictly
more precise than {read,¿} because {read} v {read,¿} but not vice-versa.

5 We introduce an abstraction function α in Section 3.4

ZU064-05-FPR paper Monday 11th July, 2016 15:48

12 Bañados et al.

3.3 Lifting Predicates to Consistent Privilege Sets

Now that we have established a formal correspondence between consistent privilege sets
and concrete privilege sets, we can systematically adapt our understanding of the latter to
the former.

Recall the checkC predicates of the generic effect framework (Section 2.5), which deter-
mine if a particular effect set fulfills the requirements of some effectful operator. Gradual
checking implies that checking a consistent privilege set succeeds so long as checking its
runtime representative could plausibly succeed. We formalize this as a notion of consistent
checking.

Definition 4 (Consistent Checking)
Let checkC be a predicate on privilege sets. Then we define a corresponding consistent
check predicate c̃heckC on consistent privilege sets as follows:

c̃heckC(Ξ) ⇐⇒ checkC(Φ) for some Φ ∈ γ(Ξ).

Under some circumstances, however, we must be sure that a consistent privilege set
definitely has the necessary privileges to pass a check. For this purpose we introduce a
notion of strict checking.

Definition 5 (Strict Checking)
Let checkC be a predicate on privilege sets. Then we define a corresponding strict check
predicate strict-checkC on consistent privilege sets as follows:

strict-checkC(Ξ) ⇐⇒ checkC(Φ) for all Φ ∈ γ(Ξ).

By defining both consistent checking and strict checking in terms of representative sets,
our formalizations are both intuitive and independent of the underlying checkC predicate.
Furthermore, these definitions can be recast directly in terms of consistent privilege sets
once we settle on a particular checkC predicate (cf. Section 5).

3.4 Lifting Functions to Consistent Privilege Sets

In addition to predicates on consistent privilege sets, we must also define functions on
them. For instance, the M&M framework is parameterized over a family of adjust func-
tions adjustA : PrivSet→ PrivSet, which alter the set of available effect privileges (Sec-
tion 2.5). Using abstract interpretation, we lift these to consistent adjust functions
ãdjustA : CPrivSet→ CPrivSet. To do so we must first complete the abstract interpreta-
tion framework.

Consider our two example consistent privilege sets. Each represents some set of privilege
sets, so we expect that adjusting a consistent privilege set should be related to adjusting
the corresponding concrete privilege sets. The key insight is that adjusting a consistent
privilege set should correspond somehow to adjusting each individual privilege set in its
represented collection. For example ãdjustA({read,alloc}) should be related to the set
{adjustA({read,alloc})}, and ãdjustA({read,¿}) should be related to the following set:

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 13

{
adjustA({read,write}) ,adjustA({read,alloc}) ,
adjustA({read}) ,adjustA({read,alloc,write})

}
To formalize these relationships, we need an abstraction function
α : P(PrivSet)→ CPrivSet that maps collections of privilege sets back to corresponding
consistent privilege sets. For such a function to make sense, it must at least be sound.

Proposition 1 (Soundness)
ϒ⊆ γ(α(ϒ)) for all ϒ∈P(PrivSet).

Soundness implies that the corresponding consistent privilege set α(ϒ) represents at
least as many privilege sets as the original collection ϒ. A simple and sound definition of α

is α(ϒ) = {¿}. This definition is terrible, though, because it needlessly loses information.
For instance, α(γ(Ξ1)) = {¿}, and since {¿} represents every possible privilege set, that
mapping loses all the information in the original set. At the least, we would like α(γ(Ξ1))=

Ξ1.
Our actual definition of α is far better than the one proposed above:

Definition 6 (Abstraction)
Let α : P(PrivSet)→ CPrivSet be defined as follows:6

α(ϒ) =

{
Φ ϒ = {Φ}
(
⋂

ϒ)∪{¿} otherwise.

In words, abstraction preserves the common concrete privileges, and adds unknown
privileges to the resulting consistent set when needed. For example:

α({{read,write}}) = {read,write}
α({{read,write},{read,alloc}}) = {read,¿}

α({{read},{alloc}}) = {¿}

As required, this abstraction function α is sound. Even better though, given our inter-
pretation of consistent privilege sets, this α is the best possible one.

Proposition 2 (Optimality)
Suppose ϒ⊆ γ(Ξ). Then α(ϒ)v Ξ.

Optimality ensures that α gives us not only a sound consistent privilege set, but also the
most precise one.7 In our particular case, optimality implies that α(γ(Ξ)) = Ξ for all Ξ but
one: α(γ({read,write,alloc,¿})) = {read,write,alloc}. Both consistent privilege
sets represent the same thing.

Using α and γ , we can lift any function f on privilege sets to a function on consistent
privilege sets. In particular, we lift the generic adjust functions:

Definition 7 (Consistent Adjust)

6 For simplicity, we assume ϒ is not empty, since α(/0) =⊥ plays no role in our development.
7 Abstract interpretation literature expresses this in part by saying that α and γ form a Galois

connection (Cousot & Cousot, 1979).

ZU064-05-FPR paper Monday 11th July, 2016 15:48

14 Bañados et al.

φ ∈ Priv, ξ ∈ CPriv = Priv∪{¿}
Φ ∈ PrivSet = P(Priv) , Ξ ∈ CPrivSet = P(CPriv)

ε ∈ Tags , π ∈ TagSet = P(Tags)

w ::= unit | λx : T . e | l Prevalues

v ::= wε Values

e ::= x | v | e e | e :: Ξ | (ref e)
ε
| !e | (e := e)

ε
Terms

T ::= π ρ Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

A ::= ↓↑ | π ↓ | ref ↓ | ! ↓ | ↓:=↑ | π :=↓ Adjust Contexts

C ::= π π | ref π | !π | π := π Check Contexts

Fig. 1. Syntax of the source language for gradual effect checking

Let ãdjustA : CPrivSet→ CPrivSet be defined as follows:

ãdjustA(Ξ) = α ({adjustA(Φ) |Φ ∈ γ (Ξ)}) .

The ãdjust function reflects all of the information that can be retained when conceptu-
ally adjusting all the sets represented by some consistent privilege set.

The c̃heck and ãdjust operators are critical to our generic presentation of gradual ef-
fects. Both definitions are independent of the underlying concrete definitions of check
and adjust. As we show through the rest of the paper, in fact, the abstract interpretation
framework presented here time and again provides a clear and effective way to conceive
and formalize concepts that we need for gradual effect checking.

4 A Generic Framework for Gradual Effects

In this section we present a generic framework for gradual effect systems. As is standard for
gradual checking, the framework includes a source language that supports unknown anno-
tations, an internal language that introduces runtime checks, and a type-directed translation
from the former to the latter.

4.1 The Source Language

The core language (Figure 1) is a simply-typed functional language with a unit value,
mutable state, and effect ascriptions e :: Ξ. The language is parameterized on some finite
set of effect privileges Priv, as well as a set of tags Tag. The Priv set is the basis for
consistent privileges CPriv, privilege sets PrivSet, and consistent privilege sets CPrivSet.
The Tag set is the basis for tag sets TagSet. Each type constructor is annotated with a tag
set, so types are annotated deeply. Each value-creating expression is annotated with a tag

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 15

Ξ;Γ;Σ ` e : T T-Fn
Ξ1;Γ,x : T1;Σ ` e : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε

: {ε}T1
Ξ1−→T2

T-Unit
Ξ;Γ;Σ ` unitε : {ε}Unit

T-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε : {ε}Ref T

T-Var
Γ(x) = T

Ξ;Γ;Σ ` x : T
T-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

π1(T1
Ξ1−→T3). π1(π2ρ2

Ξ−→T3) c̃heckπ1π2(Ξ)

Ξ;Γ;Σ ` e1 e2 : T3

T-Eff
Ξ1;Γ;Σ ` e : T Ξ1 @∼ Ξ

Ξ;Γ;Σ ` (e :: Ξ1) : T
T-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : πρ

c̃heckref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ

T-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : πRef T

c̃heck!π (Ξ)

Ξ;Γ;Σ `!e : T
T-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

c̃heckπ1:=π2(Ξ) π2ρ2 . T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. 2. Type system for the source language for gradual effect checking

so that effect systems can abstractly track values. The type of a function carries a consistent
privilege set Ξ that characterizes the privileges required to execute the function body.

The source language also specifies a set of adjust contexts A and check contexts C.
Each adjust context is determined by an evaluation context frame f (Section 4.2). They
index ãdjustA to determine how privileges are altered when evaluating in a particular
context. Similarly, the check contexts correspond to program redexes: function applica-
tion, reference allocation, dereferencing, and assignment. They index c̃heckC to determine
which privileges are needed to perform the operation. Using tag sets, the framework can
express check predicates that forbid particular values and adjust functions that allow more
effect privileges for certain sets of values. Section 2.5 presents an example of using tags
to refine a check predicate. Marino & Millstein (2009) use tag annotations to model more
sophisticated scenarios like transactional memory, type qualifiers, and threads.

Figure 2 presents the type system. The judgment Ξ;Γ;Σ` e : T means that the expression
e has type T in the lexical environment Γ and store typing Σ, when provided with the privi-
leges Ξ. Based on the judgment, e is free to perform any of the effectful operations denoted
by the privileges in Ξ. If the consistent privilege set contains the unknown privileges ¿,
then e might also try any other effectful operation, but at runtime a check for the necessary
privileges is performed.

Each type rule extends the standard formulation with operations to account for effects.
All notions of gradual checking are encapsulated in consistent effect sets Ξ and operations
on them. The [T-Fn] rule associates some sufficient set of privileges with the body of the
function. In practice we can deduce a minimal set to avoid spurious checks.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

16 Bañados et al.

The [T-App] rule illustrates the structure of the non-value typing rules. It enhances the
M&M typing rule for function application (similar to [T-Asgn] in Section 2.5) to support
gradual effects. In particular, each privilege check from the original rule is replaced with a
consistent counterpart: consistent predicates succeed as long as the consistent privilege
sets represent some plausible concrete privilege set, and consistent functions represent
information about what is possible in their resulting consistent set. The ãdjust and c̃heck
operations are defined in Section 3, and we use the same techniques introduced there to lift
effect subtyping to a notion of consistent subtyping. First we lift traditional privilege set
membership to consistent membership:

Definition 8 (Consistent Membership)
φ is a consistent member of Ξ, notation φ ∈̃ Ξ, if and only if φ ∈Φ for some Φ ∈ γ(Ξ).

We use consistent membership to lift set containment Φ1⊆Φ2 (defined as ∀φ ∈Priv . φ ∈
Φ1⇒ φ ∈Φ2), to consistent containment:

Definition 9 (Consistent Containment)
Ξ1 is consistently contained in Ξ2, notation Ξ1 @∼ Ξ2, if and only if ∀φ ∈ Priv,φ ∈̃ Ξ1⇒
φ ∈̃ Ξ2.8

Consistent containment means that in at least one plausible situation, privilege set con-
tainment could hold at runtime. Of course, this claim must sometimes be protected with
a runtime check in the internal language, as discussed further in the next section. Consis-
tent subtyping . is defined by replacing the privilege subset premise of traditional effect
subtyping with consistent containment.

T . T
π1 ⊆ π2

π1ρ . π2ρ

T3 . T1 T2 . T4
π1 ⊆ π2 Ξ1 @∼ Ξ2

π1T1
Ξ1−→T2 . π2T3

Ξ2−→T4

Both relations express plausible substitutability. Consistent containment is not transitive,
like the consistency relation for types in Siek & Taha (2006). As a result consistent sub-
typing is also not transitive. Our definition of consistent subtyping is directly analogous to
consistent subtyping for gradual object systems (Siek & Taha, 2007).

All other rules in the type system can be characterized as consistent liftings of the
corresponding M&M rules. Each uses adjustA to type subexpressions, and checkC to check
privileges.

Finally, [T-Eff] reflects the consistent counterpart of static effect ascriptions, which do
not appear in the M&M system. The rule requires that the ascribed consistent privileges
be consistently contained in the current consistent privileges. Ascribing ¿ delays some
privilege checks to runtime, as discussed next.

8 This definition is equivalent to the definition in Bañados Schwerter et al. (2014), which states that
Φ1 ⊆Φ2 for some Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2). It is updated here to better reflect the relationship
between consistent containment and strict containment.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 17

e ::= . . . | Error | 〈T ⇐ T 〉e | has Φ e | restrict Ξ e Terms

f ::= � e | v � | (ref �)ε |!� | (� := e)ε | (wε :=�)ε Frames

g ::= f | 〈T2⇐ T1〉� | has Φ � | restrict Ξ � Error Frames

Fig. 3. Syntax of the internal language for gradual effect checking

4.2 The Internal Language

The semantics of the source language is given by a type-directed translation to an internal
language that makes runtime checks explicit. This section presents the internal language.
The translation is presented in Section 4.3.

Figure 3 presents the syntax of the internal language. It extends the source language with
explicit features for managing runtime effect checks. The Error construct indicates that a
runtime effect check failed, and aborts the rest of the computation. Casts 〈T ⇐ T 〉e express
type coercions between consistent types. The has operation checks for the availability
of particular effect privileges at runtime. The restrict operation restricts the privileges
available while evaluating its subexpression.

Frames represent evaluation contexts in our small-step semantics. By using frames, we
present a system with structural semantics like the M&M framework while defining fewer
evaluation rules as in a reduction semantics.

Static semantics The type system of the internal language (Figure 4) mostly extends
the surface language type system, with a few critical differences. First, recall that type
rules for source language operators, like function application [T-App], verify effects based
on consistent checking: so long as some representative privilege set is checkable, the
expression is accepted. In contrast, the internal language introduces new typing rules for
these operators, like [IT-App] (changes highlighted in gray).

In the internal language, effectful operations must have enough privileges to be per-
formed: plausibility is not sufficient anymore. As we see in the next section, consistent
checks from source programs are either resolved statically or rely on runtime privilege
checks to guarantee satisfaction before reaching an effectful operation. For this reason, uses
of c̃heck are replaced with strict-check (Section 3.3, Definition 5). Consistent subtyping
. is replaced with a notion of subtyping <: that is based on ordinary set containment for
consistent privilege sets and tags:

T < : T
π1 ⊆ π2

π1ρ < : π2ρ

T3 < : T1 T2 < : T4
π1 ⊆ π2 Ξ1 ⊆ Ξ2

π1T1
Ξ1−→T2 < : π2T3

Ξ2−→T4

The intuition is that an expression that can be typed with a given set of consistent permis-
sions should still be typable if additional permissions become available. We formalize this
intuition below.

In addition to ordinary set containment, the internal language depends on a strict notion
of set membership that focuses on statically known permissions. A consistent privilege

ZU064-05-FPR paper Monday 11th July, 2016 15:48

18 Bañados et al.

Ξ;Γ;Σ ` e : T

IT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ;Γ;Σ ` e1 e2 : T3

IT-Cast
Ξ;Γ;Σ ` e : T0 T0 < : T1 T1 . T2

Ξ;Γ;Σ ` 〈T2⇐ T1〉e : T2
IT-Has

(Φ∪Ξ);Γ;Σ ` e : T
Ξ;Γ;Σ ` has Φ e : T

IT-Error
Ξ;Γ;Σ ` Error : T

IT-Rst
Ξ1;Γ;Σ ` e : T Ξ1 ≤ Ξ

Ξ;Γ;Σ ` restrict Ξ1 e : T

IT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : πρ

strict-checkref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ
IT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : πRef T

strict-check!π (Ξ)

Ξ;Γ;Σ `!e : T

IT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. 4. Typing rules for the internal language for gradual effect checking

set represents some number of concrete privilege sets, each containing some different
privileges, but most consistent privilege sets have some reliable information. For instance,
any set represented by Ξ= {read,¿}may have a variety of privileges, but any such set will
surely contain the read privilege. We formalize this idea in terms of strict membership:

Definition 10 (Strict membership)
A privilege φ is a strict member of Ξ, denoted φ ∈̂ Ξ, if and only if φ ∈Φ for all Φ ∈ γ(Ξ).

Using strict membership, we define the static part of a consistent privilege set as the
collection of its strict members.

Definition 11 (Static Part)
The static part of a consistent privilege set, |·| : CPrivSet→ PrivSet is defined as

|Ξ|=
{

φ ∈ Priv | φ ∈̂ Ξ
}

The definition directly embodies the intuition of “all reliable information,” but this opera-
tion also has a simple direct characterization: |Ξ|= Ξ\{¿}.

Using the notion of static membership, we define the concept of static containment for
consistent privilege sets.

Definition 12 (Static Containment)

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 19

Φ ` e | µ → e | µ

E-Ref
checkref {ε1}(Φ) l 6∈ dom(µ)

Φ ` (ref wε1)ε2
| µ → lε2 | µ[l 7→ wε1]

E-Asgn
check{ε1}:={ε2}(Φ)

Φ ` (lε1 := wε2)ε
| µ → unitε | µ[l 7→ v]

E-Deref
check!{ε}(Φ) µ(l) = v

Φ `!lε | µ → v | µ

E-Frame
adjustA(f)(Φ) ` e | µ → e′ | µ ′

Φ ` f [e] | µ → f [e′] | µ ′
E-Error

Φ ` g[Error] | µ → Error | µ

E-Has-T
Φ
′ ⊆Φ Φ ` e | µ → e′ | µ ′

Φ ` has Φ
′ e | µ → has Φ

′ e′ | µ ′

E-Has-V

Φ ` has Φ
′ v | µ → v | µ

E-Has-F
Φ
′ 6⊆Φ

Φ ` has Φ
′ e | µ → Error | µ

E-Rst-V
Φ ` restrict Ξ v | µ → v | µ

E-Rst
Φ′′ = max{Φ′ ∈ γ(Ξ) |Φ′ ⊆Φ} Φ′′ ` e | µ → e′ | µ ′

Φ ` restrict Ξ e | µ → restrict Ξ e′ | µ ′

E-App
check{ε1}{ε2}(Φ)

Φ ` (λx : T1 . e)ε1 vε2 | µ → [vε2/x]e | µ

E-Cast-Frame
Φ ` e | µ → e′ | µ ′

Φ ` 〈T2⇐ T1〉e | µ → 〈T2⇐ T1〉e′ | µ ′

E-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ ⇐ π1ρ〉wε | µ → wε | µ

E-Cast-Fn
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22⇐ π1T11

Ξ1−→T12〉(λx : T11 . e)
ε
| µ →

(λx : T21 . 〈T22⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T11 ⇐ T21〉x)/x]e)
ε
| µ

Fig. 5. Small-step semantics of the internal language for gradual effect checking

Ξ1 is statically contained in Ξ2, notation Ξ1 ≤ Ξ2, if and only if ∀φ ∈ Priv . φ ∈̂ Ξ1⇒ φ ∈̂
Ξ2.9

The intuition behind static containment is that an expression can be safely used in any
context that is guaranteed to provide at least its statically-known privilege requirements.

We need static containment to help us characterize effect subsumption in the internal
language. Privilege subsumption says that if Φ is sufficient to type e, then so can any larger
set Φ′ (Tang & Jouvelot, 1995). To establish this, we must consider properties of both
strict-check and ãdjust. Conveniently, strict-check is monotonic with respect to consistent
privilege set containment.

Lemma 3

9 An equivalent definition, in terms of static part, is |Ξ1| ⊆ |Ξ2|.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

20 Bañados et al.

If strict-checkC(Ξ1) and Ξ1 ⊆ Ξ2 then strict-checkC(Ξ2).

On the contrary, though, ãdjust is not monotonic with respect to set containment on
consistent privilege sets. However, it is monotonic with respect to static containment.

Lemma 4
If Ξ1 ≤ Ξ2 then ãdjustC(Ξ1)≤ ãdjustC(Ξ2)

We exploit this to establish effect subsumption.

Proposition 5 (Strong Effect Subsumption)

If Ξ1;Γ;Σ ` e : T and Ξ1 ≤ Ξ2, then Ξ2;Γ;Σ ` e : T .

Proof
By induction over the typing derivations Ξ1;Γ;Σ ` e : T .

Corollary 6 (Effect Subsumption)

If Ξ1;Γ;Σ ` e : T and Ξ1 ⊆ Ξ2, then Ξ2;Γ;Σ ` e : T .

Proof
Set containment implies static containment.

We now turn to the new syntactic forms of the internal language. Casts represent explicit
dynamic checks for consistent subtyping relationships. The has operator checks dynam-
ically if the privileges in Φ are currently available. Its subexpression e is typed using the
consistent set that is extended statically with Φ.10

The restrict operator constrains its subexpression to be typable in a consistent priv-
ilege set that is statically-contained in the current set. Since ¿ does not play a role in
static containment, the set Ξ1 can introduce dynamism that was not present in Ξ. As we
show when translating source programs, this is key to how ascription can introduce more
dynamism into a program.

As it happens, we can use notions from this section to simply characterize notions that
we, for reasons of conceptual clarity, defined using the concretization function and col-
lections of plausible privilege sets. The concretization-based definitions clearly formalize
our intentions, but these new extensionally equivalent characterizations are well suited to
efficient implementation.

First, we can characterize consistent containment as an extension of static containment,
and strict checking as simply checking the statically known part of a consistent privilege
set.

Proposition 7
1. Ξ1 @∼ Ξ2 if and only if Ξ1 ⊆ Ξ2 or ¿ ∈ Ξ2.

10 Note that Φ∪Ξ is the same as lifting the function f (Φ′) = Φ∪Φ′, and Φ@∼ Ξ is the same as lifting
the predicate P(Φ′) = Φ⊆Φ′.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 21

2. strict-checkC(Ξ) if and only if checkC(|Ξ|).

Furthermore, we can characterize consistent checking based on whether the consistent
privilege set in question contains unknown privileges.

Proposition 8

1. If ¿ ∈ Ξ then c̃heckC(Ξ) if and only if checkC(PrivSet).
2. If ¿ /∈ Ξ then c̃heckC(Ξ) if and only if checkC(Ξ).

Dynamic semantics Figure 5 presents the evaluation rules of the internal language. The
judgment Φ ` e | µ → e′ | µ ′ means that under the privilege set Φ and store µ , the expres-
sion e takes a step to e′ and µ ′. Effectful constructs consult Φ to determine whether they
have sufficient privileges to proceed.

The has expression checks dynamically for privileges. If the privileges in Φ′ are avail-
able, then execution may proceed: if not, then an Error is thrown. Note that in a real
implementation, has only needs to check for privileges once: the semantics keeps has

around only to support our type safety proof.
The restrict expression restricts the privileges available in the dynamic extent of the

current subexpression. The intuition is as follows. Ξ represents any number of privilege
sets. At least one of those sets must be contained in Φ or the program gets stuck: restrict
cannot add new privileges. So restrict limits its subexpression to the largest subset of
currently available privileges that Ξ can represent. In practice, this means that if Ξ is fully
static, then Ξ represents only one subset Φ′ of Φ and the subexpression can only use those
privileges. If ¿ ∈ Ξ, then Ξ can represent all of Φ, so the privilege set is not restricted at
all. This property of restrict enables ascription to support dynamic privileges.

Since function application is controlled under some effect disciplines, the [E-App] rule is
guarded by the checkapp predicate inherited from the M&M framework. If this check fails,
then the program is stuck. More generally, any effectful operation added to the framework
is guarded by such a check. These checks are needed to give intensional meaning to our type
safety theorem: if programs never get stuck, then any effectful operation that is encountered
must have the proper privileges to run. This implies that either the permissions were
statically inferred by the type checker, or the operation is guarded by a has expression,
which throws an Error if needed privileges are not available. It also means that thanks to
type safety, an actual implementation would not need any of the checkC checks: the has

checks suffice. This supports the pay-as-you-go principle of gradual checking.
Higher-order casts incrementally verify at runtime that consistent subtyping really im-

plies privilege set containment. In particular they guard function calls. First, they restrict
the set of available privileges to detect privilege inconsistencies in the function body. Then,
they check the resulting privilege set for the minimal privileges needed to validate the
containment relationship. Intuitively, we only need to check for the statically determined
permissions that are not already accounted for.

To illustrate, consider the following example:{read,alloc}@∼ {read,¿} because alloc
could be in a representative of {read,¿}, but {read,alloc} 6⊆ {read,¿} since that is not
definitely true. Thus, to be sure at runtime, we must check for
|{read,alloc}|\ |{read,¿}|= {alloc}. Note that the rule [E-Cast-Fn] uses the standard

ZU064-05-FPR paper Monday 11th July, 2016 15:48

22 Bañados et al.

Ξ;Γ;Σ ` e⇒ e : T

C-Fn
Ξ1;Γ,x : T1;Σ ` e⇒ e′ : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε
⇒ (λx : T1 . e′)

ε
: {ε}T1

Ξ1−→T2

C-Unit
Ξ;Γ;Σ ` unitε ⇒ unitε : {ε}Unit

C-Var
Γ(x) = T

Ξ;Γ;Σ ` x⇒ x : T

C-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε ⇒ lε : {ε}Ref T

C-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2

π1(T1
Ξ1−→T3). π1(π2ρ2

Ξ−→T3) c̃heckπ1π2(Ξ) Φ = ∆π1π2(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?(Φ,

(
〈〈π1(π2ρ2

Ξ−→T3)⇐ π1(T1
Ξ1−→T3)〉〉 e′1

)
e′2) : T3

C-Eff
Ξ1;Γ;Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ;Γ;Σ ` (e :: Ξ1)⇒ insert-has?(Φ,restrict Ξ1 e′) : T

C-Ref
ãdjustref ↓(Ξ) ;Γ;Σ ` e⇒ e′ : πρ c̃heckref π (Ξ) Φ = ∆ref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε
⇒ insert-has?(Φ,(ref e′)

ε
) : {ε}Ref πρ

C-Deref
ãdjust!↓(Ξ) ;Γ;Σ ` e⇒ e′ : πRef T c̃heck!π (Ξ) Φ = ∆!π (Ξ)

Ξ;Γ;Σ `!e⇒ insert-has?(Φ, !e′) : T

C-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2

c̃heckπ1:=π2(Ξ) π2ρ2 . T1 Φ = ∆π1:=π2(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?(Φ,

(
e′1 := e′2

)
ε
) : {ε}Unit

Fig. 6. Translation of source programs to the internal language for gradual effect checking

approach to higher-order casts due to Findler & Felleisen (2002). As a formalization con-
venience, the rule uses substitution directly rather than function application so as to protect
the implementation internals from effect checks and adjustments. In practice the internal
language would simply use function application without checking or adjusting privileges.

Type safety We prove type safety in the style of Wright & Felleisen (1994). Program
execution begins with a closed term e as well as an initial privilege set Φ. The initial
program must be well typed and the privilege set must capture the static information

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 23

implied by the consistent privilege set Ξ used to type the program. Under these conditions,
the program does not get stuck. 11

Definition 13 (Satisfaction)
We say that a privilege set Φ satisfies a consistent privilege set Ξ (notation Ξ ` Φ) if a
subset of Φ is represented by Ξ. Formally:

Ξ `Φ ⇐⇒ Φ
′ ⊆Φ for some Φ

′ ∈ γ(Ξ)

Theorem 9 (Progress)
Suppose Ξ; /0;Σ ` e : T . Then either e is a value v, an Error, or Φ ` e | µ → e′ | µ ′ for any
privilege set Φ such that Ξ `Φ , and for any store µ such that /0 | Σ ` µ .

Proof
By structural induction over derivations of Ξ; /0;Σ ` e : T .

Theorem 10 (Preservation)
If Ξ;Γ;Σ ` e : T , and
Φ ` e | µ → e′ | µ ′ for Ξ `Φ and Γ | Σ ` µ , then
Γ | Σ′ ` µ ′ and Ξ;Γ;Σ′ ` e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof
By structural induction over the typing derivation. Preservation of types under substitution
for values (required for [E-App]) and for identifiers (required for [E-Cast-Fn]) follows as
a standard proof since neither performs effects.

Corollary 11 (Progress (with representation, as in (Bañados Schwerter et al., 2014)))
Suppose Ξ; /0;Σ ` e : T . Then either e is a value v, an Error, or Φ ` e | µ → e′ | µ ′ for any
privilege set Φ such that Φ ∈ γ(Ξ) , and for any store µ such that /0 | Σ ` µ .

Proof
Special case of Theorem 9, since Φ ∈ γ(Ξ)⇒ Ξ `Φ.

Corollary 12 (Preservation)
If Ξ;Γ;Σ ` e : T , and
Φ ` e | µ → e′ | µ ′ for Φ ∈ γ(Ξ) and Γ | Σ ` µ , then
Γ | Σ′ ` µ ′ and Ξ;Γ;Σ′ ` e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof
Special case of Theorem 10, like the previous corollary.

4.3 Translating Source Programs to the Internal Language

Figure 6 presents the type-directed translation of source programs to the internal language
(the interesting parts have been highlighted). The translation uses static type and effect
information from the source program to determine where runtime checks are needed in the
corresponding internal language program. In particular, any consistent check, containment,

11 We also proved type safety for a minimal system with neither tags nor state.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

24 Bañados et al.

or subtyping that is not also a strict check, static containment, or static subtyping, respec-
tively, must be guarded by a has expression (for checks and containments) or a cast (for
subtypings).

Recall from Section 4.2 that the has expression checks if some particular privileges
are available at runtime. The translation system determines for each program point which
privileges (if any) must be checked. Since the generic framework imposes only privilege
and tag monotonicity restrictions on the check and adjust functions, deducing these checks
can be subtle.

Consider a hypothetical check predicate for a mutable state effect discipline:

checkC(Φ) ⇐⇒ read ∈Φ or write ∈Φ.

Though strange here, an effect discipline that is satisfied by one of two possible privi-
leges is generally plausible, and in fact satisfies the monotonicity restrictions. When, say,
the consistent check c̃heckC({¿}) succeeds in some program, which privileges should be
checked at runtime?

The key insight is that the internal language program must check for all privileges that
can produce a minimal satisfying privilege set. In the case of the above example, we must
conservatively check for both read and write. However, we do not need to check for any
privileges that are already known to be statically available.

We formalize this general idea as follows. First, since we do not want to require and
check for any more permissions than needed, we only consider all possible minimal priv-
ilege sets that satisfy the check. We isolate the minimal privilege sets using the mins
function:

mins(ϒ) =
{

Φ ∈ ϒ | ∀Φ′ ∈ ϒ.Φ′ 6⊂Φ
}
.

Given some consistent privilege set Ξ, we identify all of its plausible privilege sets that
satisfy a particular check, and select only the minimal ones. In many cases there is a unique
minimal set, but as above, there may not.12 To finish, we coalesce this collection of minimal
privileges, and remove any that are already statically known to be available based on Ξ.
These steps are combined in the following function.

Definition 14 (Minimal Privilege Check)
Let C be some checking context. Then define ∆C : CPrivSet→ PrivSet as follows:

∆C(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | checkC(Φ)})
)
\ |Ξ|

The ∆C function transforms a given consistent privilege set into the minimal conservative
set of additional privileges needed to safely pass the checkC function13. For instance, the
[C-App] translation rule uses it to guard a function application, if need be, with a runtime

12 One could retain precision by extending our abstraction to support disjunctions of consistent effect
sets, at the cost of increased complexity in the translation and type system.

13 In principle, an infinite domain of effects could induce an uncomputable ∆C function. In practice
this has not been an issue. For instance, Toro & Tanter (2015) extended this approach to
polymorphic effects while retaining computability.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 25

privilege check. These checks are introduced by the insert-has? metafunction.

insert-has?(Φ,e) =

{
e if Φ = /0

has Φ e otherwise

Note that the metafunction only inserts a check if needed. This supports the pay-as-you-
go principle of gradual checking.

Since [C-App] also appeals to consistent subtyping, a cast may be introduced in the
translation as well. For this, we appeal to a cast insertion metafunction:

〈〈T2⇐ T1〉〉e =

{
e if T1 < : T2

〈T2⇐ T1〉e otherwise.

Once again, casts are only inserted when static subtyping does not already hold.
The [C-Eff] rule translates effect ascription in the source language to the restrict

form in the internal language. If more privileges are needed to ensure static containment
between Ξ1 and Ξ, then translation inserts a runtime has check to bridge the gap.14

An important property of our translation system is that it preserves typing.

Theorem 13 (Translation preserves typing)
If Ξ;Γ;Σ ` e⇒ e′ : T in the source language then Ξ;Γ;Σ ` e′ : T in the internal language.

Proof
By structural induction over the translation derivation rules. The proof relies on the fact that
∆C(Ξ) introduces enough runtime checks (via insert-has?) that any related strict-checkC(Ξ)

predicate is sure to succeed at runtime, so those rules do not get stuck. The instance of
insert-has? in the [C-Eff] rule plays the same role there.

5 Example: Gradual Effects for Exceptions

In this section we show how to use our framework to define systems with richer language
features. We extend the language with exception handling and introduce an effect discipline
that verifies that every raised exception is caught by some handler. We introduce new
syntax; privilege and tag domains; adjust and check operations and contexts; and typing,
translation, and evaluation rules. Note that the example system is general enough to allow
different effect disciplines for exceptions.

The language introduces an infinite set of exception constructors sT , which are indexed
on the type T of argument that they carry as a payload. An exception is triggered by the
raise sT (e) expression, which indicates that the expression e should be evaluated to a
value of type T , wrapped in the exception constructor, and raised. An exception handler,
try e1 handle sT (x).e2, attempts to evaluate the expression e1. If successful, its result is
returned; if e1 raises an sT exception, it binds the payload to x and evaluates e2.

We also introduce new adjust and check contexts. These contexts are used to parame-
terize different effect disciplines over the same constructs. They are used by the adjust
and check functions in the operational semantics, by the type system and the translation

14 The formula for Φ is analogous to the ∆C operation for checkC.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

26 Bañados et al.

e ::= . . . | raise sT (e) | try e handle sT (x) . e Terms

f ::= f ′ | try � handle sT e Source Frames

f ′ ::= (Original Source Frames) | raise sT (�) Propagating Frames

C ::= . . . | raise sT (π) | try π handle sT ↑ Check Contexts

A ::= . . . | raise sT (↓) | try ↓ handle sT ↑ Adjust Contexts

Fig. 7. Syntax for a Gradual Effect System with Exceptions

Φ ` e | µ → e | µ E-Raise-Frame
checkraise sT ({•})(Φ)

Φ ` f ′[raise sT (v)] | µ → raise sT (v) | µ

E-Try-V
checktry {•} handle sT ↑(Φ)

Φ ` try v handle sT (x).e | µ → v | µ

E-Try-T
checktry /0 handle sT ↑(Φ)

Φ ` try raise sT (v) handle sT (x).e | µ → [v/x]e | µe

E-Try-F
checkraise sT1 ({•})

(Φ)

Φ ` try raise sT1(v) handle sT2(x).e | µ → raise sT1(v) | µ

Fig. 8. Evaluation rules added to the operational semantics for a system with exceptions

algorithm. Following M&M, we define a new check context for each new redex and a new
adjust context for each new evaluation frame.

Figure 8 presents the semantics for exceptions in our system. Exceptions propagate out
of evaluation frames by rule [E-Raise-Frame] until they are caught by a matching handler.
Since handlers are also evaluation frames, we must distinguish the rest of the evaluation
frames from handlers. As presented in Figure 7, we call non-handler frames “Propagating
Frames”.

A try handler first reduces the guarded expression. If it is a value, the exception handler
is discarded through rule [E-Try-V]. If the guarded expression reduces to an exception
whose constructor matches the handler, rule [E-Try-T] substitutes the payload value in
the handling expression. If the constructor does not match the handler, the exception is
propagated by rule [E-Try-F], and the handler discarded.

Rule [E-Try-T] uses /0 in the check context instead of a tagset because the guarded
expression produced an exception instead of a value. The type system does not relate the
type of the exception payload to the type of the guarded expression, so when check is
evaluated it cannot access tag information related to the guarded expression. We followed
the most conservative strategy for this case. Thanks to the tag monotonicity property, we
know that check holds with /0 if it holds for any particular π because
try /0 handle sT ↑ v try π handle sT ↑.

The new source language typing rules are presented in Figure 9. The corresponding
typing rules for the internal language follow the same pattern as for rules in the general

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 27

Ξ;Γ;Σ ` e : T

ãdjustraise sT (↓)(Ξ) ;Γ;Σ ` e : T

c̃heckraise sT ({•})(Ξ)

Ξ;Γ;Σ ` raise sT (e) : T ′

ãdjusttry ↓ handle sT ↑(Ξ) ;Γ;Σ ` e1 : T1 Ξ;Γ,x : T ;Σ ` e2 : T2

c̃hecktry {•} handle sT ↑(Ξ) T2 . T1

Ξ;Γ;Σ ` try e1 handle sT (x).e2 : T1

Fig. 9. Source language typing rules for exceptions

framework: c̃heck is replaced by strict-check and . is replaced by < : . In the translation
system, the rules introduce ∆C and insert-has?.

As presented so far, our gradual effect system with exceptions does not enforce any
particular effect discipline. To do so, we define both a domain for privileges and concrete
check and adjust functions. We instantiate privileges Priv to be the exception constructors
(of the form sT), and provide the following definitions for check and adjust, which capture
the standard effect discipline for exceptions:

checkraise sT (π)(Φ)⇐⇒ sT ∈Φ

checkC(Φ) holds for all other C

adjusttry ↓ handle sT ↑(Φ) = Φ∪{sT}
adjustA(Φ) = Φ otherwise

Note that this effect discipline does not require tags, so technically we use a singleton
set for the universe of tags (ε ∈ {•}). In practice the tags can be removed altogether.

Type safety also holds for this extended language. Since we extended the framework
core language with new features, and also extended the structure of the typing judgment
and the evaluation semantics, we technically require a new proof of type safety. However,
we observe that we can preserve the statements of theorems 9, 10 and 13. Furthermore,
the proof of type safety conservatively extends the proof for our base system, as each case
of the original proof holds for the extended language in essentially the same way. Where
necessary, appeals to the induction hypotheses account for any differences introduced by
the new language features.

As intended by Marino & Millstein (2009), the framework can often be extended in
this generic way to account for common language extensions. Suitable language features
introduce new cases to the proofs, but otherwise do not interfere with the structure of the
proof. If some candidate language extension changes the structure of the theorems or the
individual proof cases, then more explicit work is needed to establish soundness. Delaware
et al. (2013) study approaches to formally modularizing such proofs of type safety in the
context of mechanized metatheory.

Implementation With a concrete effect discipline, an instance of the general effect system
can be specialized to produce concrete operational semantics, type system and translation

ZU064-05-FPR paper Monday 11th July, 2016 15:48

28 Bañados et al.

Ξ;Γ;Σ ` e⇒ e : T

Ξ;Γ;Σ ` e⇒ e′ : T1
{sT1} ⊆ Ξ

Ξ;Γ;Σ ` raise sT1(e)⇒ raise sT1(e
′) : T2

Ξ;Γ;Σ ` e⇒ e′ : T1
{sT1} 6⊆ Ξ {sT1}@∼ Ξ

Ξ;Γ;Σ ` raise sT1(e)⇒ has {sT1} raise sT1(e
′) : T2

Ξ∪{sT };Γ;Σ ` e1⇒ e′1 : T1
Ξ;Γ,x : T ;Σ ` e2⇒ e′2 : T2 T2 < : T1

e′ = try e′1 handle sT (x).e′2
Ξ;Γ;Σ ` try e1 handle sT (x).e2⇒ e′ : T1

Fig. 10. Implementation version of the translation rules for a system with exceptions

algorithm rules, inlining the calls to check and adjust. Figure 10 presents specialized trans-
lation rules for the concrete discipline we have chosen. These rules directly incorporate the
semantics of the insert-has? function, separating its two cases across two separate transla-
tion rules. Since the only non-trivial check context in the effect discipline is raise sT (π),
we provide separate rules only for raise using the feasible values for ∆raise sT (π) in each
case (/0 or {sT}).

Illustration By making the exception checking discipline gradual, we achieve a more
expressive language. Consider the following function, which also uses conditionals and
arithmetic expressions:

let squared = λ f : Int
Ξ−→Int . (λx : Int . (f (x∗ x)) :: /0)

positive = λx : Int . if x≥ 0 then x else raise sInt(x)
in (squared positive)

A key property of the positive function is that it never raises an exception when applied
to a non-negative argument. On the other hand, function squared always calls f with x∗ x
as an argument, which is never negative. We therefore know that the function produced
by evaluating (squared positive) never raises an exception, so we would like to type it as

Int
/0−→Int. A static effect system is too restrictive to do so, but a gradual effect system

provides the flexibility to assign the desired type to the function.
The squared function’s parameter is declared to have type Int

Ξ−→Int , for some Ξ.
Without gradual effects, the only options for Ξ are either Ξ = /0, in which case the type
system rejects the application(squared positive) because the argument requires too many

privileges, or {sInt}⊆Ξ, which means the returned function cannot be typed as Int /0−→Int.
In the gradual exception system, we can annotate function positive to hide its side effects,

delaying privilege checking to runtime, and annotate function squared to allow functions
that may throw exceptions, as in the following:

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 29

letsquared = λ f : Int
{¿}−−→Int . (λx : Int . (f (x∗ x)) :: /0)

positive = λx : Int . (if x≥ 0 then x else raise sInt(x)) :: {¿}
in (squared positive)

The translation algorithm then produces the following program in the internal language:

let squared = λ f : Int
{¿}−−→Int.

λ x : Int.
restrict /0

((〈Int /0−→Int⇐ Int
{¿}−−→Int〉 f)(x∗ x))

positive = λ x : Int.
restrict {¿}
if x≥ 0
then x
else has {sInt} raise sInt(x)

in (squared positive)

In this program, application (squared positive) can be typed as Int /0−→Int, as desired.
Given the properties of integer numbers, the else branch in the body of positive is never
executed. The higher-order cast for f in the body of squared never fails because rule
[E-Cast-Fn] only introduces restrict /0 has /0 checks.

Effect errors are not exceptions Gradual Effects for Exceptions is more expressive than
simply raising uncaught exceptions. Triggering an Error instead of propagating the ex-
ception prevents the system from following implicit exceptional control flows, where an
outer handler catches an exception that was locally forbidden. The following example
demonstrates how this behavior can affect evaluation of a program:

let positive = λx : Int . (if x≥ 0 then x else raise sInt(x)) ::{¿}
nonzero = λx : Int . if x = 0 raise sInt (x) else x

in try

nonzero ((positive (−1)) :: /0)
handle sInt(x)
print “0 is an invalid argument”

The handler in the let body is designed to catch the exceptions thrown by the body
of nonzero. To this end, the code uses an effect ascription to ensure that the argument to
nonzero does not throw any exception.

At the same time, the program reuses the positive function introduced in the previous
example, but applies the function to a negative number. Given this incorrect argument,
positive attempts to raise an exception. An effect ascription to the /0 privilege set forces the
application to not raise any exception at all. This inconsistent behavior is caught at runtime
by the gradual effect discipline.

We purposely used the same label for exceptions in positive and in nonzero. If the
system simply threw the uncaught exception in positive, the handler would take control
even though it was not designed for that exception. Instead, since positive has no excep-
tion raising privileges, the system triggers an Error just before it would have thrown the

ZU064-05-FPR paper Monday 11th July, 2016 15:48

30 Bañados et al.

exception. Evaluation thus terminates without control ever reaching the exception handler,
which was designed for failures of nonzero only.

6 A Conservative Operational Semantics

The operational semantics of Marino & Millstein (2009) embeds check predicates that
confirm the safety of effectful operations. A powerful property of that system is that a type
safety proof, which states that no terms get stuck, implies type soundness: all effectful
operations at runtime are performed in an effect context with sufficient permissions. Since
every runtime check of the effect discipline will succeed, a real implementation can skip
them.

By making our system gradual, we have compromised this property: while the built-
in runtime checks may still be skipped, we must keep the privilege contexts for gradual
effect checking to work. Privilege contexts depend on adjust operations, which in turn
depend on the tags that are associated to runtime values. Thus for gradual effect checking
to work at runtime, we require the bookkeeping information in the operational semantics
that is used to update the context. In this section, we provide an alternative operational
semantics that requires a smaller amount of mandatory runtime information: we make
tag annotations on values redundant, at the cost of precision: Our alternative semantic
conservatively produces runtime errors for some programs that reduce to a value in our
previously introduced semantics.

6.1 Safety and soundness

Marino and Millstein’s operational semantics of the language includes check predicates
as a premise for every step performing an effectful operation, and adjust functions as a
context for every step reducing subexpressions. By introducing these predicates, their type
safety theorem ensures that the operational semantics is sound with respect to the effect
discipline being enforced by the type system. This property also has the useful corollary
that check predicates at runtime are made redundant by type safety, thus an implementation
can safely remove not only the predicates themselves, but all the machinery that was in
place simply to support those predicates: tag annotations on values and the context of
privileges.

To make our system gradual, we have introduced runtime checks that ensure soundness
in the form of has language constructs, which verify that a set of privileges assumed when
type checking the program is actually available at runtime. The has language construct
introduced in Section 4.2 queries the set of available privileges, so an implementation
cannot erase this information nor tag annotations on values, which are needed by adjust
to generate the set of available privileges.. At the same time, since the system encapsulates
all runtime checking in the has construct, all check predicates can still be safely removed
in an implementation, just like in Marino & Millstein (2009).

To calculate the available privileges, the semantics introduced in Figure 5 follows the
M&M approach and depends on adjust functions, which in turn may depend on runtime
tag information. For example, to reduce a function application vε e, the privileges available

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 31

w ::= unit | λx : T . e | l Prevalues

v ::= wε Values

e ::= x | v | (e e)
π
| Error | 〈T ⇐ T 〉e | (ref e)

ε
| !e | (e := e)(ε,π) Terms

| has Φ e | restrict Ξ e

T ::= πρ Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

A ::= ↓↑ | π ↓| ref ↓ | ! ↓ | ↓:=↑ | π :=↓ Adjust Contexts

C ::= π π | refπ | !π | π := π Check Contexts

f ::= (� e)
π
| (v �)

π
| (ref �)

ε
|!� Frames

| (� := e)(ε,π) | (v :=�)(ε,π)

g ::= f | 〈T2⇐ T1〉� | has Φ � | restrict Ξ � Error Frames

Fig. 11. Conservative Language Syntax

to reduce e may depend on the tag ε of the function. 15 As presented so far, an implemen-
tation can remove neither the privilege context Φ nor the tags in values.

In this section we introduce an alternative semantics that uses statically approximated
adjust contexts for adjust functions, reducing privilege precision to make tag annotations
for values redundant at runtime.

We call this semantics “conservative”: some programs that reduce to a value in the
original semantics reduce to an Error instead. If a program reduces to a value in both
operational semantics, the results are equivalent (modulo tag annotations). We provide
this second semantics as a different option in the design spectrum, where the dynamic
annotation overhead can be traded off against precision in the dynamic enforcement of the
effect discipline

6.2 Making Tags Redundant at Runtime

In the generic operational semantics introduced in Figure 5, tag information is used only
to compute adjust functions and check predicates. We first clarify why check predicates
are redundant, and we later focus on how adjust functions are not redundant, as well as
studying the runtime dependence of adjust on tag information.

The check predicates in the operational semantics are made redundant by the type
system. In the operational semantics for the internal language presented in Figure 5, every
check predicate uses a check context limited to the tags of the values in the expression to be
reduced. For example, to reduce a (ref unitε1)ε2 expression under a privilege context Φ,
rule [CE-Ref] verifies that checkref {ε1}(Φ) holds. At the same time, typing an expression

15 In Section 6.2.2 we show an example adjust function that is dependent on runtime tag information,
as well as a program whose result thus depends on the tag of the function.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

32 Bañados et al.

that reduces to (ref unitε1)ε2 requires a matching strict-checkref π(Ξ) predicate to hold,
with ε1 ∈ π . A strict-checkref π(Ξ) predicate ensures that for every privilege set Φ ∈
γ(Ξ), checkref π(Φ) holds. By the tag monotonicity property (Property 2), checkC(Φ)

implies checkC′(Φ) for any C′ that contains less tags than C (C′ vC). Thus by statically
requiring a strict-checkref π(Ξ) predicate in the type system, type safety ensures that the
check predicate in rule [CE-Ref] always holds, and therefore checking checkref {ε1}(Φ) at
runtime is redundant. This monotonicity argument applies to every check predicate in the
operational semantics, making them also redundant. Therefore, an implementation does
not need to evaluate check predicates since they always succeed for well-typed programs,
a property that also holds in Marino & Millstein (2009).

Things are not so clear for adjust. Since tags affect precisely which privileges are
available at runtime, we must focus on where adjust require tag information at runtime.
The only interesting case is rule [CE-Frame], which alters the set of available privileges by
using adjust functions. The adjust functions depend on tag information through adjust
contexts. This dependency arises only for two forms of adjust contexts in our seman-
tics: π ↓ and π :=↓ (both in rule [CE-Frame]), corresponding to expressions typed with
rules [IT-App] and [IT-Asgn], but applies in general to any language construct in which
evaluation of a subexpression could affect the privileges available for the computation of
other subexpressions. The type system introduced in Section 4.2 uses an approximated
tagset π obtained when typing e1 in expressions of the form e1 e2 and e1 := e2 to generate
the respective adjust contexts π ↓ and π :=↓, used by the ãdjust function to generate
the context used to type e2 in rules [IT-App] and [IT-Asgn]. The operational semantics
introduced in Figure 5, on the other hand, uses the exact tag annotations of values. A
corollary of type safety both in our system as in Marino & Millstein (2009) is the fact that
the exact tag ε in the operational semantics is guaranteed to be a member of the set π used
in the type derivation. With this restriction, the tag monotonicity lemmas of the generic
framework ensure that the privilege information available at runtime is always equal or
greater than the privilege information used by the type system.

In Section 6.2.1 we propose an alternative semantics that removes the need for tags
on value, as well as a type-directed translation from our previous operational semantics.
Instead of requiring runtime tags, the new language uses only static information, which
is added statically during translation to the relevant redexes. Therefore, runtime tag an-
notations may be safely erased in the conservative semantics, so that the runtime system
can use standard representations of values, while still supporting effect disciplines that
make nontrivial uses of tag information. Removing runtime tags comes at the price of error
precision: some programs with gradual effect annotations trigger an error even though the
generic semantics in Figure 5 reduces them to a value. An example of a program whose
observable behavior changes across both semantics is shown in Section 6.2.2.

6.2.1 The Conservative Internal Language

To define the conservative semantics, we modify the syntax of redexes. The syntax of the
conservative language is introduced in Figure 11, which highlights the interesting changes
from the language of Figure 3. At a high level, there is only one difference: redexes that use
tag information to adjust privileges are annotated with a static approximation of the tags

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 33

CT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1V e′1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ;Γ;Σ ` e2V e′2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ;Γ;Σ ` e1 e2V (e′1 e′2)π1
: T3

CT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1V e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2V e′2 : π2ρ2
strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ;Γ;Σ ` (e1 := e2)ε
V (e′1 := e′2)(ε,π1)

: {ε}Unit

Fig. 12. Type-directed tag addition (extract). Rules introduce the tag approximation of the
generic language explicitly, to be used on adjust contexts for evaluation. Complete system
in Figure A 1.

CE-Asgn
check{ε1}{ε2}(Φ)

Φ ` (lε1 := wε2)(ε,π) | µ unitε | µ[l 7→ wε2]

CE-Frame
adjustA′(f)(Φ) ` e | µ e′ | µ ′

Φ ` f [e] | µ f [e′] | µ ′

CE-App
check{ε1}{ε2}(Φ)

Φ ` ((λx : T1 . e)ε1 wε2)π
| µ [wε2/x]e | µ

Fig. 13. The conservative semantics, with special frame translation function A′, that maps
annotated evaluation frames to adjust contexts (extract). Complete semantics in Figure A 2.

that could arise at runtime. We translate well-typed programs from the original internal
syntax to the conservative language syntax using the translation algorithm introduced in
Figure 12. The translation algorithm annotates redexes by extracting tag approximations
from the typing derivation. The only interesting rules are [CT-App] and [CT-Asgn], which
contain sub-expressions depending on adjust contexts π ↓ and π :=↓, respectively. We
extend function applications (e1 e2) and assignments ((e1 := e2)ε) with a statically approx-
imated tagset π , which is used by the conservative semantics instead of the tag obtained
from values in the original semantics. In Section 6.3 we prove that value tag annotations in
the conservative language can be safely erased in an implementation.

A new operational semantics is introduced in Figure 13. Only 3 rules differ from the
semantics in Figure 5: rules [CE-App], [CE-Asgn] and [CE-Frame]. Rules [CE-App] and
[CE-Asgn] do not change their semantics, but they now operate on expressions with extra
syntactic information. Upon reduction, this extra information is discarded.

Rule [CE-Frame] differs from the original semantics in how the adjust context for a
particular frame is obtained. In the system introduced in Figure 5, rule [CE-Frame] uses
function A to infer the proper adjust context for an evaluation frame. In the case for frames
wε � and (wε := �)ε ′ , it used the tag ε in wε to create a singleton tagset and produce

ZU064-05-FPR paper Monday 11th July, 2016 15:48

34 Bañados et al.

A′ ((� e)
π
) = ↓↑

A′
(
(v �)

π

)
= π ↓

A′ ((ref �)ε) = ref ↓
A′ (!�) = ! ↓

A′
(
(� := e)(ε,π)

)
= ↓:=↑

A′
(
(v :=�)

(ε, π)

)
= π :=↓

Fig. 14. New frame translation function A′, mapping annotated evaluation frames to adjust
contexts.

the corresponding {ε} ↓ or {ε} :=↓ context. In the conservative semantics, we instead
use function A′ as defined in Figure 14. A′ uses the extended evaluation frames of the
conservative language, which includes frames of the form (v �)π and (v :=�)(ε,π) that
carry an extra tagset π , used to produce the corresponding π ↓ or π :=↓ adjust context.
No tag information from values is used to infer adjust contexts, making tag information
redundant at runtime.

6.2.2 Example of a Program with Observable Differences

Do the changes proposed affect the result of evaluating a program? In this section, we
construct an example program that produces different results when evaluated in each se-
mantics:

((λ f : {ε1,ε2}T1
/0−→T2 . f has {read}!lε)ε (λx : T1 . x)ε1){ε} (1)

In particular, we find that this program runs to completion in the standard semantics but
produces a runtime error in the conservative semantics. As Section 6.3 shows, this is the
only possible difference.

We first focus on the difference between both semantics that might cause different
behavior. The differences only affect programs that perform runtime checks.

Tag monotonicity ensures that when tags are removed from a set π , adjust can only in-
crease the privileges of the resulting set. Therefore, for programs to have different behavior
between both semantics, the adjust functions must make strict use of this condition, and
by the same argument, depend on the adjust context.

adjustπ↓(Φ)⊂ adjust{ε}↓(Φ)

In our language, this only happens for adjust contexts that use the tagsets, π ↓ and π :=↓.
We therefore propose, as an example, the following definition for adjustπ↓:

adjustπ↓(Φ) =

{
Φ∪{read} if Φ⊆ {ε}
Φ otherwise

For any other kind of adjust context, we use the identity function. We also define predicate
check!π(Φ) ⇐⇒ read ∈Φ, and checkC(Φ) to always hold for any other check context.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 35

Let us build an example program in a language using this effect discipline and produces
different results in both semantics. Since the only language construct that changes behavior
with different Φ’s is has Φ e, and we require an adjust context of a form π ↓ or π :=↓
to appear to observe differences, we introduce a has construct in the argument position of
an application: a program of the form (e1 has Φ′e2){ε1,ε2} in the conservative semantics.
We introduce an annotation {ε1,ε2} as minimal set that exhibits different behavior based
only on tags. To have a {ε1,ε2} frame annotation, expression e1 needs to be typed as
{ε1,ε2}T1

Ξ−→T2, and therefore can only reduce to an abstraction, which may have either tag
ε1 or ε2.

To define a concrete program that follows these restrictions, we just write e1 as a variable
f with the appropriate type, bound in a λ -abstraction. We use the familiar read privilege
as the singleton element of set Φ′, and build an e2 whose meaning in the source language
could eventually require a has check: !lε for some location l. While a simpler expression
like unit would suffice as e2, it would make the example unrealistic.

e3 = (λ f : {ε1,ε2}T1
/0−→T2 . f has {read}!lε)ε

Given our definition of adjust, the example in Program (1) will present observable
differences.

This program can be typed with Ξ = {¿} and evaluates to different results in each
semantics. To focus on the interesting step of evaluation, we first apply substitution of
the argument in the body of the function. Then we get the following cases for evaluation
with Φ = /0. In the conservative semantics (Figure 13):

adjust{ε1,ε2}↓(Φ) ` has {read}!l | µ Error | µ
Φ ` ((λx : T1 . x)ε1 has {read}!l){ε1,ε2} | µ

∗ Error | µ

and in the original semantics (Figure 5):

adjust{ε1,ε2}↓(Φ) ` has {read}!l | µ →!l | µ
Φ ` (λx : T1 . x)ε1 has {read}!l | µ →∗ (λx : T1 . x)ε1 !l | µ

This example shows that some programs which reduce to a value in the original seman-
tics trigger errors instead in the conservative semantics. In the next section, we prove that
this is the only difference between both semantics.

6.3 Conservative Semantics is a Conservative Approximation

When we label the semantics in Figure 13 as conservative, we mean it is a conservative
approximation of the original semantics: if a program reduces to a value and a store in the
modified semantics, it reduces to the same value and store in the original language (modulo
tag annotations). If a program reduces to a runtime error in the conservative semantics, the
program either reduces to an error or to a value in the original semantics.

We establish the relation between both semantics formally in the Conservative Approx-
imation Theorem (Theorem 16). To introduce the theorem, we first define two auxiliary

ZU064-05-FPR paper Monday 11th July, 2016 15:48

36 Bañados et al.

notions: A tagset erasure function (EC) that maps programs from the conservative lan-
guage syntax to the original syntax by removing tag annotations, and a simulation relation
that captures the relation between both languages. Theorem 16 establishes that evaluation
preserves the simulation relation throughout.

Definition 15 (Tagset erasure function EC)
We define function EC : ExprConservative→ ExprGeneric as follows:

EC (unitε) = unitε

EC (lε) = lε
EC ((λx : T . e)ε) = (λx : T . EC (e))ε

EC ((e1 e2)π) = EC (e1) EC (e2)

EC (〈T1⇐ T0〉e) = 〈T1⇐ T0〉EC (e)
EC (has Φ e) = has Φ EC (e)

EC (restrict Ξ e) = restrict Ξ EC (e)
EC (Error) = Error

EC ((ref e)ε) = (ref EC (e))ε

EC (!e) = !EC (e)
EC
(
(e1 := e2)(ε,π)

)
= (EC (e1) := EC (e2))ε

This tagset erasure function inverts the tag addition functionV introduced in Figure 12.
The only interesting cases are for application and assignment (highlighted). In both cases,
we remove the extra π annotations that were introduced by the translation defined in
Figure 12. Other cases simply apply the function recursively to subexpressions.

Simulation Relation. The simulation relation characterizes how we relate programs
from the conservative semantics with programs in the original semantics. To avoid confu-
sion, we underscore with a C relations that should hold in the conservative semantics, and
with an O relations that should hold in the original semantics introduced in Section 4.2.

Definition 16 (Simulation Relation)

Ξ;Γ;Σ `C e2 : T2
e1 = EC (e2)

Γ;Σ �O µ1 Γ;Σ �C µ2
µ1 = EC ◦µ2

Ξ;Γ;Σ (e1,µ1)∼ (e2,µ2)

A pair (e1,µ1) from the original language is related to a pair (e2,µ2) in the conservative
language with a context Ξ;Γ;Σ by the simulation relation ∼ if:

1. e2 can be typed in the conservative type system using the context (There exists a type
T such that Ξ;Γ;Σ `C e2 : T).

2. e1 and e2 correspond to the same expression modulo tag information (e1 = EC (e2))
3. Both stores µ1 and µ2 are consistent with the context, and µ1 is equivalent to µ2

without the extra tagset information (∀x,µ1(x) = EC (µ2(x)))

Theorem 14 (Strong Conservative Approximation)

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 37

.
Let Ξ;Γ;Σ (e1,µ1)∼ (e2,µ2) and Ξ`Φ. If Φ` e2 | µ2 e′2 | µ ′2, then for any Ξ`Φ′,

either:

• Φ′ ` e′2 | µ ′2 ∗ Error | µ ′2
• ∃e′1 and µ ′1 such that Φ′ ` e1 | µ1→ e′1 | µ ′1 and ∃Σ′ ⊇ Σ such that

Ξ;Γ;Σ′ (e′1,µ
′
1)∼ (e′2,µ

′
2).

Proof
By structural induction over . Since both semantics are mostly equivalent modulo differ-
ences in rules [CE-Frame] in each semantics, that rule is the only interesting case for the
proof.

The key step in the proof is that to use the induction hypothesis with rule [CE-Frame],
we must ensure that the Φ used in the premise of original semantics’ [E-Frame] rule (
adjustA(fO)(Φ)) simulates the Ξ of the simulation relation (ãdjustA′(fC)(Ξ)` adjustA(fO)(Φ)),
which is non trivial since there are different adjust contexts used in each semantics. To do
so we first establish a principle of well-formedness for frames (Definition 17). We then
prove that well-formed frames is admissible from typing in the conservative language, and
thus admissible from the simulation relation (Lemma 15). We then prove that simulation
ensures well-formed frames, and that there is a partial ordering between the adjust contexts
used in the conservative semantics and those in the original semantics (A(fO)v A′(fC)).

This partial ordering ensures that if Φ is a valid simulation privilege set for Ξ (Ξ ` Φ),
then also ãdjustA′(fC)(Ξ) ` adjustA(fO)(Φ). This relation enables usage of the induction
hypothesis.

Definition 17 (Well-formed conservative frames)
We say that a frame fC is well-formed if either:

• fC is syntactically equivalent to a frame in the original semantics fO (for example,
!�)

• fC is equivalent to a frame in the original semantics fO plus extra tagset information
that conservatively approximates the required tag information for value subexpres-
sions. i.e. frame (wε �)π is well-formed only if ε ∈ π , and frame (wε1 :=�)(ε,π) is
well-formed only if ε1 ∈ π .

Lemma 15 (Typing in the conservative semantics ensures well-formed frames)
If Ξ;Γ;Σ ` e : T , and e = fC[e′], then fC is a well-formed frame.

Proof
By cases on the final rule of the type derivation.

Theorem 16 (Conservative Approximation)
Let Ξ;Γ;Σ ` e1V e2 : T , µ1 and µ2 such that Ξ;Γ;Σ (e1,µ1)∼ (e2,µ2), and Ξ `Φ. If
Φ ` e2 | µ2 ∗ v2 | µ ′2, then ∃v1 and µ ′1 such that Φ ` e1 | µ1→∗ v1 | µ ′1 and ∃Σ′ ⊇ Σ such
that Ξ;Γ;Σ′ (v1,µ

′
1)∼ (v2,µ

′
2).

Proof
To prove this theorem, we establish an intermediate strong conservative approximation
lemma (Theorem 14). Then this theorem reduces to the reflexive-transitive closure of
Theorem 14.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

38 Bañados et al.

CIT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π0

(
T1

Ξ1−→T3

)
ãdjust

π1 ↓
(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-check
π1 π2

(Ξ) π0

(
T1

Ξ1−→T3

)
< : π1

(
(π2ρ2)

Ξ−→T3

)
Ξ;Γ;Σ ` (e1 e2) π1

: T3

CIT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π0Ref T1

ãdjust
π1 :=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-check
π1 :=π2

(Ξ) π2ρ2 < : T1 π0 ⊆ π1

Ξ;Γ;Σ ` (e1 := e2)
(ε,π1)

: {ε}Unit

Fig. 15. Type system for the conservative language (extract). Complete system
in Figure A 3.

6.4 Type Safety of the Conservative Semantics

In this section we prove type safety for the conservative language. We introduce its type
system in Figure 15. The key difference with the type system in Figure 4 is that it uses
tagsets from the extra annotations in redexes instead of the tagsets from the typing of e1 in
rules [CIT-App] and [CIT-Asgn] (which is highlighted in boxes in Figure 15). This change
also requires explicit subsumption of tagsets to relate the tagset in the redex annotation
back to the tagset in the type of e1.

Theorem 17 (Progress)
Suppose Ξ; /0;Σ ` e : T . Then either e is a value v, an Error, or Φ ` e | µ e′ | µ ′ for all
privilege sets Φ ∈ γ(Ξ) and for any store µ such that /0 | Σ ` µ .

Proof
By structural induction on type derivations. Most cases are analogous to the original lan-
guage’s proof of progress, since most typing rules are the same. However, this theorem
does not depend on effect satisfaction: representation is sufficient. This happens because
rules [CIT-App] and [CIT-Asgn] use the same adjust contexts at runtime and statically,
so now the representation condition (Φ ∈ γ(Ξ)) is sufficient and, unlike in the original
language, we do not need to appeal to privilege set satisfaction.

Theorem 18 (Preservation)
If Ξ;Γ;Σ ` e : T , and Φ ` e | µ e′ | µ ′ for Φ ∈ γ(Ξ) with Γ | Σ ` µ , then ∃Σ′ ⊇ Σ such
that Γ | Σ′ ` µ ′ and Ξ;Γ;Σ′ ` e′ : T ′ with T ′ < : T .

Proof
By structural induction on type derivations and the applicable evaluation rules. Most cases
follow analogously to the original language, except for:

• Typing rule [CIT-App] with evaluation rule [CE-Frame] using f = (v�)π .
• Typing rule [CIT-Asgn] with evaluation rule [CE-Frame] using f = (v :=�)(ε,π).

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 39

Both cases are simpler in the sense that they do not require the tag monotonicity restrictions
from Property 2 that were used in the original language to account for the difference
between the tagset used at evaluation and the one used for typing.

6.5 Redundancy of Tags in the Conservative Semantics

We introduced the conservative semantics to avoid carrying tag information at runtime. To
formalize the claim that tag information is redundant and thus it may be discarded at run-
time, we introduce a simulation argument. We can easily define an operational semantics
↪→ based on the conservative semantics defined in Figure 13, except that we remove
every check predicate (so that they don’t have to be checked at runtime), and also define a
tag-removal function EV () as follows

EV (unitε) = unit

EV (lε) = l
EV ((λx : T . e)ε) = (λx : T . EV (e))

EV ((e1 e2)π) = (EV (e1) EV (e2))π

EV (〈T1⇐ T0〉e) = 〈T1⇐ T0〉EV (e)
EV (has Φ e) = has Φ EV (e)

EV (restrict Ξ e) = restrict Ξ EV (e)
EV (Error) = Error

EV ((ref e)ε) = ref EV (e)
EV (!e) = !EV (e)

EV
(
(e1 := e2)(ε,π)

)
= (EV (e1) := EV (e2))π

We can then state the following theorem relating both semantics:

Theorem 19 (check and tags are redundant in)
If Ξ;Γ;Σ ` e : T and Φ ` e | µ e′ | µ ′ for Φ ∈ γ(Ξ) and Γ | Σ � µ , then also
Φ ` EV (e) | EV (µ) ↪→ EV (e′) | EV (µ ′).

Proof
The check predicates in the operational semantics always hold due to the typing hypoth-
esis, since we know by Definition 5 that strict-checkA(Ξ) implies checkA(Φ) ∀Φ ∈ γ(Ξ).
We can thus remove the check predicates from the conservative semantics and ensure that
reduction behaves identically. After removing check predicates, ε tag annotations do not
affect reduction, so if ↪→ is defined for programs both with and without value tag annota-
tions, we can prove that Φ ` e | µ ↪→ e′ | µ ′ ⇐⇒ Φ ` EV (e) | EV (µ) ↪→ EV (e′) | EV (µ ′).

7 Gradual Typing and Gradual Effects: Gradual Type-and-Effect Systems

The gradual effects framework empowers the programmer to decide when and where
to introduce effect annotations, automatically adding required checks to ensure safety.
However, this flexibility does not yet apply to types: we require fully statically checked
types (except for effect annotations). In this section we introduce gradual typing in our
framework, giving the programmer full flexibility over both effect and type annotations.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

40 Bañados et al.

ε ∈ Tags . π ∈P(Tags)

w ::= unit | λx : T . e | l Prevalues
v ::= wε Values
e ::= x | v | e e | (ref e)

ε
| !e | (e := e)

ε
Terms

T ::= π ρ | ? Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

Fig. 16. Syntax of the source language for gradual typing with tags

Marino and Millstein’s framework for generic type-and-effect systems accepts values
with tag annotations. Static reasoning about tags is achieved by annotating types with sets
of tags. For example, the type (π Unit) only denotes values unitε with ε ∈ π . However,
since the unknown type ? in gradual typing is not tagged, some tag set must be assumed for
?. To introduce complete gradual annotations for types and effects in the M&M framework,
we take a two-step approach: We first introduce gradual typing for a simple language with
tags, where we assume that all tags are available for ?, corresponding to the universe set
of tags (Tags). Then we move on to introduce gradual typing, observing that gradual
typing and gradual effects are almost orthogonal: the same assumption that all tags are
available for ? applies to our generic gradual effects framework as the final link to achieve
a completely gradual type-and-effect system.

7.1 Extending Gradual Typing for Tag Annotations

We first focus on the interactions between tags and gradual typing. To do so, we introduce
tags to the gradually-typed lambda calculus introduced by (Siek & Taha, 2006).

The syntax of the language is introduced in Figure 16; it adds tags to the gradually-typed
lambda calculus with references. To do so, we redefine types to consist of both a tag set π

and a pretype ρ .

? is still a type When adding tags, we face a design choice: to consider ? as a pretype (ρ)
or as a type (T). Type ? was introduced in gradual typing to permit programs missing type
information, which leads us to consider ? as a type. If ? were a pretype instead, every
program would require type tag annotations, forcing static checking. This requirement
defeats the purpose of gradual typing.

Since tags change our definition of types, we must update the definitions of other no-
tions based on types. In particular, we must update both type consistency and consistent
subtyping.

Definition 18 (Type Consistency)
We define type consistency as the reflexive and symmetric relation introduced by Siek &
Taha (2006), extending rule [C-Fun] to be reflexive on the set of tags.

C-Fun
T ′1 ∼ T1 T ′2 ∼ T2(

π (T ′1−→T ′2)
)
∼
(

π (T1−→T2)
)

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 41

Γ;Σ ` e : T G-App

Γ;Σ ` e1 : T Γ;Σ ` e2 : T2

T . π(T2−→T3)

Γ;Σ ` e1 e2 : T3
G-Deref

Γ;Σ ` e : T1
T1 ∼ πRef T

Γ;Σ `!e : T

G-Asgn

Γ;Σ ` e1 : T T ∼ πRef T1

Γ;Σ ` e2 : T2 T2 . T1

Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. 17. Typing rules for the source language for gradual typing with tags. Complete
definition in Figure B 1

7.1.1 Consistent subtyping

Tag annotations in types are sets, leading to a natural notion of subtyping. Siek & Taha
(2007) combined gradual typing and subtyping in the context of object oriented languages,
and we follow their strategy to combine the notion of subtyping induced by tags with type
consistency:

Definition 19 (Consistent Subtyping)
Following the work of (Siek & Taha, 2007), we define consistent subtyping (.) as follows

a. b, ∃α ∼ a . α < : b

In our gradually-typed lambda calculus with tags and references, the subtyping relation
is defined as follows:

Definition 20 (Subtyping relation)

T < : T ST-Id
π1 ⊆ π2

π1 ρ < : π2 ρ
ST-Dyn

? < : ?

ST-Abs
T3 < : T1 T2 < : T4 π1 ⊆ π2

π1 T1−→T2 < : π2 T3−→T4

The language in Siek & Taha (2007) defined consistent subtyping by equivalently using
consistency on either side of the subtyping relation (but not both). With our definitions of
type consistency ∼ and subtyping, we prove this very property as the following corollary:

Corollary 20 (Consistent subtyping equivalence)

∃α ∼ a . α < : b ⇐⇒ ∃β ∼ b . a < : β

Proof
By structural induction over the type consistency definition (∼).

Using consistent subtyping, we define a type system for the source language in Fig-
ure 17.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

42 Bañados et al.

v ::= . . . | 〈?⇐ T 〉v, if T 6= ? Values

e ::= . . . | Error | 〈T ⇐ T 〉e Terms

f ::= � e | v � | (ref �)ε |!� | (� := e)ε | (wε :=�)ε Frames

g ::= f | 〈T2⇐ T1〉� Error Frames

Fig. 18. Syntax of the internal language for gradual typing with tags

Γ;Σ ` e : T GT-App

Γ;Σ ` e1 : π (T1−→T3)
Γ;Σ ` e2 : T2

π (T1−→T3)< : π (T2−→T3)

Ξ;Γ;Σ ` e1 e2 : T3

GT-Asgn
Γ;Σ ` e1 : πRef T1 Γ;Σ ` e2 : T2 T2 < : T1

Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. 19. Typing rules of interest for the internal language for gradual typing with tags.
Complete definition in Figure B 2.

7.1.2 Internal language

The syntactic extensions required for the internal language are introduced in Figure 18.
A type system for the internal language is introduced in Figure 19, which differs from
the source language only in depending directly on subtyping instead of consistent subtyp-
ing. The operational semantics introduced in Figure 20 is the semantics of the gradually
typed lambda-calculus with references plus tags. Standard rules [GE-Ref], [GE-Asgn],
[GE-Deref] and [GE-App] are augmented to consider tag-annotated values. Rule [GE-Cast-Id]

e | µ → e | µ

GE-Ref
l 6∈ dom(µ)

(ref v)
ε
| µ → l

ε
| µ[l 7→ v]

GE-Deref
µ(l) = v

!l
ε
| µ → v | µ

GE-Asgn

(
l

ε1
:= v

)
ε

| µ → unit
ε
| µ[l 7→ v]

GE-App

(λx : T1 . e)
ε1

v | µ → [v/x]e | µ

GE-Cast-Id
ε ∈ π1 π1 ⊆ π2

〈π2ρ ⇐ π1ρ〉wε | µ → wε | µ

GE-Cast-Dyn

〈?⇐ ?〉v | µ → v | µ

Fig. 20. Interesting rules for small-step semantics of the internal language for gradual
typing with tags. Complete definition in Figure B 3.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 43

Γ;Σ ` e⇒ e : T

CG-Ref-2
Γ;Σ ` e⇒ e′ : ?

Γ;Σ ` (ref e)
ε
⇒
(
ref e′

)
ε

: {ε}Ref ?

CG-Deref-2
Γ;Σ ` e⇒ e′ : ?

Γ;Σ `!e⇒ !〈Tags(Ref ?)⇐ ?〉e′ : T

CG-Asgn-2
Γ;Σ ` e1⇒ e′1 : π1Ref T1

Γ;Σ ` e2⇒ e′2 : ?
e′′2 = 〈T1⇐ ?〉e′2

Γ;Σ ` (e1 := e2)ε
⇒
(
e′1 := e′′2

)
ε

: {ε}Unit

CG-Asgn-3
Γ;Σ ` e1⇒ e′1 : ?
Γ;Σ ` e2⇒ e′2 : T

e′′1 = (〈Tags(Ref T)⇐ ?〉e′1)

Γ;Σ ` (e1 := e2)ε
⇒
(
e′′1 := e′2

)
ε

: {ε}Unit

C-App-2
Γ;Σ ` e1⇒ e′1 : π1(T1−→T3)

Γ;Σ ` e2⇒ e′2 : ?
e′′1 = (〈〈π1(T1−→T3)⇐ π1(T1−→T3)〉〉e′1)

Γ;Σ ` e1 e2⇒ e′′1
(
(〈〈T1⇐ ?〉〉e′2)

)
: T3

C-App-3
Γ;Σ ` e1⇒ e′1 : ?
Γ;Σ ` e2⇒ e′2 : T

e′′1 = (〈〈Tags(T−→?)⇐ ?〉〉 e′1)

Γ;Σ ` e1 e2⇒ e′′1 e′2 : ?

Fig. 21. Extract of translation of source programs to the internal language for gradual
typing with tags. Complete rules in Figure B 4 and Figure B 5.

handles casts for tagged types, verifying that the subtyping condition for π1 and π2 holds.
A separate rule [GE-Cast-Dyn] handles identity casts for ?.

7.1.3 Tags interact with the translation algorithm

The translation algorithm introduces the runtime checks necessary to ensure that a program
is safe, making the optimistic assumptions of the original language explicit by inserting
type casts. But what tags are valid when we do not statically know the type of an expression
(i.e., the case of type ?)?

To define a safe system, we make the conservative assumption that an expression with
a type ? may at runtime have any tag annotation. Therefore, we assume that an expres-
sion with type ? must provide the universe set of tag annotations (denoted Tags). This
assumption is consistent with the tag monotonicity restrictions of gradual effect checking,
inherited from the generic M&M framework, so no extra assumptions are required to
combine tagged gradual typing with gradual effect checking: If we use the set Tags, these
monotonicity restrictions ensure that the required restrictions for strict-check predicates
and ãdjust functions always hold, hence ensuring type safety.

Of course, using Tags as assumption is very conservative. A different approach is to in-
troduce a notion of graduality among tags. We plan to explore this approach in future work,
but since tags are not fundamental to effects, we consider this approximation sufficient as
it makes definitions simpler.

7.1.4 Type safety

Theorem 21 (Progress)

ZU064-05-FPR paper Monday 11th July, 2016 15:48

44 Bañados et al.

T ::= π ρ | ? Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

Fig. 22. Syntax addition to the source language for gradual type-and-effect systems from
Figure 1. A complete syntax is available in Figure B 6.

Suppose /0;Σ ` e : T . Then either e is a value or for any store µ such that /0 | Σ � µ ,
e | µ → e; | µ ′.

Proof
By structural induction over derivations of /0;Σ ` e : T . The only interesting cases arise for
rule [GT-Cast]. For rule [GT-Cast], the proof proceeds by cases over the presence (or lack)
of consistent subtyping between T1 and T2.

Theorem 22 (Preservation)
If Γ;Σ ` e : T , and e | µ → e′ | µ ′ for Γ | Σ � µ , then Γ | Σ′ � µ ′ and Γ;Σ′ ` e′ : T ′ for some
T ′ < : T and ∃Σ′ ⊇ Σ.

Proof
By structural induction over the typing derivation and the applicable evaluation rules. All
the new evaluation rules apply to casts, so the only interesting case again is for typing with
[GT-Cast], where for most cases the conclusion follows directly from the typing derivation
of the premise, since the rules do not modify terms but extract a subexpression instead.

Theorem 23 (Translation preserves typing)
If Γ;Σ ` e⇒ e′ : T in the source language then Γ;Σ ` e′ : T in the internal language.

Proof
By structural induction over the translation rules.

7.2 Combining Gradual Typing and Gradual Effect Checking

Once we have extended gradual typing with tag annotations, we can easily combine grad-
ual typing and gradual effect checking to deliver a system that provides static and dy-
namic type-and-effect checking. The syntax for this language is provided in Figure 22. It
combines the typing, translation, and evaluation rules from gradual typing with tags and
gradual effect checking. In this section, we focus on the modifications required to combine
both systems: we build a notion of “effect consistency” from our definition of consistent
containment, our definition of subtyping changes to encompass both tag annotations and
effects, and we reuse the assumptions required to introduce tags into gradual typing to
define a new translation relation.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 45

7.2.1 Type and effect consistency

Gradual typing uses type consistency to statically accept expressions with type ? (or whose
type is partially unknown) whenever expressions with particular type are required, like in
a function application. Type consistency acts as a relaxed form of equality: whenever a
certain type T1 is required for a program to be valid, a program with an unknown type must
also be statically accepted, because the type system is not able to distinguish between them.
The definition of type consistency introduced by Siek & Taha (2006) does not consider
effect annotations, so we must provide a type consistency relation that does.

Our analysis of gradual effect checking did not require a notion of “effect consistency”.
Instead, we based gradual effect checking on consistent containment, which acted as a
relaxed form of set containment. We define effect consistency again using abstract inter-
pretation:

Definition 21 (Effect consistency)
The consistent privilege sets Ξ1 and Ξ2 are consistent, denoted Ξ1 ' Ξ2, if and only if

Φ ∈ γ(Ξ1) and Φ ∈ γ(Ξ2) for some Φ ∈ PrivSet.

Like for consistent containment, we also provide a simple direct characterization. As
with standard sets we may prove that two sets a and b are equal if a ⊆ b and b ⊆ a, we
prove that two sets are consistent if they are mutually contained consistently:

Proposition 24
Ξ1 ' Ξ2 ⇐⇒ Ξ1 @∼ Ξ2 and Ξ2 @∼ Ξ1.

Proof
(⇐) By cases on the definition of γ . (⇒) direct from Definition 21.

We use effect consistency to extend type consistency to handle effects. As in Siek & Taha
(2006), reference cell types are only consistent with themselves (since type consistency is
reflexive). We define type consistency as follows:

T ∼ T C-Refl
T ∼ T

C-UnR
T ∼ ?

C-UnL
?∼ T

C-Fun
T ′1 ∼ T1 T ′2 ∼ T2 Ξ′ ' Ξ

π

T ′1
Ξ′
−−→T ′2

∼ π

(
T1

Ξ
−−→T2

)

7.2.2 Static Semantics for the Source Language

In this section we introduce the type system for the source language, presented in Figure 23.
This type system, as was the case for gradual effect checking, depends on two relations,
subtyping (< :) and consistent subtyping (.), which we now define.

Subtyping The subtyping relation introduced in Section 7.1 suffices to define gradual
typing (?), but does not consider effects. We build a sufficient definition of subtyping

ZU064-05-FPR paper Monday 11th July, 2016 15:48

46 Bañados et al.

for gradual typing with gradual effect checking by extending the subtyping definition
introduced in Section 4.2 to account for reflexivity of type ? with the following rule:

? < : ?

Consistent Subtyping We migrate the definition of consistent subtyping from gradual
typing and gradual effect checking, using the new definitions of subtyping and type con-
sistency we have presented.

Definition 22 (Consistent Subtyping)
Consistent subtyping (.) is defined as

a. b if and only if ∃α ∼ a . α < : b (if and only if ∃β ∼ b . a < : β)

We use type consistency and consistent subtyping in the type system for our language
as presented in Figure 23. The internal language syntax is introduced in Figure 24, and
only differs from the syntax from Figure 18 in the usage of effect annotations from gradual
effect checking.

We consider this definition of consistent subtyping an extension of the definition pre-
sented in Section 4. The formal relationship between both definitions is established by the
following theorem:

Theorem 25
Let .GE be the consistent subtyping definition in Section 4 and .GT consistent subtyping
as introduced in Definition 22. If T1 .GE T2, then also T1 .GT T2 (i.e., .GE⊆.GT)

Proof
By structural induction on the definition of subtyping in gradual effect checking (.GE),
using the following lemma:

Lemma 26
Ξ1 @∼ Ξ2 if and only if there exists a Ξ′ such that Ξ1 ' Ξ′ and Ξ′ ⊆ Ξ2

Type consistency in the type system The type system in Figure 23 uses type consistency
to retrieve a tag set π for c̃heck predicates. Upon translation, we make a conservative
approximation (using the universe set Tags), that ensures safety and is in line with the
assumptions required to combine gradual typing and tag annotations, as discussed in Sec-
tion 7.1.

7.2.3 Internal Language

For our system with gradual typing, we introduce internal language extensions in Figure 24,
which are similar to the ones in Figure 3.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 47

Ξ;Γ;Σ ` e : T GT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : T

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : T2

T2 ∼ π2ρ2 T . π1(T2
Ξ−→T3) c̃heckπ1π2(Ξ)

Ξ;Γ;Σ ` e1 e2 : T3

GT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : T

T ∼ πρ c̃heckref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ
GT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : T1

T1 ∼ πRef T c̃heck!π (Ξ)

Ξ;Γ;Σ `!e : T

GT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : T T ∼ π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : T2 T2 ∼ π2ρ2

c̃heckπ1:=π2(Ξ) T2 . T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. 23. Extract of typing rules for the source language for gradual type-and-effect
systems. Complete judgment in Figure B 7.

v ::= . . . | 〈?⇐ T 〉v, if T 6= ? Values

e ::= . . . | Error | 〈T ⇐ T 〉e | has Φ e | restrict Ξ e Terms

f ::= � e | v � | (ref �)ε |!� | (� := e)ε | (wε :=�)ε Frames

g ::= f | 〈T2⇐ T1〉� | has Φ � | restrict Ξ � Error Frames

Fig. 24. Syntax of the internal language for gradual type-and-effect systems

Type System The type system introduced in Figure 25 only differs from the type system in
Figure 4 in rule [GIT-Cast], which must be more flexible to encompass type cast failures.
In gradual effect checking, we could be more restrictive with the types in the casts and
require T1 . T2 because type casts would never fail due to type inconsistencies, but would
instead be reduced to a combination of effect-related restrict and has constructs that
may or may not fail depending on the available privileges. When we introduce type ?, we
require more flexibility to preserve safety, in particular for type preservation: A program
〈Nat⇐ ?〉〈?⇐ Unit〉unit should reduce to a cast 〈Nat⇐ Unit〉unit that would fail in
a later step, but cast 〈Nat⇐ Unit〉 cannot be typed if rule [GIT-Cast] includes a consistent
subtyping restriction between Unit and Nat, breaking preservation16.

Operational Semantics We reuse all the rules of the operational semantics introduced
in Figure 5 to provide the operational semantics for gradual typing detailed in Figure 26,

16 In most of the examples of this section, we elide tags (both in types and terms) for clarity and
focus.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

48 Bañados et al.

Ξ;Γ ` e : T

GIT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : πρ

strict-checkref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ
GIT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : πRef T

strict-check!π (Ξ)

Ξ;Γ;Σ `!e : T

GIT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ)

π2ρ2 < : T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

GIT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ)

π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ;Γ;Σ ` e1 e2 : T3

Fig. 25. Typing rules for the internal language for gradual type-and-effect systems

Φ ` e | µ → e | µ

GTE-Cast-Frame
Φ ` e | µ → e′ | µ ′

Φ ` 〈T2⇐ T1〉e | µ → 〈T2⇐ T1〉e′ | µ ′

GTE-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ ⇐ π1ρ〉wε | µ → wε | µ

GTE-Cast-Merge

Φ ` 〈T2⇐ ?〉〈?⇐ T1〉v | µ → 〈T2⇐ T1〉v | µ

GTE-Cast-Dyn

Φ ` 〈?⇐ ?〉v | µ → v | µ

GTE-Cast-Bad
T1 6. T2

Φ ` 〈T2⇐ T1〉v | µ → Error | µ

Fig. 26. Extract of the small-step semantics of the internal language for gradual type-and-
effect systems. These rules extend the semantics in Figure 5 with type casts. Complete
semantics in Figure B 9.

which is extended with more rules for cast evaluation. Unlike gradual effect checking, type
casts in this semantics may fail for reasons other than effect restrictions, since type con-
sistency is not transitive. Consider the program(λ f : ? . (f unit)) unit. After translation
and substitution, this program steps to

(〈Unit Ξ−→?⇐ ?〉〈?⇐ Unit〉unit) unit

First, both casts are merged into a 〈Unit Ξ−→?⇐ Unit〉 cast, by rule [GTE-Cast-Merge].
This cast then fails because both types are not consistent subtypes, by rule [GTE-Cast-Bad].
The operational semantics also includes a reduction rule for identity ? casts, rule [GTE-Cast-Dyn].

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 49

7.2.4 Translation Algorithm

In this section, we introduce the translation algorithm for gradual type-and-effect systems
proposed in Figure 27. The translation algorithm is where the interesting connections
between gradual typing and gradual effect checking arise, because some translation rules
use the tag set of a type to generate an adjust or a check context. Following the assumptions
introduced when combining gradual typing with tag annotations, we assume the universe
of tags (set Tags) whenever the translation has to extract a tag set from an expression with
an unknown type (?).

Whenever possible, we use the tag information available on types instead of recoursing
to the Tags assumption. To do so, we introduce two separate translation rules for (ref e)
and !e constructs (when e has type ? or does not, respectively), and four separate translation
rules for application and assignment expressions (when e1 and e2 have type ? or do not,
respectively).

In the case of ref e and !e constructs, rules [C-GT-Ref-1], [C-GT-Ref-2], [C-GT-Deref-1]
and [C-GT-Deref-2] handle type and tag assumptions. In gradual typing, there was no need
to introduce separate rules for ref e constructs. We introduce separate rules to limit the
case where assumptions for the check context are required. In rule [C-GT-Ref-2], when
e has type ?, the translation rule uses a check context ref Tags for the c̃heck predicate
and for the ∆ function that collects the missing privileges (if any) to perform allocation.
For !e constructs, like in gradual typing, we have two separate translation rules. Rule
[C-GT-Deref-2] makes explicit the assumption that e should have type πRef T for some π

and T and the assumptions required for the check contexts used in c̃heck and ∆ as in rule
[C-GT-Ref-2].

There are four translation rules for function applications. Rule [C-GT-App-1] is exactly
the same rule [C-GT-App-1] used in the generic gradual effect system, and applies when
types for both the operator and argument are known. Rule [C-GT-App-2] applies when the
argument type is unknown (?), and inserts a cast for the argument from ? to the type of the
operator domain. It assumes that e′2 might hold any set of tags, so the check and ∆ functions
use the universe of tags available for the argument. Rule [C-GT-App-2] needs a cast on the
operator for gradual effect checking, which performs an effect coercion ensuring that the
privileges required for the function type (Ξ1) are actually available in the context Ξ.

Rule [C-GT-App-3] applies when the operator has type ?. We assume that the type of the
argument is known, leaving the case of both elements having type ? for rule [C-GT-App-4].
In rule [C-GT-App-3], we do not have tag information for the function type, information
that is needed to adjust the privileges available to translate e2. As in rule [C-GT-App-2],
we assume the maximum set of tags. The assumed set is also used for the check and ∆

functions, and for the cast that ensures that e1 is a function at all. By our definition of
subtyping, a function which has any set of tags π1 (and the appropriate privilege set and
parameter and return types) is accepted since in the cast π1 ⊆ Tags always holds.

Rule [C-GT-App-4] makes the assumptions from rule [C-GT-App-3] explicit, but also
assumes that the argument has type ?. We have two separate rules because if e′2 has type
?, we must make tag assumptions also for the argument to generate the check contexts
required by check and ∆.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

50 Bañados et al.

Ξ;Γ ` e⇒ e : T

C-GT-Ref-2
ãdjustref ↓(Ξ) ;Γ;Σ ` e⇒ e′ : ? c̃heckref Tags(Ξ) Φ = ∆ref Tags(Ξ)

Ξ;Γ;Σ ` (ref e)
ε
⇒ insert-has?(Φ,(ref e′)

ε
) : {ε}Ref ?

C-GT-Deref-2
ãdjust!↓(Ξ) ;Γ;Σ ` e⇒ e′ : ? c̃heck!Tags(Ξ) Φ = ∆!Tags(Ξ)

Ξ;Γ;Σ `!e⇒ insert-has?
(

Φ, !〈Tags(Ref ?)⇐ ?〉e′
)

: T

C-GT-Asgn-2

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? c̃heckπ1:=Tags(Ξ) Φ = ∆π1:=Tags(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(

e′1 := 〈T1⇐ ?〉e′2
)

ε

)
: {ε}Unit

C-GT-Asgn-3

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2 c̃heckTags:=π2(Ξ) Φ = ∆Tags:=π2(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(
(〈Tags(Ref ?)⇐ ?〉e′1) := e′2

)
ε

)
: {ε}Unit

C-GT-Asgn-4

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? c̃heckTags:=Tags(Ξ) Φ = ∆Tags:=Tags(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(
(〈Tags(Ref ?)⇐ ?〉e′1) := e′2

)
ε

)
: {ε}Unit

C-GT-App-2

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1(T1
Ξ1−→T3) Ξ1 @∼ Ξ

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? c̃heckπ1Tags(Ξ) Φ = ∆π1Tags(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(

Φ,
(
〈〈π1(T1

Ξ−→T3)⇐ π1(T1
Ξ1−→T3)〉〉e′1

) (
〈〈T1⇐ ?〉〉e′2

))
: T3

C-GT-App-3

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ? c̃heckTagsπ2(Ξ)

ãdjustTags↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2 Φ = ∆Tagsπ2(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(

Φ,

(
〈〈Tags(π2ρ2

Ξ−→?)⇐ ?〉〉 e′1

)
e′2

)
: T3

C-GT-App-4

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ? c̃heckTagsTags(Ξ)

ãdjustTags↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? Φ = ∆TagsTags(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(

Φ,

(
〈〈Tags(? Ξ−→T3)⇐ ?〉〉 e′1

)
e′2

)
: T3

Fig. 27. Extract of translation from source programs to the internal language for gradual
type-and-effect systems. Complete system in Figure B 10 and Figure B 11.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

Gradual Type-and-Effect Systems 51

Analogous assumptions are made for translation of assignment expressions in rules
[C-GT-Asgn-1], [C-GT-Asgn-2], [C-GT-Asgn-3] and [C-GT-Asgn-4].

Choosing the right privilege set in application rules Rule [C-GT-App-2] introduces a
cast 〈T2

Ξ−→?⇐ ?〉. In gradual typing, an application where e1 has type ? requires a cast to
ensure that e1 is actually a function. While it seems that for this restriction any privilege
set would be valid, like {¿}, this set is not sufficient. Using a privilege set {¿} does not
take into account the restriction arising from type-and-effect systems that a function that is
applied cannot generate more side effects than those allowed in the context of application.
To make this assumption explicit, the cast must restrict the privileges to the context Ξ of
available privileges.

The following program demonstrates improper behavior if a cast to {¿} is used instead
of a cast to Ξ:

((λ f : ? . (f unit) :: /0) effectful-argument)

In this program, effectful-argument represents a properly typed function in scope that

generates a write effect (Γ(effectful-argument) = Unit
{write}−−−−−→Unit, for example). The

translation should introduce enough runtime checks to make this program fail, since the
context where f is applied does not allow side effects ((f unit) :: /0). If rule [C-GT-App-2]
used {¿} instead of Ξ, then this program would not produce the required runtime error for
using effectful-argument.

To enforce this invariant consistently, we use the same privilege set for the casts inserted
by rules [C-GT-App-3] and [C-GT-App-4].

7.2.5 Type safety

In this section we prove that the combined gradual type-and-effect system is type safe and
that the translation preserves typing.

Theorem 27 (Progress)
Suppose Ξ; /0;Σ ` e : T . Then either e is a value v, an Error, or Φ ` e | µ → e′ | µ ′ for all
privilege sets Φ such that Ξ `Φ and for any store µ such that /0 | Σ � µ .

Proof
By structural induction over derivations of Ξ; /0;Σ ` e : T .

Theorem 28 (Preservation)
If Ξ;Γ;Σ ` e : T , and Φ ` e | µ → e′ | µ ′ for Ξ ` Φ and Γ | Σ � µ , then Γ | Σ′ � µ ′ and
Ξ;Γ;Σ′ ` e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof
As in preservation Theorem 22, by structural induction over the typing derivation and the
applicable evaluation rules.

Theorem 29 (Translation preserves typing)
If Ξ;Γ;Σ ` e⇒ e′ : T in the source language then Ξ;Γ;Σ ` e′ : T in the internal language.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

52 Bañados et al.

Proof
By structural induction over the translation rules. The tagset assumptions introduced ensure
that c̃heck and check predicates always hold, and that ãdjust and adjust functions produce
minimal privilege sets, which combined with effect subsumption ensures type preservation.

8 Related Work

In the realm of effect systems, the most closely related work is the generic framework of
Marino & Millstein (2009), which is discussed extensively in this paper, because we build
upon it to formulate gradual effect checking in a generic setting.

Rytz et al. (2012) develop a notion of lightweight effect polymorphism, which lets
functions be polymorphic in the effects of their higher-order arguments. The formulation
is also generic like the M&M framework, although there are more technical differences;
most notably, the system is formulated to infer effects instead of checking privileges.
An implementation of the generic polymorphic framework has been developed for Scala,
originally only with IO and exceptions as effects. More recently, a purity analysis has been
integrated in the compiler plugin (Rytz et al., 2013). The effect system has been applied
to a number of Scala libraries. Interestingly, Rytz et al. report cases where they suffer
from the conservativeness of the effect analysis, similar to the example of Section 2. To
address this, Rytz recently introduced an @unchecked annotation. Although it is called
a cast, it is an “unsafe cast”, since no dynamic checking is associated to it; i.e. it is just a
mechanism to bypass static checking. Recently, Toro & Tanter (2015) extended our gradual
effect checking approach to support lightweight effect polymorphism (Rytz et al., 2012),
combined with a DSL called EffScript to declaratively define and apply effect disciplines.
The resulting system is implemented as a compiler plugin for Scala.

While there is a long history in the area of combining static and dynamic checking, the
gradual typing approach of Siek & Taha (2006) has been particularly successful and trig-
gered many developments. Its main contribution was to identify the notion of consistency
as a key to support the full spectrum of static-to-dynamic checking. Originally developed
for functional languages, it has been extended in several directions, including structural
objects (Siek & Taha, 2007) and generics (Ina & Igarashi, 2011). Most directly related to
this work is the application of the gradual typing principles to other typing disciplines, such
as ownership types, typestates, and information flow typing.

Wolff et al. (2011) develop gradual typestate checking. Typestates reflect the changing
states of objects in their types. To support flexible aliasing in the face of state change, the
language provides access permissions to support rely-guarantee reasoning about aliases,
and state guarantees, which preserve type information for distinct aliases of shared objects.

Sergey & Clarke (2012) propose gradual ownership types. Like gradual typestates, grad-
ual ownership expresses and dynamically tracks heap properties. While typestate focuses
on objects changing state, ownership controls the flow of object references.

Disney & Flanagan (2011) explore the idea of gradual security with a gradual informa-
tion flow type system. Data can be marked as confidential, and the runtime system ensures
that it is not leaked. This dynamically-checked discipline is moved towards the static end of
the spectrum by introducing security labels on types. Fennell & Thiemann (2013) extend

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 53

the notion of security labels to state. However, their notion of gradual security is closer
to quasi-static typing than to gradual typing, as unknown security information is statically
treated as the top of the security lattice, requiring explicit downcasts in source programs.

Thiemann & Fennell (2014) propose gradual typing for annotated type systems. Their
work is closer to the use of tags than effect annotations in the framework of Marino &
Millstein (2009), as it focuses on annotations on values and on atomic types instead of
function types, with the goal of gradualizing the annotation part of annotated type systems.

Extensions to contract systems for higher-order functions (Findler & Felleisen, 2002),
such as computational contracts (Scholliers et al., 2015) and temporal contracts (Disney
et al., 2011), have the ability to monitor for the occurrence of specific (sequences of)
execution events, in particular effectful operations. These approaches rely on full runtime
monitoring; it is not clear if they could be reconciled with the pay-as-you-go model of
gradual checking.

None of the prior approaches to gradual checking relies on abstract interpretation to
develop an account of uncertainty. Garcia et al. (2016) extends the idea of using abstract
interpretation to systematically derive a dynamic semantics for gradual programs by proof
reduction on gradual typing derivations. We have yet to investigate how this new frame-
work could be used to derive a dynamic semantics for gradual effects.

9 Conclusion

The primary contribution of this paper is a framework for developing gradually checked
effect systems for any number of effect systems that can be couched in the M&M frame-
work. Using our approach, one can systematically transform a static effect discipline into
one that supports full static checking, full dynamic checking, and any intermediate blend.
We believe that gradual effect checking can facilitate the process of migrating programs
toward a statically checked effect discipline, as well as bringing dynamic effect checks to
languages that have no such checks whatsoever, and leaving wiggle room for programs that
can only partially fit an effect discipline. To empirically evaluate this claim, parallel work
by Toro & Tanter (2015), adapts and implements gradual effects in Scala.

Initially, we relied on the principles of gradual checking and our intuitions to guide the
design, but found it challenging to develop and validate our concepts. We found abstract
interpretation to be an effective framework in which to develop and validate our intuitions.
Using it we were able to generically define the idea of consistent functions and predicates,
as well as explain and define auxiliary concepts such as strict checking and static con-
tainment. We also extended our system to support full gradual type-and-effect systems,
which depend on gradual effects as an initial step, and explored tradeoffs in the operational
semantics for gradual effect checking. In future work, we intend to investigate effects in
the framework of Garcia et al. (2016), to identify any novel approach that may arise in the
derivation of a dynamic semantics for gradual effect checking.

Bibliography

Abadi, Martı́n, Flanagan, Cormac, & Freund, Stephen N. (2006). Types for Safe Locking:
Static Race Detection for Java. ACM Transactions on Programming Languages and

ZU064-05-FPR paper Monday 11th July, 2016 15:48

54 Bañados et al.

Systems, 28(2), 207–255.
Abadi, Martı́n, Birrell, Andrew, Harris, Tim, & Isard, Michael. (2008). Semantics of

Transactional Memory and Automatic Mutual Exclusion. Pages 63–74 of: Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2008). ACM Press.

Bañados Schwerter, Felipe, Garcia, Ronald, & Tanter, Éric. (2014). A Theory of
Gradual Effect Systems. Pages 283–295 of: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2014). ACM Press.

Benton, Nick, & Buchlovsky, Peter. (2007). Semantics of an Effect Analysis for
Exceptions. Pages 15–26 of: Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation (TLDI 2007). ACM Press.

Cousot, Patrick, & Cousot, Radhia. (1977). Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. Pages 238–
252 of: Conference Record of the 4th ACM Symposium on Principles of Programming
Languages (POPL 1977). ACM Press.

Cousot, Patrick, & Cousot, Radhia. (1979). Systematic Design of Program Analysis
Frameworks. Pages 269–282 of: Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 1979). ACM Press.

Delaware, Benjamin, Keuchel, Steven, Schrijvers, Tom, & Oliveira, Bruno C.d.S. (2013).
Modular Monadic Meta-theory. Pages 319–330 of: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2013). ACM
Press.

Disney, Tim, & Flanagan, Cormac. (2011). Gradual Information Flow Typing.
International workshop on scripts to programs.

Disney, Tim, Flanagan, Cormac, & McCarthy, Jay. (2011). Temporal Higher-Order
Contracts. Pages 176–188 of: Proceedings of the 16th ACM SIGPLAN Conference on
Functional Programming (ICFP 2011). ACM Press.

Fennell, Luminous, & Thiemann, Peter. 2013 (June). Gradual security typing with
references. Pages 224–239 of: Computer security foundations symposium (csf), ieee.

Findler, Robert Bruce, & Felleisen, Matthias. (2002). Contracts for Higher-Order
Functions. Pages 48–59 of: Proceedings of the 7th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2002). ACM Press.

Garcia, Ronald, Tanter, Éric, Wolff, Roger, & Aldrich, Jonathan. (2014). Foundations of
Typestate-Oriented Programming. ACM Transactions on Programming Languages and
Systems, 36(4), 12:1–12:44.

Garcia, Ronald, Clark, Alison M., & Tanter, Éric. (2016). Abstracting Gradual Typing.
Pages 429–442 of: Proceedings of the 43rd annual acm sigplan-sigact symposium on
principles of programming languages (popl 2016). ACM Press.

Gifford, David K., & Lucassen, John M. (1986). Integrating Functional and Imperative
Programming. Pages 28–38 of: Proceedings of the 1986 ACM Conference on Lisp and
Functional Programming. ACM Press.

Gordon, Colin S., Dietl, Werner, Ernst, Michael D., & Grossman, Dan. (2013). JavaUI:
Effects for Controlling UI Object Access. Pages 179–204 of: Proceedings of the 27th
European Conference on Object-oriented Programming (ECOOP 2013). Springer-
Verlag.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 55

Gosling, James, Joy, Bill, Steele, Guy, & Bracha, Gilad. (2003). The Java Language
Specification, Third Edition. Addison-Wesley.

Ina, Lintaro, & Igarashi, Atsushi. (2011). Gradual Typing for Generics. Pages 609–624 of:
Proceedings of the 26th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2011). ACM Press.

Marino, Daniel, & Millstein, Todd. (2009). A Generic Type-and-Effect System. Pages 39–
50 of: Proceedings of the ACM SIGPLAN International Workshop on Types in Language
Design and Implementation.

Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press.
Rytz, Lukas, Odersky, Martin, & Haller, Philipp. (2012). Lightweight Polymorphic Effects.

Pages 258–282 of: Proceedings of the 26th European Conference on Object-oriented
Programming (ECOOP 2012). Springer-Verlag.

Rytz, Lukas, Amin, Nada, & Odersky, Martin. (2013). A Flow-Insensitive, Modular Effect
System for Purity. Pages 4:1–4:7 of: Proceedings of the 15th Workshop on Formal
Techniques for Java-like Programs. ACM Press.

Scholliers, Christophe, Tanter, Éric, & De Meuter, Wolfgang. (2015). Computational
Contracts. Science of computer programming, 98(3), 360–375.

Sergey, Ilya, & Clarke, Dave. (2012). Gradual Ownership Types. Pages 579–599 of:
Proceedings of the 21st European Symposium on Programming Languages and Systems
(ESOP 2012). Springer-Verlag.

Siek, Jeremy, & Taha, Walid. (2007). Gradual Typing for Objects. Pages 2–27
of: Proceedings of the 21st European Conference on Object-oriented Programming
(ECOOP 2007). Springer-Verlag.

Siek, Jeremy G., & Taha, Walid. 2006 (Sept.). Gradual Typing for Functional Languages.
Pages 81–92 of: Proceedings of the Scheme and Functional Programming Workshop.

Takikawa, Asumu, Strickland, T. Stephen, Dimoulas, Christos, Tobin-Hochstadt, Sam, &
Felleisen, Matthias. (2012). Gradual Typing for First-Class Classes. Pages 793–810 of:
Proceedings of the 27th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2012). ACM Press.

Tang, Yan Mei, & Jouvelot, Pierre. (1995). Effect Systems with Subtyping. Pages 45–
53 of: Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM 1995). ACM Press.

Thiemann, Peter, & Fennell, Luminous. (2014). Gradual Typing for Annotated Type
Systems. Pages 47–66 of: Programming languages and systems. Lecture Notes in
Computer Science, vol. 8410. Springer Berlin Heidelberg.

Toro, Matı́as, & Tanter, Éric. (2015). Customizable Gradual Polymorphic Effects for Scala.
Submission to the 30th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2015).

Wolff, Roger, Garcia, Ronald, Tanter, Éric, & Aldrich, Jonathan. (2011). Gradual
Typestate. Pages 459–483 of: Proceedings of the 25th European Conference on Object-
oriented Programming (ECOOP 2011). Springer-Verlag.

Wright, Andrew K., & Felleisen, Matthias. (1994). A Syntactic Approach to Type
Soundness. Journal of Information and Computation, 115(1), 38–94.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

56 Bañados et al.

A Detailed definitions of Section 6

In this appendix we include complete descriptions of some relations used to describe the
conservative semantics.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 57

Ξ;Γ;Σ ` eV e : T CT-Fn
Ξ1;Γ,x : T1;Σ ` eV e′ : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε
V (λx : T1 . e′)

ε
: {ε}T1

Ξ1−→T2

CT-Unit
Ξ;Γ;Σ ` unitε V unitε : {ε}Unit

CT-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε V lε : {ε}Ref T
CT-Var

Γ(x) = T
Ξ;Γ;Σ ` xV x : T

CT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1V e′1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ;Γ;Σ ` e2V e′2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ;Γ;Σ ` e1 e2V (e′1 e′2)π1
: T3

CT-Cast
Ξ;Γ;Σ ` eV e′ : T0 T0 < : T1 T1 . T2

Ξ;Γ;Σ ` 〈T2⇐ T1〉eV 〈T2⇐ T1〉e′ : T2

CT-Has
(Φ∪Ξ);Γ;Σ ` eV e′ : T

Ξ;Γ;Σ ` has Φ eV has Φ e′ : T

CT-Rst
Ξ1;Γ;Σ ` eV e′ : T Ξ1 ≤ Ξ

Ξ;Γ;Σ ` restrict Ξ1 eV restrict Ξ1 e′ : T

CT-Error
Ξ;Γ;Σ ` ErrorV Error : T

CT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` eV e′ : πρ

strict-checkref π(Ξ)

Ξ;Γ;Σ ` (ref e)
ε
V (ref e′)

ε
: {ε}Ref πρ

CT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` eV e′ : πRef T
strict-check!π(Ξ)

Ξ;Γ;Σ `!eV!e′ : T

CT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1V e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2V e′2 : π2ρ2
strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ;Γ;Σ ` (e1 := e2)ε
V (e′1 := e′2)(ε,π1)

: {ε}Unit

Fig. A 1. Complete type-directed tag addition. It introduces the tag approximation of the
generic language explicitly, to be used on adjust contexts for evaluation.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

58 Bañados et al.

Φ ` e | µ e | µ CE-Ref
l 6∈ dom(µ) checkref {ε1}(Φ)

Φ ` (ref wε1)ε2 | µ l | µ[l 7→ w]

CE-Deref
µ(l) = v check!ε(Φ)

Φ `!lε | µ v | µ

CE-Asgn
check{ε1}{ε2}(Φ)

Φ ` (lε1 := wε2)(ε,π) | µ unitε | µ[l 7→ wε2]

CE-Frame
adjustA′(f)(Φ) ` e | µ e′ | µ ′

Φ ` f [e] | µ f [e′] | µ ′

CE-Error
Φ ` g[Error] | µ Error | µ

CE-App
check{ε1}{ε2}(Φ)

Φ ` ((λx : T1 . e)ε1 wε2)π
| µ [wε2/x]e | µ

CE-Cast-Frame
Φ ` e | µ e′ | µ ′

Φ ` 〈T2⇐ T1〉e | µ 〈T2⇐ T1〉e′ | µ ′

CE-Has-T
Φ′ ⊆Φ Φ ` e | µ e′ | µ ′

Φ ` has Φ′ e | µ has Φ′ e′ | µ ′

CE-Has-V
Φ ` has Φ′ w | µ w | µ

CE-Has-F
Φ′ 6⊆Φ

Φ ` has Φ′ e | µ Error | µ

CE-Rst
Φ′′ = max{Φ′ ∈ γ(Ξ) |Φ′ ⊆Φ} Φ′′ ` e | µ e′ | µ ′

Φ ` restrict Ξ e | µ restrict Ξ e′ | µ ′

CE-Rst-V
Φ ` restrict Ξ w | µ w | µ

CE-Cast-Id
π1 ⊆ π2

Φ ` 〈π2ρ ⇐ π1ρ〉w | µ w | µ

CE-Cast-Fn
π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22⇐ π1T11

Ξ1−→T12〉(λx : T11 . e) | µ
(λx : T21 . 〈T22⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T11⇐ T21〉x)/x]e) | µ

Fig. A 2. The complete conservative semantics, using special frame translation function
A′, that maps annotated evaluation frames to adjust contexts.

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 59

Ξ;Γ;Σ ` e : T CIT-Fn
Ξ1;Γ,x : T1;Σ ` e : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε

: {ε}T1
Ξ1−→T2

CIT-Unit
Ξ;Γ;Σ ` unitε : {ε}Unit

CIT-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε : {ε}Ref T

CIT-Var
Γ(x) = T

Ξ;Γ;Σ ` x : T

CIT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π0

(
T1

Ξ1−→T3

)
ãdjust

π1 ↓
(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-check
π1 π2

(Ξ) π0

(
T1

Ξ1−→T3

)
< : π1

(
(π2ρ2)

Ξ−→T3

)
Ξ;Γ;Σ ` (e1 e2) π1

: T3

CIT-Cast
Ξ;Γ;Σ ` e : T0 T0 < : T1 T1 . T2

Ξ;Γ;Σ ` 〈T2⇐ T1〉e : T2
CIT-Has

(Φ∪Ξ);Γ;Σ ` e : T
Ξ;Γ;Σ ` has Φ e : T

CIT-Rst
Ξ1;Γ;Σ ` e : T Ξ1 ≤ Ξ

Ξ;Γ;Σ ` restrict Ξ1 e : T
CIT-Error

Ξ;Γ;Σ ` Error : T

CIT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : πρ

strict-checkref π(Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ

CIT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : πRef T
strict-check!π(Ξ)

Ξ;Γ;Σ `!e : T

CIT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π0Ref T1

ãdjust
π1 :=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-check
π1 :=π2

(Ξ) π2ρ2 < : T1 π0 ⊆ π1

Ξ;Γ;Σ ` (e1 := e2)
(ε,π1)

: {ε}Unit

Fig. A 3. Complete type system for the conservative language

ZU064-05-FPR paper Monday 11th July, 2016 15:48

60 Bañados et al.

Γ;Σ ` e : T G-Fn
Γ,x : T1;Σ ` e : T2

Γ;Σ ` (λx : T1 . e)
ε

: {ε}T1−→T2

G-Unit
Γ;Σ ` unitε : {ε}Unit

G-Loc
Σ(l) = T

Γ;Σ ` lε : {ε}Ref T

G-Var
Γ(x) = T

Γ;Σ ` x : T
G-App

Γ;Σ ` e1 : T
Γ;Σ ` e2 : T2

T . π(T2−→T3)

Γ;Σ ` e1 e2 : T3
G-Ref

Γ;Σ ` e : T
Γ;Σ ` (ref e)

ε
: {ε}Ref T ′

G-Deref

Γ;Σ ` e : T1
T1 ∼ πRef T

Γ;Σ `!e : T
G-Asgn

Γ;Σ ` e1 : T T ∼ πRef T1
Γ;Σ ` e2 : T2

T2 . T1

Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. B 1. Complete typing rules for the source language for gradual typing with tags.

Γ;Σ ` e : T

GT-Fn
Γ,x : T1;Σ ` e : T2

Γ;Σ ` λx : T1 . e : T1−→T2
GT-Unit

Γ;Σ ` unitε : {ε}Unit

GT-App

Γ;Σ ` e1 : π (T1−→T3)
Γ;Σ ` e2 : T2

π (T1−→T3)< : π (T2−→T3)

Ξ;Γ;Σ ` e1 e2 : T3
GT-Loc

Σ(l) = T
Γ;Σ ` lε : {ε}Ref T

GT-Var
Γ(x) = T

Γ;Σ ` x : T
GT-Cast

Γ;Σ ` e : T0 T0 < : T1

Γ;Σ ` 〈T2⇐ T1〉e : T2

GT-Error
Γ;Σ ` Error : T

GT-Ref
Γ;Σ ` e : T0 T0 < : T1

Γ;Σ ` (ref e)
ε

: {ε}Ref T1

GT-Deref
Γ;Σ ` e : πRef T

Γ;Σ `!e : T

GT-Asgn
Γ;Σ ` e1 : πRef T1 Γ;Σ ` e2 : T2 T2 < : T1

Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. B 2. Complete typing rules for the internal language for gradual typing with tags

B Detailed definitions of Section 7

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 61

e | µ → e | µ GE-Ref
l 6∈ dom(µ)

(ref v)
ε
| µ → l

ε
| µ[l 7→ v]

GE-Asgn (
l

ε1
:= v

)
ε

| µ → unit
ε
| µ[l 7→ v]

GE-Deref
µ(l) = v

!l
ε
| µ → v | µ

GE-Frame
e | µ → e′ | µ ′

f [e] | µ → f [e′] | µ ′
GE-Error

g[Error] | µ → Error | µ

GE-App
(λx : T1 . e)

ε1
v | µ → [v/x]e | µ

GE-Cast-Frame
e | µ → e′ | µ ′

〈T2⇐ T1〉e | µ → 〈T2⇐ T1〉e′ | µ ′

GE-Cast-Id
ε ∈ π1 π1 ⊆ π2

〈π2ρ ⇐ π1ρ〉wε | µ → wε | µ

GE-Cast-Merge

〈T2⇐ ?〉〈?⇐ T1〉v | µ → 〈T2⇐ T1〉v | µ

GE-Cast-Dyn

〈?⇐ ?〉v | µ → v | µ

GE-Cast-Bad
T1 6. T2

〈T2⇐ T1〉v | µ → Error | µ

GE-Cast-Fn
ε ∈ π1 π1 ⊆ π2

〈π2T21−→T22⇐ π1T11−→T12〉(λx : T01 . e)
ε
| µ → (λx : T21 . 〈T22⇐ T12〉 [(〈T11 ⇐ T21〉x)/x]e)

ε
| µ

Fig. B 3. Complete small-step semantics of the internal language for gradual typing with
tags

ZU064-05-FPR paper Monday 11th July, 2016 15:48

62 Bañados et al.

Γ;Σ ` e⇒ e : T C-Fn
Γ,x : T1;Σ ` e⇒ e′ : T2

Γ;Σ ` (λx : T1 . e)
ε
⇒ (λx : T1 . e′)

ε
: {ε}T1−→T2

C-Unit
Γ;Σ ` unitε ⇒ unitε : {ε}Unit

C-Var
Γ(x) = T

Γ;Σ ` x⇒ x : T

C-Loc
Σ(l) = T

Γ;Σ ` lε ⇒ lε : {ε}Ref T
C-App-1

Γ;Σ ` e1⇒ e′1 : π1(T1−→T3)
Γ;Σ ` e2⇒ e′2 : π2ρ2

e′′1 = (〈〈π1(π2ρ2−→T3)⇐ π1(T1−→T3)〉〉e′1)
π1(T1−→T3). π1(π2ρ2−→T3)

Γ;Σ ` e1 e2⇒ e′′1 e′2 : T3

C-App-2

Γ;Σ ` e1⇒ e′1 : π1(T1−→T3)
Γ;Σ ` e2⇒ e′2 : ?

e′′1 = (〈〈π1(T1−→T3)⇐ π1(T1−→T3)〉〉e′1)

Γ;Σ ` e1 e2⇒ e′′1
(
(〈〈T1⇐ ?〉〉e′2)

)
: T3

C-App-3

Γ;Σ ` e1⇒ e′1 : ?
Γ;Σ ` e2⇒ e′2 : T

e′′1 = (〈〈Tags(T−→?)⇐ ?〉〉 e′1)

Γ;Σ ` e1 e2⇒ e′′1 e′2 : ?

Fig. B 4. Complete translation of source programs to the internal language for gradual
typing with tags, Part I

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 63

Γ;Σ ` e⇒ e : T

CG-Ref-1
Γ;Σ ` e⇒ e′ : πρ

Γ;Σ ` (ref e)
ε
⇒
(
ref e′

)
ε

: {ε}Ref πρ

CG-Ref-2
Γ;Σ ` e⇒ e′ : ?

Γ;Σ ` (ref e)
ε
⇒
(
ref e′

)
ε

: {ε}Ref ?

CG-Deref-1
Γ;Σ ` e⇒ e′ : πRef T

Γ;Σ `!e⇒!e′ : T

CG-Deref-2
Γ;Σ ` e⇒ e′ : ?

Γ;Σ `!e⇒ !〈Tags(Ref ?)⇐ ?〉e′ : T

CG-Asgn-1
Γ;Σ ` e1⇒ e′1 : π1Ref T1 Γ;Σ ` e2⇒ e′2 : π2ρ2 π2ρ2 . T1

Γ;Σ ` (e1 := e2)ε
⇒
(
e′1 := e′2

)
ε

: {ε}Unit

CG-Asgn-2
Γ;Σ ` e1⇒ e′1 : π1Ref T1 Γ;Σ ` e2⇒ e′2 : ?

Γ;Σ ` (e1 := e2)ε
⇒
(

e′1 := 〈T1⇐ ?〉e′2
)

ε
: {ε}Unit

CG-Asgn-3
Γ;Σ ` e1⇒ e′1 : ? Γ;Σ ` e2⇒ e′2 : T

Γ;Σ ` (e1 := e2)ε
⇒
(
(〈Tags(Ref T)⇐ ?〉e′1) := e′2

)
ε

: {ε}Unit

Fig. B 5. Complete translation of source programs to the internal language for gradual
typing with tags, Part II

ZU064-05-FPR paper Monday 11th July, 2016 15:48

64 Bañados et al.

φ ∈ Priv, ξ ∈ CPriv = Priv∪{¿}
Φ ∈ PrivSet = P(Priv) , Ξ ∈ CPrivSet = P(CPriv)

ε ∈ Tags . π ∈P(Tags)

w ::= unit | λx : T . e | l Prevalues

v ::= wε Values

e ::= x | v | e e | e :: Ξ Terms

| (ref e)
ε
| !e | (e := e)

ε

T ::= π ρ | ? Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

A ::= ↓↑ | π ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | π :=↓
C ::= π π | refπ | !π | π := π Check Contexts

Fig. B 6. Complete syntax of the source language for gradual type-and-effect systems

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 65

Ξ;Γ;Σ ` e : T GT-Fn
Ξ1;Γ,x : T1;Σ ` e : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε

: {ε}T1
Ξ1−→T2

GT-Unit
Ξ;Γ;Σ ` unitε : {ε}Unit

GT-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε : {ε}Ref T

GT-Var
Γ(x) = T

Ξ;Γ;Σ ` x : T
GT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : T

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : T2

T2 ∼ π2ρ2 T . π1(T2
Ξ−→T3) c̃heckπ1π2(Ξ)

Ξ;Γ;Σ ` e1 e2 : T3

GT-Eff
Ξ1;Γ;Σ ` e : T Ξ1 @∼ Ξ

Ξ;Γ;Σ ` (e :: Ξ1) : T
GT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : T

T ∼ πρ c̃heckref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ

GT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : T1

T1 ∼ πRef T c̃heck!π (Ξ)

Ξ;Γ;Σ `!e : T

GT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : T T ∼ π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : T2 T2 ∼ π2ρ2

c̃heckπ1:=π2(Ξ) T2 . T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. B 7. Complete typing rules for the source language for gradual type-and-effect
systems

ZU064-05-FPR paper Monday 11th July, 2016 15:48

66 Bañados et al.

Ξ;Γ ` e : T

GIT-App

ãdjust↓↑(Ξ) ;Γ;Σ ` e1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ;Γ;Σ ` e1 e2 : T3

GIT-Loc
Σ(l) = T

Ξ;Γ;Σ ` l : Ref T
GIT-Var

Γ(x) = T
Ξ;Γ;Σ ` x : T

GIT-Cast
Ξ;Γ;Σ ` e : T0 T0 < : T1

Ξ;Γ;Σ ` 〈T2⇐ T1〉e : T2
GIT-Has

(Φ∪Ξ);Γ;Σ ` e : T
Ξ;Γ;Σ ` has Φ e : T

GIT-Error
Ξ;Γ;Σ ` Error : T

GIT-Rst
Ξ1;Γ;Σ ` e : T Ξ1 ≤ Ξ

Ξ;Γ;Σ ` restrict Ξ1 e : T

GIT-Ref

ãdjustref ↓(Ξ) ;Γ;Σ ` e : πρ

strict-checkref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε

: {ε}Ref πρ
GIT-Deref

ãdjust!↓(Ξ) ;Γ;Σ ` e : πRef T

strict-check!π (Ξ)

Ξ;Γ;Σ `!e : T

GIT-Asgn

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ;Γ;Σ ` (e1 := e2)ε
: {ε}Unit

Fig. B 8. Complete typing rules for the internal language for gradual type-and-effect
systems

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 67

Φ ` e | µ → e | µ GTE-Ref
checkref {ε1}(Φ) l 6∈ dom(µ)

Φ ` (ref wε1)ε2
| µ → lε2 | µ[l 7→ wε1]

GTE-Asgn
check{ε1}:={ε2}(Φ)

Φ ` (lε1 := wε2)ε
| µ → unitε | µ[l 7→ wε2]

GTE-Deref
check!{ε}(Φ) µ(l) = v

Φ `!lε | µ → v | µ
GTE-Frame

adjustA(f)(Φ) ` e | µ → e′ | µ ′

Φ ` f [e] | µ → f [e′] | µ ′

GTE-Error
Φ ` g[Error] | µ → Error | µ

GTE-Has-V
Φ ` has Φ′ v | µ → v | µ

GTE-Has-T

Φ′ ⊆Φ

Φ ` e | µ → e′ | µ ′

Φ ` has Φ′ e | µ → has Φ′ e′ | µ ′

GTE-Rst-V
Φ ` restrict Ξ v | µ → v | µ

GTE-Has-F
Φ′ 6⊆Φ

Φ ` has Φ′ e | µ → Error | µ

GTE-Rst
Φ′′ = max{Φ′ ∈ γ(Ξ) |Φ′ ⊆Φ} Φ′′ ` e | µ → e′ | µ ′

Φ ` restrict Ξ e | µ → restrict Ξ e′ | µ ′

GTE-App
check{ε1}{ε2}(Φ)

Φ ` (λx : T1 . e)ε1 vε2 | µ → [vε2/x]e | µ

GTE-Cast-Frame
Φ ` e | µ → e′ | µ ′

Φ ` 〈T2⇐ T1〉e | µ → 〈T2⇐ T1〉e′ | µ ′

GTE-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ ⇐ π1ρ〉wε | µ → wε | µ

GTE-Cast-Merge

Φ ` 〈T2⇐ ?〉〈?⇐ T1〉v | µ → 〈T2⇐ T1〉v | µ

GTE-Cast-Dyn

Φ ` 〈?⇐ ?〉v | µ → v | µ

GTE-Cast-Bad
T1 6. T2

Φ ` 〈T2⇐ T1〉v | µ → Error | µ

GTE-Cast-Fn
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22⇐ π1T11

Ξ1−→T12〉(λx : T01 . e)
ε
| µ →

(λx : T21 . 〈T22⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T01 ⇐ T21〉x)/x]e)
ε
| µ

Fig. B 9. Complete small-step semantics of the internal language for gradual type-and-
effect systems

ZU064-05-FPR paper Monday 11th July, 2016 15:48

68 Bañados et al.

Ξ;Γ ` e⇒ e : T

C-GT-Fn
Ξ1;Γ,x : T1;Σ ` e⇒ e′ : T2

Ξ;Γ;Σ ` (λx : T1 . e)
ε
⇒ (λx : T1 . e′)

ε
: {ε}T1

Ξ1−→T2

C-GT-Unit
Ξ;Γ;Σ ` unitε ⇒ unitε : {ε}Unit

C-GT-Var
Γ(x) = T

Ξ;Γ;Σ ` x⇒ x : T

C-GT-Loc
Σ(l) = T

Ξ;Γ;Σ ` lε ⇒ lε : {ε}Ref T

C-GT-App-1

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2

e′′1 = (〈〈π1(π2ρ2
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉e′1)
π1(T1

Ξ1−→T3). π1(π2ρ2
Ξ−→T3)

c̃heckπ1π2(Ξ) Φ = ∆π1π2(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(
Φ,e′′1 e′2

)
: T3

C-GT-App-2

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ?

e′′1 = (〈〈π1(T1
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉e′1)

Ξ1 @∼ Ξ c̃heckπ1Tags(Ξ) Φ = ∆π1Tags(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(

Φ,e′′1 (〈〈T1⇐ ?〉〉e′2)
)

: T3

C-GT-App-3

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2

e′′1 = (〈〈Tags(π2ρ2
Ξ−→?)⇐ ?〉〉 e′1)

c̃heckTagsπ2(Ξ) Φ = ∆Tagsπ2(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(
Φ,e′′1 e′2

)
: T3

C-GT-App-4

ãdjust↓↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ?

e′′1 = (〈〈Tags(? Ξ−→T3)⇐ ?〉〉 e′1)

c̃heckTagsTags(Ξ) Φ = ∆TagsTags(Ξ)

Ξ;Γ;Σ ` e1 e2⇒ insert-has?
(
Φ,e′′1 e′2

)
: T3

C-GT-Eff
Ξ1;Γ;Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ;Γ;Σ ` (e :: Ξ1)⇒ insert-has?
(
Φ,restrict Ξ1 e′

)
: T

Fig. B 10. Complete translation of source programs to the internal language for gradual
type-and-effect systems, part I

ZU064-05-FPR paper Monday 11th July, 2016 15:48

* 69

Ξ;Γ ` e⇒ e : T

C-GT-Ref-1
ãdjustref ↓(Ξ) ;Γ;Σ ` e⇒ e′ : πρ c̃heckref π (Ξ) Φ = ∆ref π (Ξ)

Ξ;Γ;Σ ` (ref e)
ε
⇒ insert-has?

(
Φ,
(
ref e′

)
ε

)
: {ε}Ref πρ

C-GT-Ref-2

ãdjustref ↓(Ξ) ;Γ;Σ ` e⇒ e′ : ? c̃heckref Tags(Ξ) Φ = ∆ref Tags(Ξ)

Ξ;Γ;Σ ` (ref e)
ε
⇒ insert-has?

(
Φ,
(
ref e′

)
ε

)
: {ε}Ref ?

C-GT-Deref-1

ãdjust!↓(Ξ) ;Γ;Σ ` e⇒ e′ : πRef T

c̃heck!π (Ξ) Φ = ∆!π (Ξ)

Ξ;Γ;Σ `!e⇒ insert-has?(Φ, !e′) : T

C-GT-Deref-2

ãdjust!↓(Ξ) ;Γ;Σ ` e⇒ e′ : ?

c̃heck!Tags(Ξ) Φ = ∆!Tags(Ξ)

Ξ;Γ;Σ `!e⇒ insert-has?
(

Φ, !〈Tags(Ref ?)⇐ ?〉e′
)

: T

C-GT-Asgn-1

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2 c̃heckπ1:=π2(Ξ) π2ρ2 . T1 Φ = ∆π1:=π2(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(
e′1 := e′2

)
ε

)
: {ε}Unit

C-GT-Asgn-2

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? c̃heckπ1:=Tags(Ξ) Φ = ∆π1:=Tags(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(

e′1 := 〈T1⇐ ?〉e′2
)

ε

)
: {ε}Unit

C-GT-Asgn-3

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : π2ρ2 c̃heckTags:=π2(Ξ) Φ = ∆Tags:=π2(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(
(〈Tags(Ref ?)⇐ ?〉e′1) := e′2

)
ε

)
: {ε}Unit

C-GT-Asgn-4

ãdjust↓:=↑(Ξ) ;Γ;Σ ` e1⇒ e′1 : ?

ãdjustTags:=↓(Ξ) ;Γ;Σ ` e2⇒ e′2 : ? c̃heckTags:=Tags(Ξ) Φ = ∆Tags:=Tags(Ξ)

Ξ;Γ;Σ ` (e1 := e2)ε
⇒ insert-has?

(
Φ,
(
(〈Tags(Ref ?)⇐ ?〉e′1) := e′2

)
ε

)
: {ε}Unit

Fig. B 11. Complete translation of source programs to the internal language for gradual
type-and-effect systems, part II

	Introduction
	Background and Motivation
	Effect Systems
	Gradual Typing
	Towards Gradual Effect Checking
	Gradual Effects in Action
	Generic Effect Systems

	Gradual Effects as an Abstract Interpretation
	The Challenge of Gradual Effects
	Fundamental Concepts
	Lifting Predicates to Consistent Privilege Sets
	Lifting Functions to Consistent Privilege Sets

	A Generic Framework for Gradual Effects
	The Source Language
	The Internal Language
	Translating Source Programs to the Internal Language

	Example: Gradual Effects for Exceptions
	A Conservative Operational Semantics
	Safety and soundness
	Making Tags Redundant at Runtime
	Conservative Semantics is a Conservative Approximation
	Type Safety of the Conservative Semantics
	Redundancy of Tags in the Conservative Semantics

	Gradual Typing and Gradual Effects: Gradual Type-and-Effect Systems
	Extending Gradual Typing for Tag Annotations
	Combining Gradual Typing and Gradual Effect Checking

	Related Work
	Conclusion
	Detailed definitions of cha:cs
	Detailed definitions of cha:gt-tags

