By now, you have learned how to:

1. define sets using inductive definitions;
2. prove universal properties of inductively-defined sets using the corresponding principle of derivation
 induction (and rule induction) (a.k.a. proof by induction); and
3. define total functions that map an inductively defined set to other sets using the corresponding prin-
 ciple of recursive definition.

Isn’t induction great?!? Given the last of these tools, we can define total functions over recursively defined
sets with relative ease. In fact, we can use this principle to define an evaluator for the language of Boolean
Expressions (see below).

As our languages get more sophisticated, though, we will find that definition by recursion does not
always suffice for defining and analyzing semantics. Some programming language definitions have prop-
erties that don’t play well with total functions:

1. If your language has programs that don’t terminate, then you will be hard-pressed to define them
 recursively;
2. If your language has nondeterministic behaviour, meaning that one program or program fragment can
 produce more than one possible behaviour, then a recursive function definition may awkwardly de-
 scribe its semantics: a more general relation between programs and possible results may be a more
 natural specification;
3. Sometimes you want to define a partial function somehow related to your language, and an equational
 definition of this can also be awkward some times.

This set of notes introduces a common approach to defining semantics that addresses some of these
issues. We will do so while simultaneously extending our language of Boolean expressions with arithmetic
expressions. This is not strictly necessary, but introduces some new language concepts (especially run-time
errors) along the way. We will use a different technique than recursion to define the evaluator, but the
 technique we are introducing is actually hidden inside the proof of the principle of recursive definition.
Let’s tease that out.

1 Boolean Expression Function Revisited

Earlier, we learned the Principle of Definition by Recursion, which enables us to define total functions over
inductively defined sets, like the terms of our language of Boolean Expressions. One particular function
over Boolean expressions we defined was its evaluator.

\[
\begin{align*}
\text{PGM} &= \text{TERM}, \quad \text{OBS} = \text{VALUE} \\
\text{eval} : \text{PGM} \to \text{OBS} \\
\text{eval}(\text{true}) &= \text{true} \\
\text{eval}(\text{false}) &= \text{false} \\
\text{eval}(\text{if } t_1 \text{ then } t_2 \text{ else } t_3) &= \text{eval}(t_2) \text{ if } \text{eval}(t_1) = \text{true} \\
&= \text{eval}(t_3) \text{ if } \text{eval}(t_1) = \text{false}
\end{align*}
\]

Recall that this evaluator definition is justified by the principle of recursive definition from \(t \in \text{TERM} \), which means that we chose:

1. \(S = \text{VALUE} \);
2. \(s_t = \text{true} \);
3. \(s_f = \text{false} \);
4. \(H_f : \text{VALUE} \times \text{VALUE} \times \text{VALUE} \to \text{VALUE} \)

\[
H_f(\text{true}, v_1, v_2) = v_1 \\
H_f(\text{false}, v_1, v_2) = v_2,
\]

and fed them into the principle to produce a unique function, and we then convince ourselves intuitively that this is in fact our intended evaluator.

If we consider the proof of the Principle of Definition by Recursion, however, we see that the first step of the proof is to construct a binary relation \(\Downarrow \subseteq \text{TERM} \times \text{VALUE} \), typically called a big-step relation, that we then externally prove is a total function, satisfies the equations given, and is unique\(^1\). In short, we explicitly constructed our function as a binary relation, and then proved that it’s a function. Let’s examine that explicit construction.

If we inline our chosen elements into the rules for \(\Downarrow \), we get roughly the following:

- \(\text{true} \Downarrow \text{true} \) (etruetime)
- \(\text{false} \Downarrow \text{false} \) (efalse)
- \(t_1 \Downarrow \text{true} \quad t_2 \Downarrow v_2 \) (eif-t)
- \(t_1 \Downarrow \text{false} \quad t_3 \Downarrow v_3 \) (eif-f)

The (eif-t) and (eif-f) rules together specialize the following single rule with respect to the definition of \(H_f \):

\[
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \Downarrow H_f(v_1, v_2, v_3) \quad \text{(eif)}
\]

In short, it’s not hard to prove that if

\[
\mathcal{R}_\Downarrow = \bigcup \{ \text{etruetime,efalse,eif-t,eif-f} \}, \\
\mathcal{R}' = \bigcup \{ \text{etruetime,efalse,eif} \}
\]

then

\[
\Downarrow = \{ (t, v) \in \text{TERM} \times \text{VALUE} \mid \exists D \in \text{DERIV}[\mathcal{R}_\Downarrow], D :: (t, v) \} \\
= \{ (t, v) \in \text{TERM} \times \text{VALUE} \mid \exists D \in \text{DERIV}[\mathcal{R'}], D :: (t, v) \}.
\]

The key observation is that based on the value of \(v_1 \), \(H_f \) discards either \(v_2 \) or \(v_3 \), so there is no real need for the discarded derivation. This improvement in the rules is just due to some human cleverness: it is not

\(^1\)We use the name \(\Downarrow \) for reasons that should be explained shortly.
fundamental, but it also matches the last two equations of our recursive definition above. Later, we use this split to motivate a nice implementation of the language.

Based on our proof of the Principle of Definition by Recursion, it is clear that $\downarrow = \text{eval}$, both count as definitions of the same total function. However it’s not unusual to write out eval equationally. Some other languages that we define using big-step will need an equational definition to handle different possible outcomes (e.g. non-termination).

\[
P_{GM} = \text{TERM}, \quad \text{OBS} = \text{VALUE} \\
\text{eval} : P_{GM} \to \text{OBS} \\
\text{eval}(t) = v \text{ if } t \downarrow v
\]

The key difference between the two approaches is a matter of flexibility. Inductive definitions are more general: they need not be total, and they need not be (partial) functions (i.e., deterministic). We sometimes want that flexibility in the definition of our language semantics. For this reason, among others, inductive definitions like \downarrow are often the preferred mode of specifying the semantics of programming language.

2 Backward Reasoning

One of the nice things about a recursive function definition is that we can use the equations that define the function to calculate what a recursive function maps its argument to. However, if we didn’t define the B

language as a set of recursive equations, then we would need a new strategy for calculating the results of evaluation (either by hand, or by implementing an interpreter).

Before looking at the general strategy, lets consider an instance. How do we determine what (if anything) \(\text{if false then false else true} \) evaluates to? Given the structure of our evaluators above, we know that we must determine what it big-steps to. Since the \downarrow relation is defined inductively, we know that \(\text{if false then false else true} \downarrow v \) for some \(v \) if and only if there is some derivation

\[
D :: \text{if false then false else true} \downarrow v
\]

. Thus, calculating the mapping boils down to searching for a derivation that begins with our term:

\[
\vdots \\
\text{if false then false else true} \downarrow ???
\]

Technically we must consider all of the rules (this is backward reasoning). We quickly (so quickly that we may not even notice that we did) rule out (pun intended) (etrue), because \(\text{if false then false else true} \neq \text{true} \) and (efalse), for the same reason. This leaves us with two remaining possibilities, (eif-t) and (eif-f). Which one to try? Who knows! Let’s be systematic and try them in order, starting with (eif-t):

\[
\vdots \\
\text{false} \downarrow \text{true} \quad \text{false} \downarrow v_2 \quad \text{\textbf{(eif-t)}}
\]

We’re just following our noses, filling in those parts of the (eif-t) rule that are determined by the structure of the rule and the information that we already have in the conclusion. We don’t know what the final value would be, but based on the rule, it will be some value, in particular the result of big-stepping \(\text{true} \), the consequent position of the if expression.

We’ve got two options for searching, the two premises. Let’s work left to right. Doh! We’re stuck!

\[
\vdots \\
\text{false} \downarrow \text{true} \quad \text{false} \downarrow v_2 \quad \text{\textbf{(eif-t)}}
\]

There is no rule whose conclusion matches $\text{false} \downarrow \text{true}$, which arose when we chose (eif-t). We could try to evaluate the other premise, but that would be a waste of energy because we simply cannot complete this
derivation. So we have to try something else. Our only remaining option if (eif-f), so if that doesn’t work, then we know that the term does not big-step.

\[
\vdots \\
\text{false} \Downarrow \text{false} \quad \text{true} \Downarrow v_3 \quad (\text{eif-f})
\]

This time we can make progress on the left premise, finishing it off with an application of (efalse). Along the way we might have briefly considered and rejected (etrue), (eif-t), and (eif-f).

\[
\vdots \\
\text{false} \Downarrow \text{false} \quad (\text{efalse}) \quad \text{true} \Downarrow v_3 \quad (\text{etrue})
\]

And with a little more consideration we find that (etrue) finishes off this derivation.

\[
\vdots \\
\text{false} \Downarrow \text{false} \quad (\text{efalse}) \quad \text{true} \Downarrow v_3 \quad (\text{eif-f})
\]

Now we know for sure that if false then false else true \Downarrow true: our derivation is a “proof” of this. Can it evaluate to any other values? We can show (by exhaustion) that this is the only derivation tree that we can build. Naturally we can prove that this is the case for every TERM t.

So our equational definition of this language allowed us to reason about values using equational reasoning. Here we reason by bottom-up proof search. We did so informally, but we can make this reasoning process more concrete. Given a term t, we try to find a value that it big-steps to by searching bottom-up for a derivation that has t on its left-hand side, considering the rules that could possibly be instantiated to match our goal. This reasoning is made formal as a set of backward-reasoning propositions. To make them a little more specialized, we write lemmas that distinguish the top-level structure of the term under consideration. Such principles are quite useful, and we intuitively make these leaps of reasoning, though they can be stated and proven explicitly.

Proposition 1 (Backward Reasoning, distinguishing t).

1. If $\text{true} \Downarrow v$ then $v = \text{true}$.
2. If $\text{false} \Downarrow v$ then $v = \text{false}$.
3. If if t_1 then t_2 else $t_3 \Downarrow v$ then either

 (a) $t_1 \Downarrow \text{true}$ and $t_2 \Downarrow v$ or

 (b) $t_1 \Downarrow \text{false}$ and $t_3 \Downarrow v$.

To prove these propositions, we first expand them to be formal statements about derivations. For example, item 3 expands to the following:

Proposition 2. $\forall D, D \vdash$ if t_1 then t_2 else $t_3 \Downarrow v \rightarrow (\exists \mathcal{E}_1, \mathcal{E}_2, \mathcal{E} : t_1 \Downarrow \text{true} \land \mathcal{E}_2 \vdash t_2 \Downarrow v) \lor (\exists \mathcal{E}_1, \mathcal{E}_3, \mathcal{E} : t_1 \Downarrow \text{false} \land \mathcal{E}_3 \vdash t_3 \Downarrow v)$.

Proof. By cases on the last rule used to form D.

Case (etrue). Vacuous because true does not match if.

Case (efalse). Vacuous.

Case (eif-t). Exercise!

Case (eif-f). Exercise!
Each backward reasoning principle can be devised by staring at the rules. Typical phrasings have one case for each term construct, and then the proposition incorporates, using disjunction, each of the possible rules. If no rule applies, then the conclusion is \bot: the zero-ary case of disjunction.

Each backward reasoning principle can be proven in the same manner as this one: by cases on the derivation D. The proof is straightforward, especially since most of the cases are vacuous because the rule doesn’t match. The proof is simple enough that many books or papers do not even bother to state the proof strategy or its cases. However, it is important that you know how one *would* prove such a thing. While it’s intuitively obvious to us, it would not be intuitively to a computer. Nonetheless we can make the proof a purely mechanical thing that a mechanized proof assistant on a computer could check for correctness.

As you will see, these propositions can serve as the basis for an implementation of the language.

References