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Chapter 5

Reasoning about Inductive
Definitions:

Forward, Backward, Induction, and
Recursion

Previously, we defined the small Vapid programming language. Since the language has a finite number of
programs, its syntax was very easy to define: just list all the programs! In turn it was straightforward to
define its evaluation function by cases, literally enumerating the results for each individual program. Finally,
since the evaluator was defined by listing out the individual cases (program-result pairs), we could prove
some (not particularly interesting) properties of the language and its programs.

In an effort to move toward a more realistic language, we have introduced the syntax of a language of
Boolean expressions, which was more complex than Vapid in that there are an infinite number of Boolean
expressions. We did this using inductive definitions, which are much more expressive and sophisticated than
just listing out programs. However, we must now answer the question: how do we define an evaluator for this
infinite-program language, and more generally how can we prove properties of all programs in the language
and the results of evaluating them? To answer this question, we introduce several new reasoning principles
that arise quite naturally from the structure of inductive definitions.

5.1 Exploiting Derivations to Reason About the Derived

Recall the definition of the language of Boolean Expressions ¢ € TERM C TREE:

r1 € TERM 79 € TERM 713 € TERM
if 1 then rq else r3 € TERM

(rfalse) (rif)

(rtrue) false € TERM

true € TERM
From the above, we know that TERM = {r € TREE | 3D.D :: v € TERM } . Let me take a moment to
emphasize that the “€ TERM” on the right side of the set comprehension is purely syntactic sugar. It is
there to make clear to the human reader what set the derivations are describing elements of. If it weren’t
sugar, then this definition would be ill-founded: it would be unfortunate if we needed to already have TERMs
in order to define TERMs.E Here we don’t: we needed TREEs r. I sometimes leave off that particular piece
of sugar because it looks problematic in this context. So instead I could equivalently write
TERM = {r € TREE | 3ID.D :: 1 }.

n general, these language properties are interesting, but because Vapid is so...vapid, the properties are trivial.
2Contrast this with the empty set and an infinite set, which we did bring into existence via ZFC axioms. You have to start
somewhere if you hope to bootstrap all of mathematics!
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Since TERM is defined using a set comprehension, we immediately know that for each element t € TERM,
it is also true that t € TREE, i.e. TERM C TREE. Furthermore, for each t € TERM there must be at least
one derivation D € DERIV such that D :: t. In short, we appeal to the axiom of separation as it applies to
our definition to justify the following reasoning principle:

Proposition 13.
Vt.t € TERM <=t € TREEN 3D € DERIV.D :: t.

Proof. Consequence of the axiom schema of separation. O

We take advantage of this crisp connection between derivations D and TERMs ¢t to reason about the
TERMs by proving things about derivations.

5.1.1 Forward Reasoning

When we first introduced inductive rules for inductive definitions, the rules were given the informal inter-
pretation of if the premises are true then the conclusions follow. However, inductive rules are just sets of rule
instances, which are used to build these funky “data structures” called derivations. They are not statements
in logic. However, we can make formal the connection between rules and their informal reading.

Take, for instance, the (rif) rule:

r1 € TERM ry € TERM 13 € TERM
if 71 then ry else r3 € TERM

(rif)

The following proposition and proof uses this rule (in the context of derivations) to produce a corre-
sponding reasoning principle.
Proposition 14 (rif). Vt1,te,t3 € TERM. if ty then ty else t3 € TERM.

Proof. Suppose t1,ts,t3 € TERM. Then by the definition of TERM, There is some Dy, Dy, D3 € DERIV such
that Dy :: t1, Dy :: to, and D3 :: t3. Then by (rif) we can construct a new derivation

D, Dy D3
D=1t € TERM t; € TERM {¢3 € TERM
if £1 then t5 else t3 € TERM

Since if t; then 5 else t3 € TREE and D :: if t; then t5 else t3 it follows that if £; then ¢4 else t3 € TERM.
O

Proposition @ precisely formalizes the idea that our inductive rules enable what I'll call forward reasoning
in terms of an inductive definition. Probably the most interesting part of the proof is that we could just
assume three derivation trees D1, Dy, D3 into existence without being on the hook to build them. In essence,
their existence (in the universe of set theory) is a property of our definition of TERM. We don’t need to
explicitly build them, but we can use Prop. E (specifically the left-to-right reading of < ) to know that
they just have to be out there. Then it’s a simple step to build our bigger derivation and then use Prop.
again (this time from right to left) to know that we have a TERM.

We can construct the same kind of proposition for (rtrue), but it’s a fantastically boring instance of
forward reasoning:

Proposition 15 (rtrue). true € TERM
Proof. Let D = true € TERM. Then since true € TREE and D :: true it follows that true € TERM. O

In essence this is saying “if all of the premises of (rtrue) hold, then true € TERM.” Since there are no
premises, they are “all” vacuously true: boring case of forward reasoning!

Let’s recap: in both of these propositions, what we’ve done is exploit the fact that TERM was inductively
defined in terms of derivations (essentially a data structure) built from rules (which are just sets of rule
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instances) to deduce a general principle of reasoning as a logical statement (Prop. @) The intuitive inter-
pretation of our rules is reflected into actionable logical reasoning principles by proving forward-reasoning
propositions.

Now in day-to-day practice, logicians and mathematicians (and computer proof assistants) don’t bother
explicitly proving the forward reasoning principles as I have done here: they take them for granted, and in
a proof will simply say “by (rif), we get ..” as if they were directly appealing to the inductive rule, rather
than the proposition that it reflects. Most of the time this “pun” between rules and propositions is fine,
which is why I intentionally give these propositions the same name as the corresponding rule, but it can be
useful to understand that rules are not propositions. However rules straightforwardly induce corresponding
propositions.

5.1.2 Backward Reasoning

If we think of inductive rules as LEGO® blocks, and derivations as soaring structures that we build, then it
is quite natural to view forward reasoning as a logical form of construction. Sometimes, however, we want
to go in the opposite direction. Like my younger self, we often want to take things apart to understand how
they work.B Inductive definitions can help us do this as well, this time exploiting the structure of all possible
derivations, rather than a single inductive rule. For our inductive definition of TERM, this global reasoning
about derivations is distilled into the following proposition about derivations:

Proposition 16 (Principle of Cases on Derivations D :: r € TERM).
For all D € DERIV, r € TREE, if D :: r € TERM, then exactly one of the following is true:

(rtrue) (a

1. D = true € TERM nd thus r = true);

(rfalse) (a

2. D = false € TERM nd thus r = false);

3. For some Dy, Dy, D3 € DERIV and r1,72,73 € TREE, Dy :: 11, Do :: 19, D3 :: 13, and

D, Do Ds
D—=r1 € TERM 1y € TERM 13 &€ TERM

ifrq then ry else r3 € TERM

(rif)

(and thus r = if ry then o elsers).

Based on our understanding of inductive rules and the structure of derivations as disciplined trees of rule
instances, the above statement seems in line with our intuitions. We state it explicitly for two reasons.

First, we will act as though this proposition is “given for free” from our inductive definition, this is not
strictly true. Just as the forward reasoning principles in the last section were propositions that in principle
had to be proven, the same is true here. I've mentioned that we can encode the idea of inductive rules
and derivations directly in set theory, where an inductive rule is some kind of set, and a derivation tree
is another kind of set, etc. If we were to do this, we could explicitly prove the above proposition against
this representation. However, diving that deep involves too much “machine language” programming for our
purposes: it would probably shed less light than heat at this point. At the least we can use something more
akin to assembly language (a smidge higher-level than machine language) as our starting point, which makes
life a little easier, albeit not quite as easy as we like. For this reason we will build new easier principles on
top of this, but we’ll know how to hand-compile our statements down to the “assembly language” level. This
can be helpful (at least it has been for me) when it comes to understanding whether what you have written
down actually makes mathematical sense.

Second, which is related to the first, we need to start somewhere. We need some “rules of the game” to
work with. Taking this principle as given is a nice starting point in my opinion. If you'd like to see what
the bottom looks like, I can point you toward some further reading. Instead, we will assume going forward
that whenever you have an inductive definition, you get a corresponding principle of cases on the structure
of derivations that you could prove if you cared to first explicitly represent derivation trees as sets.

3Ideally not rendering them permanently inoperable along the way, as my younger self often did, to my parents’ chagrin.
4You are encouraged to rewrite this proposition in fully formal notation for practice. The prose makes it a bit gentler though!
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Inversion Lemmas. Okay, let’s use this reasoning principle for derivations to prove something (lame)
about terms. Recall again our ever-delightful (rif) rule:

r1 € TERM 7o € TERM 73 € TERM
if 71 then ry else r3 € TERM

(rif)

If we compare it to the other two, we might notice that this is the only rule for producing if TERMs. Thus
our intuition is that when given a TERM of the form if 7 then 7o else r3, that each of its constituent TREEs
is also a TERM. Well, that’s true and we are now equipped to prove it!

Proposition 17. Vry,ry,r3 € TREE. if vy then ro else r3 € TERM = 11,719,173 € TERM.

Proof. Let r1,75,73 € TREE and suppose that if r; then ry else r3 € TERM. Then there is some derivation D
such that D :: if r1 then ry else r3 € TERM. By applying Prop. [L§ to it, we deduce that one of these is true:

(rtrue)

1. D = true € TERM (and thus if 71 then ry else 15 = true);

(rfalse)

2. D = false € TERM (and thus if 71 then r else r3 = false); or

3. For some D,, Dy, D. € DERIV and 14,7, 7. € TREE,

D, D, D,
D="a€ rl;ERM rp € TERM 1. € TERM (rif) (and thus if 71 then 7o else 73 = if 7, then 7}, else 7..).
if r, then 1y, else r. € TERM

An Aside: Renaming Quantifiers By applying Prop. @ to D, we replace D from the proposition
with...well our current D which just happens to have the same name, but more importantly, we replace
r from the proposition with if r; then 7 else r3.  Another really important thing is that right before
applying Prop. [l§, we rename the set names D1, Dy, D3, r1, 72,73 that were quantified in case 3 to be
Do, Dy, Dey 14,7, Te. Changing the names of r1, 79,73 in the proposition is critical to avoid confusing them
with the set names rq, 72, 73 introduced by the proposition that we are currently trying to prove. I renamed
D1,Ds, and Ds just so that the subscripts of the Ds would match the rs that they are derivations of: doing
that wasn’t strictly necessary, but more a matter of clarity and taste. But it goes to show that you can
rename quantified set names whenever you like, but sometimes doing so is necessary if you hope to produce
a precise and correct proof.

Now back to our proof. It now suffices to show that each of the above cases implies r1,73,73 € TERM.
so we proceed by analyzing each case.

—— (1t .
Case 5 (rtrue). Suppose D = true € TERM (rtrue) (and thus if 71 then ry else r3 = true).

Since if 1 then 7o else r3 # true (i.e., if 71 then 7o else r3 = true = 1), we deduce a contradiction L, from
which r1, 79,73 € TERM can be immediately deduced.

Case 6 (rfalse). Suppose D = false € TERM (rfalse) (and thus if r1 then ry else 75 = false).

Since if 1 then rq else r3 # false (i.e., if r1 then r else r3 = false = 1), we deduce a contradiction L, from
which rq, 79,73 € TERM can be immediately deduced.
Da Db Dc
Case 7 (rif). Suppose D =Ta € TERM 1, € TERM 1. € TERM (xif) for some derivations D, Dy, D, and
if v, then 7y, else r. € TERM
TREES T, T, Tc. (and thus if 71 then ry else r3 = if r, then ry, else r.). It follows, then, that r = rq, ro =7y,
and rg = r.. Since Dy :: r1, Dy :: ro, and D, :: r3, we deduce by the definition of TERM that 71,73, 73 € TERM.

O

Phew! That took a lot of work! Let’s take a moment to reflect a bit on the structure of this proof, which
makes precise the reasoning that led us to intuitively suspect that the proposition was true even before we
proved it. In essence, each ¢ € TERM must be justified by a derivation, the last rule of a derivation has only
3 possible shapes, and only one of them works. Thus we can analyze the last rule of the derivation to learn
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some new stuff. Notice though, that in order to formalize the idea that “only one of them works”, we had to
explicitly consider the obviously-not-working ones and argue formally that they don’t work! In general this
is a really important step that captures how you as a human almost unconsciously examine and check off
the other two: “(rtrue): nope! (rfalse): nope! ..”. The unexamined rule can come back to haunt you. For
instance, suppose we changed the inductive definition of TERM by adding another rule:

ro € TERM
if true then r5 else r3 € TERM

(rub-roh!)

This rule roughly means that if the predicate position of the if expression is true, then we can throw
whatever garbage TREE we want into the alternative branch ’cause we ain’t gonna run it.# Then we would
have new facts like if true then false else elvis(lives!) € TERM, even though elvis(lives!) ¢ TERM, thus breaking
Prop. [171.2 However, adding this rule would lead to one more case in Prop [1§, which would lead to one more
case-analysis in Prop. [17, for which we could not complete the proof: we’d b stuck. So at least we can catch
the falsity of the proposition by attempting to prove it!

So you can see that backward reasoning is affected by all of the rules that make up your inductive
definition: adding new ones or removing old ones can break your proposition in a highly “non-local” way.
In contrast, forward reasoning is a property of each rule in isolation, so it can be more robust to changes in
your definition.

A recap: we have demonstrated that our inductive rules give us certain shallow reasoning principles,
that only require us to analyze one step of reasoning according to the inductive rules. This is definitely
not sufficient to prove everything we would like to, but it gives us individual steps of reasoning that we can
exploit within the context of more complex proofs.

Now for a terminological tidbit: a proposition like Prop. @ is often called an inversion lemmaﬂ because
the statement of the proposition reads as though you were inverting the meaning of the (rif) rule: if the
conclusion holds then the premises hold. However, not all inversion lemmas end up corresponding to an
analysis of a single rule (especially if two rules can yield the same conclusion like when we added (ruh-roh!)
to our system). Nomnetheless, backwards reasoning ends up being an extremely valuable resource in our
arsenal of reasoning principles. It becomes even more valuable when we go beyond defining the programs in
our language to defining semantics and similar artifacts.

Finally, note that the inversion lemmas corresponding to (rtrue) and (rfalse) are super boring, e.g.:
true € TERM = T, which means roughly that if true is a term, well, then then ... well then nothing exciting
to write home about (literally “truth is true”). This lemma merely confirms for we cannot extract any
additional useful information from the knowledge that true is a TERM. In contrast, we were able to learn
new things about the subcomponents of an if expression.

Often, a paper will present a single proposition that it calls “the inversion lemma” which combines in
a single proposition some suite of reasoning principles whose structure is guided by the inductive rules
underlying a particular inductively-defined set, and whose proofs proceed by backward reasoning. This is
common because backwards reasoning is really useful, so it makes sense to clearly determine and state what
backward reasoning principles are nearly immediately at your disposal. The statement of that proposition
can vary depending on how the author intends to reason backwards. Here is an example of such an inversion
lemma for TERM that is similar but different from Prop. [L7: in particular, it does not distinguish the top-level
structure of TERMs, but rather treats them in full generality.

Lemma 1 (Inversion on r € TERM). For all r € TREE, if r € TERM then one of the following is true:
1. r = true
2. r = false

3. r = ifry thenry else ry for some r1,r2,73 € TERM.

5Tf you think about it, some scripting languages like TCL, that incrementally parse a file while running it, and let you throw
line-noise in parts that never get run, behave this way.

6We can prove that elvis(lives!) ¢ TERM (i.e., elvis(lives!) € TERM = L) using exactly the same backward reasoning approach.

"The word “lemma” means “helper proposition, not the main thorem?” They’re analogous to helper functions in code.
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This lemma can be proved using backward reasoning. The structure of this lemma is a bit different from
Prop [11, which up-front said something about all TERMS r1, 79,73, whereas the third case of this lemma
says for some. Later we’ll see that this lemma can help us systematically design and implement a parser for
TERMs!

Proof. Let r € TREE, and suppose furthermore that r € TERM.

Then it suffices to show that
(r =true) V (r = false) V (Iry, 72,73 € TERM. 7 = if r1 then 75 else r3).

By definition of TERM, we deduce that D :: r € TERM for some derivation D. By applying Prop. @ to
D we deduce that either:

(rtrue)

1. D = true € TERM (and thus r = true);

(rfalse)

2. D = false € TERM (and thus r = false); or

3. For some Dy, Dy, D3 € DERIV and r1,79, 73 € TREE,

D, D, Dy
D =11 € TERM 75 € TERM rg € TERM (xif) (and thus r = if 1 then 7o else r3).
if 71 then ry else r3 € TERM

It now suffices to show that each case implies
(r =true) V (r = false) V (3r1, 72, r3 € TERM. 7 = if r1 then 73 else r3).

Case 8 (rtrue). Suppose D = true € TERM (rtrue) Then r = true,

from which we deduce (r = true) V (r = false) V (3r1, 72,73 € TERM. rr = if r; then rq else r3).

Case 9 (rfalse). Suppose D = false € TERM (rfalse) Then r = false,

from which we deduce (r = true) V (r = false) V (Iry, 72,73 € TERM. 1 = if 7 then r else r3).

Case 10 (rif). Suppose that for some Dy, Dy, D3 € DERIV and r1, 792,75 € TREE,

Dy D, Dy
D = r1 € TERM 79 € TERM 713 € TERM
if 71 then ry else r3 € TERM
r = if r; then r5 else r3 € TERM, and from the three subderivations we deduce that r1,75,73 € TERM.
This suffices to prove that 3ry,re, 73 € TERM. r = if r1 then 75 else r3,
from which we deduce (r = true) V (r = false) V (Iry, 72,73 € TERM. 1 = if 71 then r else r3).

(rif) Then we can deduce that for some ri,79,73 € TREE

O

Since this is one of the first proofs you’ve see, I'm going to walk through it again, but in painful detail,
then rewrite it as you would typically see in a paper. The first is to help you understand the structure of such
a proof and how it is partially guided by the structure of the formal proposition, and the second is to help
you understand how most proofs in writing are really “proof sketches”, which give you enough information
to reconstruct the “real proof”, much like like how pseudocode in a paper or textbook is meant to give you
enough guidance to implement the “real algorithm” in the programming language of your choice.

Proof. To start, let me write this proposition more formally, because seeing the precise structure can help
with structuring the proof:

Vr € TREE.r € TERM = (r = true) V (r = false) V (3r1,r2,73 € TERM. 7 = if r; then rq else r3).

To start, we are proving an implication. The form Vr € TERM.® is a shorthand for Vr.r € TERM = ®.
We employ it because 99% of the time we are not writing theorems about arbitrary sets, but about elements
of other sets. The standard notation is optimized for set-theorists, not PL theorists. So the proposition says
if r € TERM, then case 1 holds or case 2 holds or case 3 holds. To prove a universally quantified formula
Vr...., we suppose that r is some arbitrary set; to prove an implication » € TERM, we prove the premise.
Since Vr € TERM. ... combines both, we do both:
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“Suppose that some r € TREE, and that » € TERM.”

From here it suffices to prove the consequence:
(r =true) V (r = false) V (3r1,72,r3 € TERM. 7 = if r1 then 73 else r3).

From r € TERM and the definition of TERM, we deduce that there is some derivation D such that
D ::r € TERM. So we now consider that D. Here, we’ve technically taken two steps. First, we deduce that
3D € DERIV.D :: r and simultaneously be begin to use that proposition by taking the (same) name D to
refer to that particular derivation as well as the knowledge that D :: r.

Now that we have a derivation D, (since we've concluded that one exists!) we apply the Principle of
Cases on Derivations to it to deduce that one of the following holds.

(rtrue)

1. D = true € TERM (and thus r = true);

(rfalse)

2. D = false € TERM (and thus r = false);

3. For some Dy, Dy, D3 € DERIV and r1, 79,73 € TREE,

D, D, Dy
D =r1 € TERM ry € TERM 73 € TERM (xif) (and thus r = if 1 then 7o else r3).
if 71 then ry else r3 € TERM

Notice that I have not renamed any quantified variables in the third case, since none of them interfere with
the variables that I am currently considering. In particular, the sets r1,79,7r3 in the third disjunct of our
goal are existentially quantified, so we can rename them later if we need or want to.

From the Principle of Cases on Derivations we deduced that one of the three statements about D and r is
true. It now suffices to show that each of these three cases implies
(r = true) V (r = false) V (3ry, 72,73 € TERM.7r = if 1 then ry else 73). I know: things are looking good
for us, but let’s be thorough and finish the job! Let’s make our proof nearly computer-checkable.

So we now know that one of the above 3 things is true, and we want to show that one of the three
original things up above holds: we are using one disjunction to prove another. So as with our small model
of propositional logic, we use (or eliminate) a disjunction by separately assuming each of the three cases and
trying to prove the conclusion. On the other end, we can establish (or introduce) a disjunction by proving any
one of the disjuncts. We don’t need to prove all of them, otherwise we’d actually be proving a conjunction.
So the usual prose for using a the results of the Principle of Cases on Derivations is to say something like:

“We proceed by cases on the structure of D”

And then write out the cases separately like the following.

(rtrue)

Case 11 (rtrue). Suppose D = true € TERM Then r = true, so one of the three disjuncts holds.

(rfalse)

Case 12 (rfalse). Suppose D = false € TERM Then r = false, so one of the three disjuncts holds.

Case 13 (rif). Suppose that for some Dy, Dy, D3 € DERIV and 71, 72,73 € TREE,

D1 Dy Ds
D = r1 € TERM 1ry € TERM r3 € TERM
if 71 then ry else r3 € TERM
r = if ry then r5 else r3 € TERM, and from the three subderivations we deduce that r{,7r9,73 € TERM.
This suffices to prove that 3ry, 7o, 73 € TERM. r = if 1 then 75 else 73, so one of the three disjuncts holds.

(rif) Then we can deduce that for some rqi,72,73 € TREE

O

Notice that all the way down, the structure of the proof was analogous to the structure of proofs in our
small formal model of propositional logic. What I haven’t formally presented is how to introduce or eliminate
Jor V in CPL. Ideally we can avoid formalizing those, but rather get more comfortable with them through
practice.

Finally, let me rewrite this proof as a proof sketch, as often appears in the literature. This mostly involves
leaving out details that a seasoned human theorem-prover will be able to fill in herself.

Proof. Suppose r € TERM. We then proceed by cases on the structure of D
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(rtrue)

Case 14 (D = true € TERM ). Then r = true immediately.

—— (rfal
Case 15 (D = false € TERM (rfalse)

D1 Dy D3
Case 16 (D =71 € TERM 1y € TERM 73 € TERM (xif) ). Then r = if r1 then rq else r3 immediately, and
if 71 then ry else r3 € TERM
from the three subderivations we deduce that rq{,r, 73 € TERM.

). Analogous to the previous case.

O

Now for some explanation. Roughly speaking, an inversion lemma is just a way of saying that if the
conclusion of an inductive rule holds, then the premises of the rule hold as well. In general, things get more
complex, especially because an inductive definition may have two different derivations for the same element
of the defined set (e.g. from the entailment relation, { T } T true: T leave it to you to find two derivations).
Nonetheless, there is a corresponding notion of inversion lemmas in this case, but it may merge rules that
can produce the same result. Often we won’t bother proving these inversion lemmas, especially when the
inductive definition in question has a quite simple structure. Then the proof could be done using backwards
reasoning without incident. However, there do exist systems where the desired inversion lemmas require
substantial nontrivial proofs to establish (this happens often for certain proof systems of philosophical logic,
but that’s a bit far afield from this class).

Nonetheless, we will often apply inversion lemmas going forward so you should know how to prove them,
if only to make sure that you stated them correctly.

As mentioned earlier, these inversion lemmas are sometimes useful when thinking about implementing
artifacts in code that are related to set being inductively defined. In the case of r € TERM, we get a basis for
implementing a parser for TERMs. Essentially, for our purposes, a parser is a program that given some tree
r, tries to (implicitly) build a derivation D :: r € TERM starting from the bottom and working upwards. If
we look at the lemmas, we can see that at each point, the next step of searching is relatively clear. When we
introduce more sophisticated inductive definitions like relations that associate programs with their resulting
values, or relations for specifying which programs are well-typed, we will specialize the inversion lemmas to
distinguish inputs (e.g., input program) from outputs (e.g., the result of evaluation).

5.2 Proving that something is false

So far in class we have mostly been proving that something is true, for example that “There is a program in
Vapidl with undefined result.”

Sometimes, we want to prove that something is not true though, for example, “There is no Vapid 0
program with undefined result.” Proving something of the form "not P” is common, so we should make sure
we understand how to do that.

Suppose I have some proposition P. I may want to prove that “P is false” or “not P.” In symbolic
notation, this is written

-P.

To prove something of this form, the standard practice is to prove that “If P is true then absurdity follows.”
In logic, we represent absurdity® with the symbol 1, which is typically given the name “bottom.” So for our
purposes, =P is just an abbreviation for P => 1. The intuition is that if P is true then something is really
broken in the world.

Though we haven’t explicitly stated it before, there are a lot of things that we already know are not true,
meaning that they imply 1. For instance, we know that the atom true is not the same as the atom false. In
our typical mathematical notation we write this as

true # false

8You may have heard the word “contradiction” as a synonym for absurdity. For technical reasons I’'m avoiding that word,
and I also want to assure you that what I am about to demonstrate is not “proof by contradiction.”
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But this is shorthand for
—(true = false) (i.e., ”it is not the case that true = false.”)
and that is shorthand for
(true = false) => 1 (i.e., “if true = false then the world is broken.”)c

We can use knowledge of this proposition to prove that something is false about our language of Boolean
Expressions:

Proposition 18. true }| false.

Rewriting this symbolically, we are proving that —(true | false), i.e., that (true |} false) = L. We are
proving an implication and we already know how to do that: assume the premise and use that to prove the
conclusion.

Proof. Suppose that true | false. By inversion on ¢ |} v, we that for all values v, if true || v then v = true.
Specializing this for our assumption, it follows that false = true. But that’s absurd (i.e., we apply (true =
false) => 1 to deduce absurdity ).

Thus we’ve proven that it’s absurd that true |} false or rather true |} false = L. O

5.3 Inductive Reasoning

The strategy that we use to define an evaluation relation or function and prove properties about it follows
our ongoing theme that the structure of your definitions guides the structure of your reasoning. In the case
at hand, we defined the syntax of the Boolean Expressions using an inductive definition, which consisted of a
set of inductive rules, whose instances could be used to build derivations that “prove” which TREEs we want
to accept as TERMs. For our purposes, an inductive definition “automatically” provids reasoning principles
tailored to the particular definition, just like each axiom of set theory gives us a reasoning principle that we
can work with.

We took the Principle of Cases on Derivations as a reasoning principle that lets us prove properties of
terms based on the “shallow” structure of derivations. This principle is subsumed by a more powerful one
that enables our reasoning to go “deeper”. The reasoning principle for our inductively defined set TERM
follows.

Proposition 19 (Principle of Derivation Induction on D :: r € TERM).
Let @ be a predicate on derivations D :: r € TERM. Then ®(D) holds for all derivations D if:

1. ¢ (truee TERM (rtrue) ) holds;

2. @ (falsee TERM (rfalse) ) holds;

3. For all Dy, Dy, D3 € DERIV, 11,792,173 € TREE, such that D; :: r;,
D, Dy Ds
Ife <r1 € TERM)’ o (7’2 € TERM)’ and ® (7’3 € Trry ) hold then

D, Dy Ds
d |71 € TERM 1y € TERM 713 € TERM
ifrq then ry else r3 € TERM

(rif)

holds.

Proof. For our purposes for now, this comes for free with the inductive definition of ¢ € TERM. Later in the
course will delve a bit deeper to make clear how logical predicates get drawn into this. O

9Technically we could prove this principle rather than take it as given, but once again that would send us further down the
rabbit hole than is necessary or helpful.
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First, let me explain the use of an “infix” reference to “if”: near the beginning of the proposition we see
the prose structure “A holds if B”, or more briefly “A if B”. This prose is formalized as B = A, reversing
the two subformulae. In contrast, the prose “A only if B” is formalized as A = B, in the same direction.
This is why the phrase “A if and only if B” is formalized as A < B which is shorthand for “A if B and A
only if B” or (B = A) A (A= B)

Whenever we define a set using inductive rules, we get a principle of induction on the derivations from
those rules. These principles all have the same general structure: assume that you have some property ® of
derivations. Then that property holds for all derivations if for each rule in the inductive rule, the property
holds for a derivation of the conclusion if it held for the derivations of each of the premises. This can be most
clearly seen in case 3. above, where the property holding for the 3 subderivations of the if derivation suffices
to ensure that it holds for the whole derivation. The first two cases are a little different. Since the (rtrue)
and (rfalse) rules have no premises, it’s vacuously true that the property holds for all of the subderivations
(because there aren’t any).

Without delving into an actual proof of this, the intuition is this: In a sense, this theorem is a recipe for
building up a proof that P(D) holds for any particular D: If we know that P holds for any derivation that
is exactly an axiom, and we know that whenever we combine derivations D; that satisfy P using some rule,
we get a single tree that also satisfies P, then we can take any derivation, tear it apart, and prove that the
leafs of the tree (at the top) satisfy P and we can systematically put the tree back together, proving at each
step that the resulting piece satisfies P, until we’ve finally rebuilt the entire original tree and established
that indeed P(D) holds.

5.3.1 Aside: Reasoning about Function Definitions

So how do we use this principle of induction in practice? Below we will apply it to deduce facts about
a function, but first let’s spend some time using basic set-theoretic tools to deduce some properties of a
function based on the structure of how we defined it. Then we’ll see an example of using induction to
prove something that we already know to be true intuitively, but that we must prove using the principle of
induction. Note that this is the typical progression in math: as an intuitive human, we have the sense that
something is true, but then we prove it formally so as to be sure. Sometimes we’re surprised to discover that
the thing we “knew” is false. So much for being perfect!

Anyway let’s start with a simple function. Consider the following function definition, which yields the
number of Boolean constants in a TERM:

Definition 4.

bools: TERM — N
bools(true) =1
bools(false) = 1
bools(ifty then to else t3) = bools(t1) + bools(ta) + bools(ts)

Remember that an equational function definition like the above ought be interpreted roughly as follows:

F(true) = 1A
Let S=<(¢ F € TERM — N F(false) = 1A
Vi1, ta, t3 € TERM.F(if t1 then t5 else t3) = F(t1) + F(t2) + F(t3)
Then bools € S and Vf € TERM — N.f € S = f = bools.

We can restate it as a proposition, which makes it clearer that there is technically an obligation to prove
that proposition:

bools(true) = 1A
Jlbools € TERM — N. bools(false) = 1A
Vi1, ta,t3 € TERM.bools(if t1 then ts else t3) = bools(t1) + bools(ts) + bools(t3)
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In short, there is a unique function in TERM — N that satisfies the three propositions, and we will use
the name bools for it. Technically we are on the hook to prove that (1) there exists at least one function that
satisfies those three equations; and (2) there exists at most one function that satisfies those three equations.
For now, let’s assume that both of these claims are true. Below, we will prove that a particular scheme (i.e.,
template) for equations is guaranteed to define a unique function, and that the equations for bools fit that
scheme. We call that scheme the Principle of Recursion for ¢ € TERM.

Anyway, we have a function now and we’ll assume it exists. What do we know about it right now? Well
we know by the axiom of separation that (1) it assigns a unique natural number to each term ¢, and (2) that
these assignments are constrained by the equations given above. In fact, since this is a function definition,
we know that these constraints are sufficient to uniquely describe one function.

First, let’s prove something we already know about how bools treats one particular term.

Proposition 20. bools(true) = 1.
Proof. bools satisfies three equations, and conveniently the first one immediately completes the proof. [

Not a particularly complex proof, but a proof nonetheless! Remember: bools is technically just a particular
subset of TERM x N, in fact an infinite subset, but nonetheless we can use the few facts that we know about
it to deduce facts. Here we used equational reasoning to deduce new facts about bools. It’s a bit absurd for
me to write the above as a proposition and a proof: no one does that in real life, they just write out the
calculation as in the following example:

bools(if false then true else true)
=bools(false) + bools(true) + bools(true)
=1+1+1
=3.

Each step of the above appeals to equational reasoning to learn something. In the above example, we used
our sparse knowledge from the definition to deduce additional facts about the bools function. You may be
rolling your eyes a bit, since you have been doing stuff like this since secondary school, but it’s useful to
recognize this as an instance of deduction: learning new facts from old. This is a proof of a theorem (that
the first term equals the last). All too often we think of a mathematical function as a machine that performs
calculations given inputs. Hogwash! Our mathematical function is just a table of mappings from TERM to N.
It sits there like a dead fish. Not only that, it’s infinite, so we can’t hope to just read down the list of entries
to find the one that we want (I'm pretty sure it wouldn’t fit on disk anyway, let alone in memory). Instead it
is we, the logical deduction engines, that use only the fact that the function exists, and the scant few other
properties that we found sufficient to uniquely describe the function, in particular the equational constraints,
to deduce some of the entries in this infinite table of pairs. In short, functions don’t compute, they are just
sets: calculation is the process of deducing facts about a function. That’s what we teach computers to do
for us: deduce.

Okay, enough with the philosophy for now. Let’s get back to deducing facts about bools. In the last two
examples, we used equational reasoning to deduce facts about particular entries. Now, let’s deduce facts
about entire classes of entries.

Proposition 21. Vi € TERM.bools(ift thent elset) = 3 * bools(t).
Proof.

bools(if t then t else t)
=bools(t) + bools(t) + bools(t)
=3 x bools(t).

O

This proposition is not that much different looking from the last one, but it’s way more general: the last
one told us a fact about one term, while this one tells us something about an infinite number of terms! So
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exciting. In practice, if I were on the hook to implement bools as a computer program (i.e. a deduction
engine for this function), I could possibly exploit this fact to add an optimization to my deduction engine:
“if you see a case like this, don’t bother computing bools(t) three times: just do it once and multiply.” As
programmers, we make these steps of deduction all the time while we work, at least if we are concerned about
performance. In essence, this is what an optimizing compiler (or interpreter!) for a programming language
does too. Here we make such a deduction explicit and justify it with a formal proof of its correctness.

5.3.2 Your First Proof By Induction

In the last segment, we showed that in the set-theoretic world, an equational function definition is just a
“constraint filter” on the set of functions with a domain, winnowing it down until there can be only one.
Note that I am specifically saying equational function definition, because there are other ways to define
functions (i.e., pick out an individual element of the set of functions). And we showed that we can use
those equations to deduce new properties of the function...these deductions are exactly the calculations that
we perform to determine the value of a function for a particular input. But we also show that those same
deductions can be used to determine facts about entire classes of values, and given such a deduction we can
“optimize” future deductions. We’ll find out later that people write computer programs that automatically
perform these kinds of deductions too. For instance, the subfield of program analysis called symbolic execu-
tion Baldoni et al] [2018] is precisely about writing an automatic and efficient “proof engine” for deducing
useful facts about abstract expressions, where symbols play the role of our metavariables. The workaday
programmer is much more comfortable with writing such deduction engines for the value of a function when
given a concrete input! Shockingly enough, we call such deduction engines...wait for it..“functions.”

Hopefully these side-commentaries about deduction might help you make a useful observation: many
computer programs that you and others are writing can be viewed as automated theorem provers for very
limited classes of theorems. In the case of implementing bools as a programming language function (which
I sometimes call a procedure to disambiguate), the corresponding program accepts a term t, uses deduction
like above to prove the specialized theorem 3n € N. bools(t) = n, throws away the proof, and just gives you
the number n.

Time for a theorem! Now it’s worth noticing something interesting about our bools function if only
intuitively: The function is defined to evaluate to natural numbers N, but not every natural number has
some term to which bools maps it. In particular, there is no TERM such that bools(t) = 0! How do we know?
Well, just by staring at the equations and saying something like “look, the Boolean constant cases yield 1
and the if case uses +...s0 it just can’t produce 0...right?” But how do we formally prove that this hand-wavy
explanation is correct? Clearly we can test this hypothesis by coming up with a bunch of concrete TERMs
and deducing their values and then gaining confidence in our observation. But since we have an infinite
number of TERMs, we cannot exhaustively test the bools function. Another way to say this last sentence is:
we cannot appeal to the reasoning principle that we get by giving an extensional definition of a finite set
like { a,b, ¢} because TERM is infinite, so we can’t give an extensional definition, so we don’t get extensional
reasoning.

So what to do? Use the Principle of Derivation Induction on D :: » € TERM! And you’ll find yourself
using induction principles time and time again in this course.

Let’s work through this proof, in more painful of detail than you would see in the literature. It’s more
important to understand what is really going on first, then see how people take shortcuts when writing it
down (think “code” versus “pseudocode”).

Proposition 22. bools(t) > 0 for all t € TERM.

Proof. A note about the proof statement. Mathematicians sometimes put the quantifiers (for all, for
some) at the end of the statement, even though it appears at the beginning of a formal presentation:
Vt € TERM.bools(t) > 0. Other times they leave off the quantifiers, and then you have to guess what they
mean. Both of these are meant to emphasize the most important part of the statement, since a person can
usually figure out the proper quantification from context. Sadly, this doesn’t always work: sometimes you
are left scratching your head wondering exactly what they mean, and if the proof isn’t there for you to in-
spect, you may end up sending an annoyed email to the author to find out what the heck they meant...sadly

10No swords or immortals necessary!
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I've been that author some times. Don’t be that author. We will tend to write propositions in full formal
style, though occasionally we will mix in less formal prose in the traditional style, often to make a statement
(especially induction principles) easier to read.

We are going to use the Principle of Induction, but that will not get us all the way to exactly the
statement above, but it will get us most of the way there.

To use the principle, we first need to pick a particular property ® of derivations. Use this one:

®(D) =Vt € TERM.D :: t = bools(t) > 0.

I'm justified technically to use t € TERM here because every TERM is a TREE, so the property is at least
well-formed: it’s always reasonable to ask if D :: t since :: C DERIV X TREE. Furthermore, I'm justified
pragmatically to restrict my property to TERMs ¢, in the sense that this will ultimately work out, because
we already know by definition that if ¢ € TERM then D :: t for some derivation D, so if I can prove this
property for all derivations, then it will imply the property I really care about for all terms. We’ll see this
reified in the last step of our proof.

Now, specialize the conditions on the Principle of Induction according to this property, which yields 3
lemmas, minor propositions, to prove.

(rtrue)>

The first condition was ® (true € TERM , so plugging in our property yields the following con-

dition:

Lemma 2.

Vt € TERM. (true € TERM (rtrue)) ot = bools(t) > 0.

Proof. Supposet € TERM, and (true € TERM (rtrue)) ;2 t. Then t = true, and bools(t) = bools(true) =1 > 0.
O

Okay, let’s all acknowledge that I'm being rather pedantic in this proof. But the reason I'm doing so
is just to show that there’s no magic: we learned in the last subsection how to use equational reasoning to
prove things, by plug-and-chug, and similarly here I just plugged my property into the definition verbatim
and proved the proposition that it gave me. The annoying part is...why did I have to deal with this “for all
t’s that the derivation could possibly be a derivation of”? Well, because the general form of the property
has to quantify over t, and only after we pick a particular derivation can we show that ¢ must be exactly the
same thing as the conclusion. Note that if we treated :: as a function from derivations to trees (which it is:
D :: t would be the same as saying :: (D) = t), then I would still end up deducing that true = ¢. In any case,
all of that is detail, but ideally you see that we’re being very systematic, much like a computer program
would have to be. That rigour becomes helpful (and not merely tedious) only when the objects and proofs
get more complicated, as well as when the prover or proof checker becomes a computer program.

Okay, I'’ve now got two more lemmas to prove:

Lemma 3.

YVt € TERM. (false € TERM (Tfalse)> it = bools(t) > 0.

Proof.

Suppose t € TERM, and (false € TERM

fal
(rfa Se)) it t. Then t = false, and bools(t) = bools(false) =1 > 0. O

Okay, let’s be honest: I wrote the above proof by copying the previous one and replacing the trues with
falses. That is to say, this proof follows essentially the same argument as the previous one. In a paper or
tech report, you are more likely to see:

Proof. Analogous to the lemma for true. O
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For communicating with experts this is a good thing: it tells me in a compressed form what the proof for
this case is like, so I don’t have to read through the details and discover that the proof is indeed analogous.
However, it had better be true that the proof goes analogously! That is to say, better to have proven it,
discover that it is analogous, and then compress the proof afterwards, rather than assume that it’s analogous
and be wrong! This is one of the pitfalls that people fall into when proving theorems. For at least the first
part of the class, I will ask you to present each proof in full, so that you get more practice with proving each
of the individual cases (even if “practice” means getting your cut-and-paste-and-edit right...).

Now for the last case, which is the most interesting one because it really demonstrates the power of
induction:

Lemma 4. For all D1, D5, D3 € DERIV, 1r1,79,73 € TREE, such that D; :: r;,

If
D,
Vt € TERM. (. ¢ Tppy) 1= bools(t) > 0,
and
D
Vt € TERM. <T2 c %ERM) :t = bools(t) > 0,
and
D
Vt € TERM. (7“3 c %ERM) it = bools(t) > 0
then

Dy D, Ds

Vt € TerMm. | 71 € TERM 715 € TERM 13 € TERM ..\ | ¢ = bools(t) > 0.
. (rif)
ifry then ro else r3 € TERMv

Wow, what a mouthfull But notice the structure of the argument: all we have to prove is that if
the property holds for derivations D; of the subtrees r; , then we can build a proof that the property
holds for the derivation that you get when you hook together the D; derivations to form a proof D that
if 71 then r5 else r3 € TERM. Also, notice that the derivations D; and r; are quantified universally at the
beginning. Then every reference to those names in the lemma refers to the same derivation. In contrast,
each individual precondition has its own t that is quantified universally, so we can use these preconditions to
deduce facts about a variety of t’s. It turns out that for this proof we will use each precondition only once.
Okay let’s prove it!

Proof. Suppose D1, Do, D3 € DERIV, and 11,72,73 € Tree, and D; :: ; € TERM. Furthermore, suppose

Vt € TERM. (m c T?ERM> wt = bools(t) >0
holds for each D; :: ;.
Now let
D, Dy Ds
D= |r1 € TERM 79 € TERM 713 € TERM

(rif)

if 71 then rq else r3 € TERM

It suffices to show that

D
Vt € TERM. (if r1 then ry else r3 € TERM € TERM) it = bools(t) >0,

so let’s do it:
Suppose t € TERM and D :: t. Then t = if r; then 75 else r3 € TERM. Using our assumptions we can
prove that bools(r;) > 0.@ Let me do it for one case. Apply the assumption

D
Vt € TERM. <T1 c fERM) = bools(t) > 0,

112) “Using our assumptions” corresponds to how you often see a proof say “by the induction hypothesis”! The induction
hypotheses are just the assumptions we made that & applies to each subderivation-tree pair D;, r;.
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to the term r; to get:
D
(7’1 c TI‘ERM> :rp => bools(ry) > 0.

By assumption, D; :: r1, which when applied to the above, gives us bools(r1) > 0.@ We repeat this reasoning
for ro and r3 to deduce bools(rz) > 0. and bools(rs) > 0.
From there, we can calculate

bools(if r1 then 7o else r3) = bools(r1) + bools(re) + bools(rs).

But using our knowledge that bools(r;) > 0, and summing up all three inequations gives
bools(r1) + bools(rz) + bools(rs) >04+0+40 = 0. O

Cool, so so far, we’ve proven three interesting lemmas, two of which are about concrete derivations (rtrue)
and (rfalse), and one that is about what happens if you build a derivation using (rif) from three pre-existing
derivations that satisfy our property ®. Are we done? Technically no! Now we apply the principle of
induction on derivations to our three lemmas to get:

Lemma 5.
VD € DERIV.Nt € TERM.D :: t = bools(t) > 0.

Great, so now we know something about all derivations D € DERIV. Surely we're done? The pedant
says no! Now, much like the induction hypotheses from earlier, we deduce from this fact and the definition
of TERM the knowledge that we really want.

Proposition 23. V¢t € TERM.bools(t) > 0.

Proof. Suppose t € TERM. Then by the definition of TERM, there exists some derivation D € DERIV such
that D :: t. Applying Lemma a to that derivation, we get that V¢’ € TERM.D :: ¢/ = bools(t') > 0.4 Well,
I know that ¢ € TERM, so if I apply the above proposition to it, I get that (D) :: ¢ => bools(t) > 0. And
now, we already knew that D :: ¢, so we apply the above proposition to this fact and we get—pant pant
pant—finally, bools(t) > 0. Woohoo! O

O

Okay, I walked through this proof in painstaking detail since this is the first time that we are doing a
proof by induction. The main point to takeaway is that there is no magic...or in a sense, the only magic
that we evoked is the Principle of Induction, which I stated without proof. Somehow it turns three pretty
benign lemmas into a fact about all derivations! Then we applied the definition of TERM, and some basic
reasoning by applying “foralls” and “if-thens” to relevant premises to get what we wanted. Now, most such
proofs, when written by professional mathematicians are written in much less detail. By the time you are a
professional, you don’t want to dig through all of the details, you just want a sketch of the argument, and
if some madman offered you your very own Maserati to write the full proof, you could fill in the details and
drive away in a blaze of glory and the caustic smell of burnt rubber.

However, if you are a digital computer, in particular a mechanical proof checker, then you need way more
detail than a professional mathematician to verify that a proof is true. A theorem prover or mechanical
proof assistant can surely fill in some of these details (just like our functional program that automatically
generates proofs of facts), but to be rock-solid sure that a theorem is true, there should be a pedantic proof
checker hiding somewhere in your tool that takes the proof and simply checks that every last detail is there.
This is how tools like the Coq®3 proof assistant work: under the hood somewhere is the pedantic proof,
waiting to be checked by a very simple, and pedantic, proof checker.

Later I'll show you what a mathematician’s proof (which you can think of as pseudocode for a real proof,
much like pseudocode for a real program) looks like. Those are nice for communicating with humans, but
first you want to make sure that when push comes to shove, you can write the real thing, and understand
that much of it is super-mechanical, and furthermore can be mechanically checked.

12Notice the terminology, that I'm “applying” a proposition to a “term”..sounds a lot like I’'m applying a function to an
argument, eh? This is no coincidence!

13Notice that without fanfare, I renamed the quantified ¢ in the result to ¢’ so that it doesn’t cause us problems in a second.
You can always rename quantified names, and sometimes it helps avoid confusion.

4https://coq.inria.fr/
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5.3.3 Rule Induction

Above we used induction to prove a universal fact about a particular function, exploiting its equational
definition. Now we consider another proof principle, which can streamline some other proofs that we will
write.

Returning to the problems we set out at the start, we are interested in defining an evaluator over TERMS,
which implies being able to reason about the TERMs in our language. However, we’ve inherited a principle
for reasoning about derivations, not TERMs. Working with the derivations seems a bit indirect: notice all
the work that we had to do above to get from a theorem about derivations to a theorem about TERMs.
However, since we defined the set of TERMs using the derivations, one would expect that we could use this
principle to prove properties of TERMs. Rather than fiddle with derivations every time we want to talk about
TERMs, we can introduce and apply a principle that lets us reason about properties of TERMs directly.

Proposition 24 (Principle of Rule Induction for » € TERM).
Let P be a predicate on TREEs r. Then P(r) holds for all TERMs t if:

1. P(true) holds;
2. P(false) holds;
3. For all r1,r9,r3 € TREE, if P(r1) P(r2), and P(r3) hold then P(ifry then ro else r3) holds.

As we’ll see below, rule induction is a nice tool to have, especially when reasoning about abstract syntaz,
like the set TERM, but can also be used for other inductively defined sets. The reason it is called rule
induction is that the structure of each induction lemma closely mirrors one of the inductive rules used to
form TERM, without mention of derivations. This principle is phrased in terms of a property P(r) for
r € TREE rather than ¢ € TERM. This difference is not critical: the variant that considers properties of
TERMs is also true (later in the course we will show a straightforward way to instantiate that). Sometimes,
one desires to prove a property Q(t) that is most conveniently phrased such that we can assume that the
argument is a term. To do so, simply use the property P(r) = r € TERM A Q(r). This form of proposition
is particularly helpful for the third case, where one can now assume that 1,72, 73 are TERMs while proving
the property for the conditional expression.

A final note. Consider again Prop. [L§, the principle of cases on derivations. We can prove it by induction
on derivations D, using Prop. [lY! One curious aspect of that proof is that we never need to make use of the
“induction hypotheses” to do so. This aspect of that proof is what makes reasoning by cases a “shallow”
analysis of derivation, whereas reasoning by induction in general performs a “deep” analysis of derivations.
In this sense, proof by cases on derivations is a degenerate variant of proof by induction on derivations:
anything that you can prove by cases, you can also prove by induction. But when given a glass ceiling that
you’d like to break, why use a concussion grenade when a ball peen hammer will do?

bools(t) > 0 revisited Okay, now that we have a new inductive tool, how shall we use it? To demonstrate, I
will re-prove Prop. P2, but this time by using rule induction on ¢ € TERM instead of induction on derivations.
Note how similar these two proofs are in structure.

Proposition 25. Vit € TERM.bools(t) > 0

Proof. By rule induction for ¢ € TERM.
The property for this proof is a little simpler than for our previous rendition:

D (t) = bools(t) > 0.

In fact, we just stripped the quantifier for ¢, and treated the remainder as the property.
Now for our induction lemmas and their proofs

Lemma 6. bools(true) > 0.
Proof. bools(true) =1 >0 O

Lemma 7. bools(false) > 0.
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Proof. bools(false) =1 > 0 O

Lemma 8.
Vt1,ta, t3 € TERM. bools(t1) > 0 A bools(tz) > 0 A bools(ts) > 0 = bools(ifty then to else t3) > 0.

Proof. Suppose t1,ts,t3 € TERM, bools(t1) > 0, bools(tz) > 0, and bools(t3) > 0. Then
bools(if t1 then ty else t3) = bools(t1) + bools(tz) + bools(ts) >0+ 0+ 0= 0.
O
O
Example: Rule Induction for Propositional Entailment To give you another example of a rule in-
duction principle, as we are calling it, here is the statement of the Principle of Rule Induction for I - p true

(i.e. elements (I',p) € - - true). It can be proven in terms of the Principle of Induction on Derivations
of D :: T' F p true, which we leave as an exercise for you to state. For reference, here is the inductive definition:

’ (- F - true) C P(PROP) X PROP‘

' p true (hyp) pel

T'F L true
I'T true (D) I'p true (LE)
I'p; true T'Fpy true I'Fp1 Aps true I'Fp1 Apo true
I'Fp1 Aps true (AT) I'Fp; true (AE1) T'F py true (AE2)
T'kp t T'kpsy t
LA YIT)) P2 T (1)

I'Fp1Vps true T'Fp1 Vps true

T'Fpy Vps true TU{py}+p3 true TU{ps}F p3 true
I'F p3 true

(VE)

T'U{p:} Fp2 true
I'Fpy Dps true

I'py Dpy true T'F py true
I'Fpso true

(20) (DE)

The corresponding principle of rule induction follows:

Proposition 26 (Principle of Rule Induction for I' - p true). Let ® be a property of entailments I' x PROP.
Then ®(T',p) holds for all T € P(PROP), p € PROP such that T' - p true if

1. For allT € P(PropP), p € PrROP, if p € T then ®(T, p).

For ollT' € P(ProOP), ®(I', T).

For allT € P(PRoP), if ®(T', L) then ®(T,p).

For allT € P(PROP), p1,p2 € PROP, if ®(I',p1) and ®(T', p2) then ®(T',p1 A p2).
For allT' € P(PRrOP), p1,p2 € PROP, if ®(I',p1 A p2) then ®(I',py).

For allT € P(PROP), p1,p2 € PROP, if (I, p3) then ®(I',p1 V p2).

© % NS S e

For allT € P(PROP), p1,p2,p3 € PROP, if ®(T'U{p1 },p3) and &(T'U{ps },p3) then (T, p3).
For all T € P(PROP), p1,p2 € PrOP, if ®(T'U{p1},p2) then ®(T,p1 D p2).

~
S

)
( )
( )
( ) (
( ) (
For allT € P(PROP), py,p2 € PROP, if ®(T, p1 A pa) then ®(T,py).
For all T € P(PROP), p1,p2 € PROP, if ®(T',p1) then ®(T',p1 V p2).
( )
( )
( )
( )

~
~

. For allT € P(PROP), p1,p2 € PROP, if (L', p1 D p2) and ©(T',p1) then ®(T, ps).
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Handling Side Conditions in Induction Principles Notice how in the first clause, which corresponds
to the (hyp) rule for CPL, that the side-condition p € T' becomes a premise of the lemma. However, there
is no premise of the form ®(p € I'): that doesn’t even make sense really. However, the rest of the clauses
have premises of the form ®(I' - p true) corresponding to premises of the inductive rules.d This is another
way in which side-conditions differ from premises in inductive definitions: side-conditions do not induce an
“induction hypothesis”, just a plain ole’ hypothesis!

One side-note. Often, the principle of rule induction for a set that represents abstract syntax is called a
principle of structural induction for that set (e.g. structural induction for ¢ € TERM), because the inductive
rules used to justify the principle exactly mirror the syntactic structure of the set’s elements. For example,
the (rif) rule for TERM has three premises, one for each of its subterm. So each rule describes a structural
formation rule for this kind of abstract syntax. In contrast, one would not call rule induction on I' - p true
“structural induction” since the rules do not mirror our intuitive conception of the structure of the set’s
elements. Rule induction can feel somewhat awkward when the derivations don’t mirror the structure of the
elements. Being able to reference derivation trees (and the side-conditions of the last rule used) in context
can really help the reader, and prover, clarify the connection between the premises and the conclusions.

Historically, the concepts and terminology of structural induction, rule induction, and induction on
derivations were developed independently, but we see that they can all be viewed as variations on a common
theme: inductive rules define sets and lead to (inductive) reasoning principles.

I introduce this principle of induction primarily to show that we can easily get these principles, induction
on derivations, and induction on elements, for any inductively defined set, regardless of what kind of set you
are defining: syntax, relations, functions, or what have you. Whether you will find the principle useful or
not is a different story.

5.4 Defining Functions

We’ve now developed a powerful tool, induction, that we can use to prove properties of TERMs, but we have
little experience using it yet. On another topic, we still need some way to justify equational definitions of
functions on TERMs. Let’s kill two birds with one stone: we will use Proposition Bf to prove a new principle:
that we always describe a unique function if we require it to satisfy a particular scheme of equations that in
general refers to the name of that function on both sides of the equal sign. This property, that the function
name recurs on both sides of the characterizing equations, is precisely what makes for a recursive function
definition.

We'll use the resulting principle to produce, with no remaining proof obligations, our first non-trivial
function over an inductively-defined infinite set. As with any equational function definition, we’ll see that
the structure of these function definitions will allow us to reason about their properties. For instance, we
can calculate equationally such a function maps particular inputs to outputs.

Enough lead-up: let’s state the principle:

Proposition 27 (Principle of Definition by Recursion for t € TERM). Let S be some set and s;,s5 € S be
two of its elements and
Hy:Sx8x8—=S8

be a function on S. Then there exists a unique function
F:TERM — S
such that
1. F(true) = s;
2. F(false) = s¢;

3. F(Iftl then tQ else tg) = H#(F(tl), F(tg),F(tg))

15Take care to distinguish between premises of inductive rules and premises of an implication. Unfortunately these different
things have the same name because they are somewhat analogous.
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Before we start using the principle, let’s talk a bit about its structure to give you some intuition for why
this makes sense. This principle is conceptually about mapping TERMs to Ss, tree-node by tree-node. To
get a sense of this, consider the specific TERM if false then true else if true then false else true. Given some set
S, elements s;, sy and function Hy, the function F' induced by them could be shown via equational reasoning
to satisfy the following equation:

F(if false then true else if true then false else true) = Hyf(ss, s, Hif(se, g, 5t))

To get from the TERM on the left to the expression on the right, we “simply” replaced all instances of true
with s;, false with sy, and if with Hyp, treating then and else as placeholders for commas. The equations
give a “single-step” description of this larger structure. In fact, you are encouraged to write down a few
terms and use the equations to demonstrate this correspondence. Understanding this correspondence can
help you think about how to craft the function definition that you really want.

This principle can be proved using what we’ve already learned about inductive definitions and their
associated induction principles. You'll get to see this in action on your homework.

Now, let’s use Proposition E to define a function! According to the proposition all we need is:

1. some set (5);

2. two elements (s; and sy) of that set, though you can use the same element for both; and

3. some function (Hj) from any three elements of that set to a fourth.

For our example, I’ll pick:

1. the set of natural numbers: S = N.

2. the number 1 for s;, and 0 for s¢: s; =1 and sy = 0.

3. and the function H(n,ns,ng) = ny +ns+ng which just sums up all the numbers: H : NxNxN — N.

Well, then according to Proposition @, there is a unique function F' : TERM — N with the properties
that:

F(true) = 1; (5.1)
F(false) = 0; and
F(if t1 then ¢y else t3) = H(F(t1), F(t2), F(t3)) = F(t1) + F(t2) + F(t3).

That means that these three equations (properties) uniquely characterize some function from TERMSs to
natural numbers. At this point all we know is that there is a function that satisfies these properties, and
that there’s only one. This isn’t much: all we understand about this black box of a function is the equations
that it satisfies. But broadly speaking, what does this function really mean? We could learn some things
about this function by using the equations to calculate what the function maps certain terms to, but I'll save
that exercise for homework. For now, I hope you’ll trust me that this particular function associates every
TERMin our language to the number of trues that appear in it. Thus it’s reasonable to call this function
trues.

What I've shown here is a rather longhand way of writing down a function definition: we take the
Principle of Recursion at its word literally, choose the necessary components, and then conclude that there’s
some function that satisfies the set of equations that you get after you specialize the proposition for your
particular choices (as I've done above). In textbooks and papers, writers rarely show things in this much
painful detail. Instead, they cut to the chase and simply give the equations that you get at the end. We’ll
call that the shorthand way of defining a function by recursion.

Considering our example again, here is the typical shorthand definition of the same function:

16This shorthand and longhand terminology is my own creation. I don’t think you’ll find it in the literature.
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Definition 5.

trues : TERM — N

trues(true) = 1
trues(false) = 0
trues(ifty then ty else t3) = trues(ti) + trues(ts) + trues(ts).

The function is described by the final specialized version of the equations, and it’s up to you (the reader)
to figure out which S, s, sy, and Hjs give you these equations ..which is often not hard.

The shorthand definition above can be read this way: ignoring the name we’re giving the function (trues),
and simply taking the three equations, we are saying that:

trues € { F € TERM — N | P(F) }

Where P(F) is the combination of equations (@)—(@) above, with leading universal quantifers placed ap-
propriately. The important thing is that in order for P(F) to be a good definition, i.e., a definite description,
the set we define above should have exactly one element, which means that trues is that element.

Why am I beating this to death? Because it’s easy to write a so-called “definition” with equations that’s
not a definition at alll™ Let’s consider two simple examples. Take the natural numbers N, and suppose I
claim I'm defining a function F' : N — N by the equation F'(n) = F'(n). Well that doesn’t define a unique
function at all because

{FeN=N|VmeNFn)=Fn)}=N—-NIl

That is to say, our equation picks all of the functions, not one. This is fine if you are specifically picking a
class of functions and you don’t care which one it is: logicians call this an indefinite description. But you’d
better know that you’re not naming a single function! This is not a function definition because it picks too
many functions.
For a second broken example, suppose our equation is F(n) = 1+ F(n). This one is broken for the
opposite reason:
{FeN—=N|VneNF(n)=1+F(n)} =0

There are no functions with this property. So this is not a definition because it picks too few functions.
Definitions like this are particularly bad because we can prove all sorts of terribly wrong things by performing
deductions using the description of a function that doesn’t exist! Here’s a fun example of what can go wrong:

=1 by identity;

F(1) = ) by applying a function to two equals;

F1)=1+F(@) by the “definition” of F;

F(1)-F(1)=1+F(1) - F(1) by subtracting equals from equals;
=1

by definition of minus.

So by reasoning with a function that we could never have, we prove something that’s totally, albeit obviously,
false. In this case we can see that something went terribly wrong, but what’s really bad is when you “prove”
something that isn’t obviously false, but is false nevertheless. Granted the example above is harebrained,
but plenty of prospective theorists have been led astray by morally doing exactly this kind of thing, and then
thinking that they have proven an interesting theorem when in fact they have done no such thing because
they started with a bad definition: assuming the existence of a mathematical object that does not exist.

The point is that when you try to define a function (or other single elements) by providing a set of
properties, you are obliged to show that those properties uniquely characterize the function. The Principle
of Recursion is a great workhorse because it once-and-for-all dispatches that obligation for those sets of
equations that can be stated in the form that it discusses: as long as our equations fit the Principle of
Recursion, we know that we have a real function definition. We call this a particular recursion scheme. We’ll
find that we can identify and prove additional recursion schemes, that let us identify new classes of functions
that cannot be shoehorned into this particular scheme.

17Sadly I see it in research papers (and textbooks) all too often!
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Now, whether the function you have successfully defined is the one that you really wanted is a different,
more philosophically interesting question. For example, how would you go about arguing that the trues
function really does count the number of trues in a term? That one isn’t too bad, but in general, arguing
that your formalization of a previously vague and squishy concept is “the right definition” is a matter of
analytic philosophy, a rather challenging field of inquiry, but a common issue in the theory of programming
languages and other areas of computer science.

5.5 Boolean Language Evaluator, Revisited

One particular function over Boolean expressions is an evaluator for it, much like the evaluator function for
the Vapid languages.. Conveniently enough, we can define the evaluator for this particular language as a
recursive function:

PeM = TERM, OBS = VALUE
eval : PGM — OBS
eval(true) = true
eval(false) = false
eval(if t1 then t else t3) I(to) if eval(ty) = true
)

= eva
eval(if t1 then t else t3) = eval(ts) if eval(t,) = false

Recall that this evaluator definition is justified by the Principle of Definition by Recursion on Elements
t € TERM, which means that we chose:

1. S = VALUE;
2. s¢ = true;
3. sy = false;

4. Hj;: VALUE X VALUE X VALUE — VALUE
Hz-f(true, V1, UQ) =1

Hif(false, V1, Ug) = V3.

and fed them into the principle to produce a unique function, and we then convince ourselves intuitively
that this is in fact our intended evaluator.

5.6 A Small Case Study

For more experience with inductive proof, let’s revisit our bools function from earlier, which I simply claimed
was properly defined. First let’s see the shorthand style again:

Definition 6. Let bools: TERM — N be defined by

bools(true) =1
bools(false) = 1
bools(ifty then to else t3) = bools(t1) + bools(ta) + bools(ts)

Based on the material up above, we can unpack this definition into the low-level pieces that correspond
to the principle of recursion. Here is the longhand presentation:

1. S=N;

2. 5s=1,5;,=1

18For example, what does it mean for a programming language to be secure? Philosophical debates on this issue abound!
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3. Hy : NxNxN; Hif(nl,nz,ng) =mn1 + N2 +n3.

You should convince yourself that this function yields the number of falses and trues in a TERM. At this
point, the only way that you can do that is to use the function to reason about enough examples that you
have confidence that your function meets your “informal specification.” This is pretty much like programming
practice: you need enough “unit tests” to convince yourself and others that you have the right specification.
All we had done so far is prove that what we have in our hands is a proper specification of some specific
function: whether it gives you what you want or not is a totally separate question!

A mathematician’s “proof” We now have two principles for proving hard facts about TERMs, and we
have a principle for defining functions on TERMs. To wrap things up, let’s revisit the proof that bools(t) > 0.
Here is the way that a mathematician would write that proof, at least using our shiny new principle of
induction on elements t € TERM. For reference, here is a statement and a proof of that statement as you
would likely see it in a textbook:

Proposition 28. bools(t) > 0 for all t € TERM

Proof. By induction on t
Case 17 (true). bools(true) =1 >0
Case 18 (false). Analogous to true.

Case 19 (if ). If bools yields a positive number for each subcomponent of if then their sum will be positive
too.

O

Wow, so shiny and tiny! Remember: this is pseudocode, not code: it’s a proof sketch, not a precise formal
proof 24 Seeing the relation between the above conversational statements and the precise pedantic formal
principal of induction that we presented above may not be all that obvious at first, but if you start from the
principle above, you should be able to figure out a formal property P and recast each of the cases as one of
the pieces of the statement of the principle of induction. The form you see here is typical of what shows up
in the literature. It’s important to be able to make that connection if you hope to really understand proofs
and be able to check whether they are correct. Going forward, you will see more examples.

To better understand the connection, I recommend that you rewrite the above proof in the more precise
(longhand) style to ensure that you can. To me this is akin to “I recommend that you implement the
algorithms in your algorithms textbook to ensure that you can.”

5.7 Parting Thoughts

To wrap up, the last couple of classes we have been addressing two issues. We have been introducing some
preliminary notions from the semantics of programming languages, and at the same time establishing a
common understanding for how the math underlying those semantics “works.”

On the semantics front, we’ve talked about the idea of a language being defined as some set of programs
(the “syntax” if you will), and a mapping from programs to observable results (the “semantics”). Our
examples have been simple so far, but we’ve observed that whatever approach we use to define the evaluator
has a significant impact on how we reason about our language and its programs.

On the mathematical front, we discussed some of the basic ways of building sets:

1. Extensionally, i.e., by enumerating elements, which works for a finite set (e.g., {1,2}): Along with it
comes reasoning by cases;

2. taking the union (A U B) or intersection (A N B) of sets that you already have (A and B): for these
we reason by disjunction (“or”) or conjunction (“and”);

191 once heard a software engineering researcher tell the following joke about the Unified Modeling Language (UML), ascribing
it to Bertrand Meyer: “Q: What’s the good thing about bubbles and arrows, as opposed to programs? A: Bubbles and arrows
never crash.” I leave you to ponder the relevance.
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3. forming the product (A x B) of two sets.

4. Using separation to filter the elements of some set { @ € A | P(a) } according to some predicate P. This
too gives us a proof principle corresponding to the axiom of separation.

Inductive definitions with rules, and definition of functions by (recursive) equations, are simply particular
instances of item ({) above, where the elements are filtered based on the existence of derivations and the
satisfaction of those equations, respectively.

At this juncture we have enough mathematical machinery to draw our focus more on the programming
language concepts. Any new mathematical concepts we need can be weaved in on demand.
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