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Chapter 5

Inductive Definitions

By now, you’ve hopefully got a taste of some of the kinds of models that we will build (of language syntax
and semantics) in the context of a very very simple language—featuring a finite number of programs and
results. Now let’s start to develop the machinery for building more complex languages, starting with a
language that at least features an infinite number of programs (still finite results though!). The tools we
introduce here, called inductive definitions will be critical throughout the course, and we’ll find later that
they connect directly to what you may have learned about proof by induction in prior courses.

5.1 Inductive Definitions
Now we are going to look at a somewhat more interesting language. The language will have an infinite
number of programs. This means that we can’t simply enumerate all of the programs: we need a new
strategy.

The way that we define our set of programs follows a pattern similar to what happens in a real language
implementation. Consider how a parser for the C programming language works. It takes as input any finite
strings (i.e., sequences) of bytes (of which there are 28 = 256), and filters out the strings that count as legal
C programs.1

CPgms = { s ∈ BYTE∗ | s is a valid C program }

Here BYTE is the set of bytes, and in general, we say that if S is some set, then S∗ is the set of all finite
sequences of elements of S (including the empty sequence, which for visibility’s sake we denote by ε). So
essentially, the set of C programs is defined by filtering all the valid C programs out of the set of all byte
strings.

The key idea here is that we start with some basic, easily defined pre-existing set and filter it down to
the subset that we want. Most mathematical definitions are based around this general idea.

We do not want to concern ourselves with as low level a representation as strings of bytes, so we start
more abstractly. First, we assume some infinite set of atomic elements:

a ∈ Atom

Our base assumption is that there are an infinite number of Atoms in the set (not just 256), so we can
always find another one if we need one.2 Our only requirement of Atoms is that we can tell them apart: we
don’t care what they really look like, i.e. their internal structure, just whether we can tell if two of them are
the same Atom or not. This is why they we call them atoms.3 We can state this formally as a (seemingly
obvious) property:

Proposition 16. ∀a1, a2 ∈ Atom. a1 = a2 ∨ a1 ̸= a2.

1You wouldn’t want your C compiler to segfault if you gave it a file of random noise, right? It should reject the program
and exit gracefully.

2To make this concrete, it’s as though we had a computer that could work with arbitrary natural numbers instead of bytes.
3It helps to know that early physicists thought that atoms were the most primitive non-decomposable elements in the

universe. Then along came neutrons and electrons and protons...and then quarks!
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54 CHAPTER 5. INDUCTIVE DEFINITIONS

For our purposes, this should be interpreted as saying “given atoms a1 and a2, we can determine whether
they are identical or not.” That reading may be a bit different than you are used to, in that it might
seem like a content-less tautology. In classical logic it is, but for us it’s not! These Atoms will be used
to represent the primitive constructs of our languages. If you’ve ever studied parsing, this is analogous to
your tokens. For purposes of reasoning, we’ll give each atom an abstract name, written in blue, like car, or
avocado-toast, and whenever we use two different abstract names, we are referring to two different atoms,
e.g. car ̸= avocado-toast, by convention. Note that this is very different than referring to atoms using
metavariables like a1 or a2. We cannot up-front assume that a1 ̸= a2: to do so we must have that fact as an
immediate assumption, or be able to prove it from other assumptions.

Then, building on top of the Atoms, we assume a set of all possible trees of Atoms.

r ∈ Tree[Atom]

In set theory, we can create pairs of elements of sets, subsets of sets, and so forth. Using the basic tools
of set theory, we can design a representation for trees, just like we can build tree data structures in the
programming language of your choice. We’re not going to build up a particular set-based representation of
trees in any detail, but here’s a sketch of a representation that gets the job done:

1. Pick some set X ;

2. Use sets to define some representation for sequences of X , i.e. X ∗.

3. Define a tree of X , i.e. Tree[X ] as a set of non-empty sequences of X , where each sequence describes
a path from the root node of the tree to some subtree. This implies that:

(a) The empty tree is represented by the empty set;
(b) Every sequence starts with the same element of X (the root node of the tree);
(c) If the sequence ⟨x1, . . . , xn⟩ is an element of the set, then so is every non-empty prefix ⟨x1, . . . , xk⟩

for k ≥ 1: those are the paths to the ancestors of the node xn;
(d) If subtrees need to be ordered, or if multiple immediate subtrees can have the same payload, then

that can be represented by ornamenting the “payload” X with indices.

In this case Tree[Atom] is the name we use for the set of all trees that have atoms at their nodes. In
general, we write Tree[X] for “trees of elements of X.” Note, that this name is just a convention: we define
each set of trees manually, though we could use notational definitions to make the process schematic.

For now, since we are only concerned with trees of atoms, we will just write Tree as an abbreviation.
These trees in Tree[Atom] have Atoms for nodes. For convenience, we can write them in parenthesized

notation, where a node is juxtaposed with a parenthesized list of subtrees. For example, a1(a2(), a3()) is the
tree with parent node a1 and two subtrees with root nodes a2 and a3 respectively. We can draw this as a
diagrammatic tree:

a1

a2 a3

For succinctness, we elide the empty parentheses after root nodes, writing instead a1(a2, a3). We will
disambiguate where needed between the Atom a1 and the Tree[Atom] a1, and similar for other kinds of
trees.

[RG: End Maybe move to sets chapter, or abstraction chapter later]
Now, armed with a set of Trees, we define the abstract syntax of our language. The general definition

strategy is to isolate a set of terms, which will be some subset of Tree[Atom]:

t ∈ Term, where Term := { r ∈ Tree | Φ(r) } (5.1)

and Φ is some property of Tree[Atom] that chooses the ones that we consider to be terms. It’s our job,
then, to specify that property.
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Our language is called B, a language of Boolean expressions. Our intention is that the terms of our
language t ∈ Term are trees like true, false, and if (t1, t2, t3) where t1, t2, t3 are also Terms. In practice, such
a language is typically described using a notation called Backus Naur Form (BNF). We’re going to define
our language explicitly as an inductive definition. In essence, we are going to treat BNF as concise notation
for what ends up being an involved set-theoretic encoding. The unpleasant thing about this will be that the
translation is involved and somewhat tedious. The nice thing about it is that there are many things that
we can do with inductive definitions, and knowing that all of the reasoning principles that they provide will
apply to syntax means that we have quite uniform reasoning principles: to define and work with syntax we
use the same exact tools as we use to define semantics.

First we give convenient names to some Atoms that we’ll use in our language definition:

Assume { true, false, if } ⊆ Atom.

By our convention, these three atoms are distinct from one another. And we know by our definition of
Tree[Atom] that if (r1, . . . , rn) is a sequence of Tree[Atom]s, then a(r1, . . . , rn) is a single Tree[Atom]
for any a ∈ Atom. We focus on building new trees using the three select atoms from above.

Introduce Inductive Rules of Trees of Atoms (more generally Rules of X)
Then we carve out our set of Terms using what are called inductive rules.

Term ⊆ Tree

true (rtrue) false (rfalse) r1 r2 r3
if(r1, r2, r3)

(rif)

What you see above are three rules which together will help us define the set of Terms. Each rule has
zero or more premises above the horizontal bar, and one conclusion below it. Next to each rule is a name
in parentheses. In essence, each of these rules can be informally read as saying “if all of the premises are
members of the set, then the conclusion is as well.”

Technically, a rule stands for the set of all of its instances. For example:

(rif) :=
ß r1 r2 r3

if(r1, r2, r3) for r1 ∈ Tree, r2 ∈ Tree, r2 ∈ Tree
™
⊆ Rule[Tree[Atom]]

Really, pushing down even further, each rule instance is just a pair of a set of trees and a single tree: the
premises (in no particular order) and the conclusion.

Rule[Tree[Atom]] := P(Tree[Atom])× Tree[Atom]

⟨X,x⟩ ∈ Rule[Tree[Atom]]

So really the rule above is interpreted as follows:

(rif) = { ⟨{ r1, r2, r3 } , if(r1, r2, r3)⟩ ∈ Rule[Tree[Atom]] | r1 ∈ Tree, r2 ∈ Tree, r2 ∈ Tree } .

Each judgment (i.e. each premise and each conclusion) in a rule represents a Tree, and each rule stands
for a number of instances of rules. An instance of a rule is the result of replacing the black italic metavariables
(e.g., r1) with a concrete Tree. Here is an example of an unsurprising instance of the (rif) rule:

true false true
if(true, false, true)

However, the rules also imply “nonsensical” rule instances, since any concrete Tree can be placed where
there is a metavariable r. For example, if we assume that there exist Atoms named under, and while, then
the following is a perfectly fine instance of the (rif) rule:

under while while
if(under,while,while)

Notice that even the nonsensical rule instance we wrote above makes sense under this intuitive interpretation:
if under and while were Terms, then the Tree in the conclusion would also be a term; but they are not, so
it is not.
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We now introduce two forms of syntactic sugar that are common in books and papers that use this
technique to define sets. Both of these notational devices will make our representation look a little prettier,
but otherwise add no real content. To make the syntax of our language look a bit more like a real programming
language, we will write the Term

if(t1, t2, t3)

using the notation
if t1 then t2 else t3.

In general we will often introduce expressions where the Atom “name” is split between the different argu-
ments. This is often called mixed-fix notation (as opposed to the prefix notation we were using above).

The second syntactic nicety we will add is that we’ll write the rules so that they refer to the name of the
set that we are defining. For example, we’ll rewrite the rules as follows:

true ∈ Term (rtrue) false ∈ Term (rfalse) r1 ∈ Term r2 ∈ Term r3 ∈ Term
if r1 then r2 else r3 ∈ Term (rif)

Going forward, it helps to remember that the “∈ Term” part is really just a decoration for our human
purposes. Think of it like a comment in a programming language (i.e., in C you would write /* in Term */).

With the syntactic sugar out of the way, we still have to discuss how these rules define our set of Terms.
For some insight, consider the (rtrue) rule. According to our interpretation of rules, this rule says that with
no premises whatsoever, true is a Term. The (rfalse) rule is similar. Generalizing this observation, we can
show in multiple steps that some Tree is a Term under no premises by building up a derivation tree of rule
instances that as a whole has no premises, meaning that every rule instance at the top of the derivation tree
is closed with a horizontal bar that has nothing above it. Here is an example of a derivation tree D, built
from rule instances, that shows that if true then false else true ∈ Term:

D =
true ∈ Term (rtrue) false ∈ Term (rfalse) true ∈ Term (rtrue)

if true then false else true ∈ Term (rif)

What we did was instantiate the (rif) rule such that r1 = true, r2 = false, and r3 = true, giving:

true ∈ Term false ∈ Term true ∈ Term
if true then false else true ∈ Term (rif)

.

Since a derivation can’t have open premises, we had to consider each of the three premises in turn, but we
were able to find closed derivations for each of them using the (rtrue) and (rfalse) rules. As above, we’ll use
uppercase calligraphic letters like D, E ,F as metavariables that stand for derivation trees, and we write both

D
r ∈ Term

and
D :: r ∈ Term

to mean that D is a derivation of r ∈ Term.
Technically, we collect all of the rule instances into a rule set

RTerm := (rtrue) ∪ (rfalse) ∪ (rif),

and use it to induce the set of derivations D ∈ Deriv[R] ⊆ Tree that can be constructed using the rules
R.

In this case we can refer the set of derivations of t ∈ Term by the name Deriv[R], to mean the set of
all derivations that can be built using the rules listed in square brackets.

These derivations are the piece we’ve been building toward to define the set of Terms. Notice that no
matter what Trees ri we instantiate the (rif) rule with, the conclusion will be a Tree. Technically the
(rtrue) and (rfalse) rules each have only one instantiation (because they have no Tree metavariables), each
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of which is a Tree. We can thus define the set of Terms to be the subset of Trees that have derivations
according to our rules, or in formal terms:

Term = { r ∈ Tree[Atom] | ∃D ∈ Deriv[R].D :: r ∈ Term } .

i.e., Φ(r) := ∃D ∈ Deriv[R].D :: r ∈ Term in Equation (5.1) above.
In the particular case of defining the abstract syntax of a language, we have at our disposal the well-known

Backus-Naur Form (BNF), to succinctly capture inductive definitions of syntax.

t ∈ Term,
t ::= true | false | if t then t else t

We treat grammar above as shorthand for the inductive rules that we gave above. In the future, we’ll use
BNF to specify our syntax, but we’ll end up using inductive rules to define other sets and relations. This
kind of set definition is in general called an inductive definition.

5.2 A Different-Feeling Example: Control Flow Analysis
Inductive definition is not just for syntax: it’s a quite general-purpose tool. Inductive rules and their resulting
derivation trees can serve as a quite precise tool for describing a set of interest, including finite sets!

A classic example of using an inductive definition to define a finite set from the world of programming
languages is control-flow analysis. Given an imperative program that lets you assign to variables, read from
variables, and test and branch, we may want to know about which instructions can eventually be reached
from which other functions.

To keep things simple, we’ll go old-school and write our program as a flowchart, a graphical representation
of programs, where instructions are indicated by nodes and possibly-next instructions are indicated by edges.

Here is an example program written as a flowchart, and a corresponding overapproximate control-flow
graph:4

The flowchart on the left is a precise program description. We can use it to reason about exactly how the
program runs with specific inputs. For instance, the third bubble says specifically which direction execution
will go depending on the specific value of i during a particular traversal of the instructions.

The control-flow graph on the left, on the other hand, is approximate. It blurs out the details of the
program, simply giving each node a unique numeric identifier, and making no distinctions between outgoing

4From https://en.wikipedia.org/wiki/Flowchart

https://en.wikipedia.org/wiki/Flowchart
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edges. So this graph answers the question “which nodes might be immediately reached from some given
node.” If a node no outgoing edges, than the program ends at it, as per the node marked 6. If a node
has one outgoing edge, then the program will definitely follow that edge after the instruction at the node
completes. But if a node has more than one edge, then execution will take one of these edges, but we do not
know which. We can map the program on the left onto the control-flow graph on the right. But consider a
variation of the original program, where we reverse the TRUE and FALSE branches. This new program maps
onto this control-flow graph as well, since the outgoing edges do not commit to which is the TRUE branch and
which is the FALSE branch. Alternatively we could replace i < 5 with i >= 5 and that program would also
match the flowchart. Even replacing the condition with i == i works. This one is particularly interesting
because in the concrete program we know exactly which edge will always be followed, but our control graph
correctly overapproximates the program’s behaviour, in the sense that if one node can directly reach another
node in practice, then that will be evident in the control flow graph, but the control-flow graph may have
edges that are never actually followed in practice. If we ignore the details of the instructions, then this is
the most precise information that remains.

We can represent the control-flow graph in set theory, and use that to reason approximately about
program execution. Since the control-flow graph numbers its nodes from 1 to 6 from top to bottom, we can
represent the nodes and edges of the graph with finite sets:

n ∈ Node := { 1, 2, 3, 4, 5, 6 }
e ∈ Edge := { ⟨1, 2⟩ , ⟨2, 3⟩ , ⟨3, 4⟩ , ⟨3, 6⟩ , ⟨4, 5⟩ , ⟨5, 3⟩ }

We represent nodes as numbers and edges as some subset of Node × Node, the set of all pairs of nodes.
So these two sets represent the basic control structure of a particular program. We model Node specifically
because we might write a program with an unreachable instruction, which would not appear in any edges.

The above sets were defined extensionally, and we can do this manually for any program (or write a
program to do it), but it would be nice to use these definitions to define a possible reachability relation
(• ⟨R⟩ •) ⊆ Node × Node, such that n1 ⟨R⟩ n2 means that if program execution arrives at node n1, then
future program execution may arrive at n2, in 1 or more steps.5

Here is an inductive definition of possible reachability:
(• ⟨R⟩ •) ⊆ Node × Node Possible Reachability

n1 ⟨R⟩ n2
(incl) ⟨n1, n2⟩ ∈ Edge

n1 ⟨R⟩ n2 n2 ⟨R⟩ n3

n1 ⟨R⟩ n3
(trans)

The (incl) rule says that if n1 may immediately reach n2 then n1 may reach n2. The latter is a general-
ization of the former. The (trans) rule says that if n1 may reach n2, then n1 may also reach any node that
n2 may reach. So n2 can be a stopover.

Formally, the (trans) rule represents a ruleset that is similar to previously-seen ones:

(trans) := { ⟨{ ⟨n1, n2⟩ , ⟨n2, n3⟩ } , ⟨n1, n3⟩⟩ for n1, n2, n3 ∈ Node }

The (incl) rule, though, adds a new feature, called a side-condition. a side-condition is a proposition,
written to the side of a rule, which imposes a restriction on which instances of the rule are accepted. This
particular rule can be written as a set expression as follows:

(incl) := {R ∈ R | ∃X ∈ P(Node × Node). R = ⟨X, ⟨n1, n2⟩⟩ ∧ ⟨n1, n2⟩ ∈ Edge }
where

R := { ⟨∅, ⟨n1, n1⟩⟩ for n1, n2 ∈ Node }

As described above, the side-condition in a rule is a different mechanism from a premise. A premise must
be an element of the universe/superset Node × Node, whereas a side-condition can be any proposition,
possibly (in fact probably) referring to components of the rule, but also pre-existing sets, like Edge.

This distinction is often misunderstood for two reasons:
5The notation for possible reachability is inspired by the notation ⋄Φ from modal logic, which means “Φ possibly holds”.
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1. Our intuitive logical reading of side-conditions is often similar to the reading of premises: “if the
premises and the side-conditions hold then the conclusion holds”; so side-conditions and premises of
the rule are both read as premises of the implied logical implication.

2. Side-conditions are often typeset above the horizontal bar, rather than to the side, just like premises.

However, premises and side-conditions play distinct roles in inductive definitions, and should be treated
separately. We’ll discuss this more especially when we get to reasoning principles.

Since Node×Node is a finite set, we could have defined the relation using an extensional set expression.
So why bother with induction? One particularly compelling reason is that we can modify our program, or
replace it entirely, by redefining Node and Edge, and this definition will yield a new updated relation.
So these rules provide a transparent and precise specification, a description, of what we mean by “possible
reachability”, independently of the details of the particular program about which we are reasoning.

Computationally speaking, we can use this definition as guidance to implement an algorithm for com-
puting possible reachability for any program. In fact, we could transliterate these rules nearly exactly as a
Datalog6 program, and run it to compute the reachability relation.

5.2.1 Necessary Reachability
Now that we have “possible reachability”, what about “necessary reachability”? Intuitively speaking, that
should be a relation (• [R] •) ⊆ Node × Node that describes that if execution arrives at one node, then
execution will necessarily arrive at some other node in the future: execution cannot avoid the second node.7

As it happens, we cannot directly define this relation inductively, but we can use induction to help us
define it.8 The strategy is:

1. Define a “possibly won’t reach” relation (• ⟨!R⟩ •) ⊆ Node × Node

2. “must reach” is the inverse of “possibly won’t reach”: (• [R] •) := (Node × Node) \ (• ⟨!R⟩ •). The
intuition is that given some node n1, any node n2 that is impossible to avoid is necessarily reachable.

Here the inductive definition promised in step 1:
(• ⟨!R⟩ •) ⊆ Node × Node Possible Non-Reachability

n1 ⟨!R⟩ n2
(term) ∀n ∈ Node. ⟨n1, n⟩ /∈ Edge

n2 ⟨!R⟩ n3

n1 ⟨!R⟩ n3
(extend) ⟨n1, n2⟩ ∈ Edge

n2 ̸= n3

The (term) rule tells us that any terminal node may not reach any node whatsoever, because it will
surely never reach any other node (a stronger property). Then, (extend) says that one node that transitions
some other node may not reach any node that the latter node may not reach (except for itself). This rule is
written with two side-conditions, which we could have equivalently written as their conjunction.

6https://en.wikipedia.org/wiki/Datalog
7The notation for necessary reachability is inspired by the notation from modal logic, which means “Φ necessarily holds”.
8It is possible to directly define the relation, using a technique we study later.

https://en.wikipedia.org/wiki/Datalog
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