
Chapter 21

Choose Your Own Induction Principle

So far in the course we have made heavy use of a particular set of reasoning principles. We started with
basic logic and set-theoretic reasoning, and then added a trinity of tools to our arsenal: inductive definitions
of sets, proofs of properties by induction, and functions defined using recursive equations. The latter three
tools were all introduced as coming straight out of our inductive definitions: the structure of our definitions
determined the structure of our reasoning principles.

Now I assume that this class is not the first time that you’ve heard of induction, and I hope that so far
I have been able to show you how the proofs that you read in papers and textbooks can be mapped back to
a much more precise and rigorous formulation based on a property and a principle of induction (rather than
some blather about “base cases” and “induction hypotheses”). But there is still a bit of disconnect left. In
all likelihood you’ve seen arguments that appeal to “induction on the number n” where n may be the length
of a sequence, the size of a matrix, or maybe the number of interesting elements left in a set.

The purpose of this lesson is to tie up this loose end. The key idea is that proofs by induction like the
ones described above are just particular instances of what we’ve been doing in this class. Hopefully you’ll
see in this section why I have been so persnickety about the nature of inductive definitions. My hope is to
empower you to use our three tools with comfort and fluency, in their fullest generality, because by goodness
sometimes you need need that kind of power to solve a problem!

The key takeaway point of this note will be that a set can have many different induction principles, and
which one you choose can affect how you reason about your set.

Given a set that you’ve defined, you might find that proving a property of that set or defining a function
on that set may require some ingenuity in picking your induction principle. Before we can pick new ones,
we need to know how to create them.

21.1 Inductive Definitions, Revisited
To make sure that you understand the subtleties of this section, in a way that you can carry with you beyond
this class, let’s first quickly review some topics from our second lecture of the course. We’ll start with where
we are now, and then work backwards to where we started from.

Consider the following BNF for a tiny language

b ∈ B
b ::= t | f | b • b

Stepping backwards, this is just a concise shorthand for an inductive definition: Given our assumption
r ∈ Tree, we define the set B ⊆ Tree using the following rules:

t ∈ B
(t) f ∈ B

(f) r1 ∈ B r2 ∈ B

r1 • r2 ∈ B
(•)

Now remember: the ∈ B part of the inductive definitions is purely commentary: it’s syntactic sugar to
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make the definitions easier to read. Our rules are really just as follows:

t (t) f (f) r1 r2
r1 • r2 (•)

Now, recall that each of these rules stands for some set of rule instances, where any metavariables are
replaced with every possible element that fits and satisfies the side-conditions. To make this concrete, here
are two different instances of the rule (•):

t f
t • f (•)

Ringo Starr
Ringo • Starr (•)

The first rule instance is appealing because it can appear in a full derivation:

D = t (t) f (f)

t • f (•)

but the second instance, which is also a perfectly fine instance, will never appear within any actual derivation
of r ∈ B.

Another way to think about it that may help is that a rule stands for a set of rule instances:

(t) = { t }

(f) = { f }

(•) =
{ r1 r2
r1 • r2

∣∣∣ r1, r2 ∈ Tree
}

Peeling back the curtain just a little more1, let me fess up that each rule instance is really just a set of
premises and a conclusion paired together. For example,

a b
a • b (•) ≡ ⟨{ a, b } , a • b⟩

So really
(•) = { ⟨s, r⟩ ∈ P(Tree)× Tree | s = { r1, r2 } ∧ r = r1 • r2 }

Aren’t you glad we avoided this rabbit hole earlier? Now with this realization, we observe that our full set
of rule instances is R = (t)∪ (f)∪ (•). We’ll call the set of derivations that can be constructed from this set
of rule instances Deriv[R].

Finally, our set B is defined by filtering Tree down to only those members that have derivations from
instances of our rules:

B = { r ∈ Tree | ∃D ∈ Deriv[R].D :: r }
Notice that I’ve left out the syntactic sugar, to keep things precise.

21.1.1 Defining B yet again!
This subsection is meant to bring home a subtle concept that you may not have picked up before.

Throughout the course, we’ve been defining sets in terms of other sets. Sure there are a few that we
assume from time to time, like pairs and Trees, but that’s just to keep things abstract and not ridiculously
low-level. Nonetheless, so long as we have sets, we can define others. In particular, so long as we have a set of
rule instances, we can use it to inductively define a set. Think back to Homework 2 where we “inductively”
defined a pretty ridiculous set with a finite number of elements. Induction doesn’t care if you create an
infinite or finite set. In fact, you can only inductively define an infinite set by starting with some other
infinite set (e.g. Tree was already infinite before we ever defined B). Induction just happens to be a very
effective tool for carving out a desirable infinite set from some other (already) infinite set. But you can carve
finite sets out of finite sets too. Sometimes doing so can be convenient: it’s analogous to using a loop to

1ideally without confusing you...
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write some code that repeats, say, 70 times (inductive definition) rather than repeating yourself painfully 70
times (extensional definition).

Anyway, consider the following new set of inductive rules.

t (t2) f (f2) b1 b2
b1 • b2

(•2)

The only change from the last section is that the r’s have been replaced with b’s. In the past I’ve said
that you can’t define b ∈ B this way because we don’t know what b is yet, so that would be circular. In this
case though, we defined B in the last subsection, so this defines some other set, which we’ll call C, in terms
of the pre-existing set B. So....what’s going on?

Well, when it comes to this inductive definition, some things change and some things stay the same.
First, be aware that C = B: they are exactly the same set. Why?

Because if we take R2 = (t2) ∪ (f2) ∪ (•2) Then it’s a fact that for every b ∈ B, there’s a derivation
D ∈ Deriv[R2] such that D :: b, so B ⊆ C. And furthermore, the rules R2 ensure that C ⊆ B. Thus,

C = { b ∈ B | ∃D ∈ Deriv[R2].D :: b } = B.

A side-note though. Notice that every instance of (•2) is also an instance of (•) but not vice-versa (remember
Ringo • Starr?), so (•2) ⊊ (•)). So these are not the same inductive definitions, but they do define the same
set (B), inductively!

Question: Why the heck would I want to do that? Well, this particular case was not especially interesting,
but there is one small change. First, we’re going to drop the name C, because C = B, and there’s no need
for a different name. But look at the principle of induction on derivations:

Proposition 79. Let Φ be a property of derivations D :: b, then

Φ( t )

∧ Φ( f )

∧

∀b1, b2 ∈ B. ∀D1, D2 ∈ Deriv[R2].D1 :: b1 ∧ D2 :: b2 ∧ Φ(D1) ∧ Φ(D2) ⇒ Φ

D1

b1
D2

b2
b1 • b2


⇒∀D ∈ Deriv[R2].Φ(D).

Notice how there are now no references to r ∈ Tree? It’s all in terms of b ∈ B now. You can think
of this as giving the induction principle a nice “trim around the ears” to get rid of some details we don’t
care about, artifacts of our principle of induction. This is the principle you are more likely to see in other
textbooks, but we’ve come through it via a more foundational approach.

In the following sections, we will go farther. We will produce new inductive definitions for old sets where
the rules and rule instances are quite different from the old ones (maybe even a little crazy!). As a result,
we will get principles of induction that themselves are quite different. This difference can be really helpful,
sometimes critical.

21.2 Example: Induction in Arithmetic
To motivate this idea, we turn briefly to arithmetic. In all likelihood, you’ve come across induction in other
classes, but it was all about numbers. In fact, the explicit principle of induction is often left unstated: you’re
just supposed to understand the idea of “proof by induction”. Let’s make explicit the principle that you were
using in those classes.

Proposition 80 (Principle of Mathematical Induction). Let Φ(n) be a property of natural numbers. Then
Φ holds for all natural numbers if:

1. Φ(0) holds, and
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2. If Φ(n) holds then Φ(n+ 1) holds.

Here is a simple proof of a mathematical property by induction. You may have seen this before.

Proposition 81 (Summation Theorem). For all numbers n, the sum of all numbers from 0 to n is (Σn
i=0 i) =

n2+n
2 .

Proof. By mathematical induction
Case 35 (1.). Then the sum of numbers from 0 to 0 is 0, which is the same as 02+0

2 .

Case 36 (2.). Let n be some particular number, and suppose Φ(n), that is, suppose (Σn
i=0 i) = n2+n

2 . We
now want to prove that

(
Σ

(n+1)
i=0 i

)
= (n+1)2+(n+1)

2 . Right away, let’s observe that

(n+ 1)2 + (n+ 1)

2
=

(n2 + 2n+ 1) + n+ 1

2
=

n2 + 3n+ 2

2
.

Next, let’s observe that (
Σ

(n+1)
i=0 i

)
= (Σn

i=0 i) + (n+ 1) =
n2 + n

2
+ (n+ 1)

by the definition of summation Σ and then by our assumption (i.e. the induction hypothesis). Then, with
some basic arithmetic, we get

n2 + n

2
+ (n+ 1) =

n2 + n+ 2(n+ 1)

2
=

n2 + n+ 2n+ 2

2
=

n2 + 3n+ 2

2
,

And we’re done!

That wasn’t too bad compared to the proofs we’ve been doing so far.
Now if we look back at the principle of induction, it seems like it corresponds to the following “definition”

of natural numbers:

0 ∈ N
n ∈ N

n+ 1 ∈ N

Notice that here we’re defining natural numbers in terms of exactly the set of natural numbers!2 That’s
perfectly fine because N ⊆ N.

You may also have heard of proving properties of numbers by Strong Induction. We’ll state its principle
here explicitly.

Proposition 82 (Principle of Strong Mathematical Induction). Let Φ(n) be a property of natural numbers.
Then Φ holds for all natural numbers if:

1. For all numbers n, if Φ(n′) holds for all n′ < n then Φ(n).

This principle of induction looks quite different from the ones that we’ve seen before. There is nothing
that looks like a “base case”, and in fact there’s only one case!

Here’s an example of a classic proof that can be proved nicely by strong induction:3

Proposition 83 (Division Theorem). For all natural numbers n, and natural numbers m > 0, there are
natural numbers q and r such that n = qm+ r and r < m.

This should not be news to you: n divided by m is q with remainder r!
2Let’s not worry about how the natural numbers were originally defined!
3I swear, we’ll stop with the maths soon!
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Proof. By strong induction on n. The induction as stated doesn’t impose cases, so we can dive right in.
Suppose n is a natural number and the desired property holds for all i < n. Well, we can decompose

this problem into two cases, depending on the relationship between n and m. Either n is less than m or it’s
greater-or-equal to m.
Case 37 (n < m). Let q = 0 and r = n. Then n = qm+ r and we know by assumption that r < m, so this
case is done.
Case 38 (n ≥ m). Since n ≥ m, we know that n −m is a natural number. Furthermore, since m > 0, we
know that n−m < n, so by the induction hypothesis, n−m = q2m + r2 for some q2 and r2 < m. Then by
adding m to both sides, we get:

n = q2m+ r2 +m

= (q2 + 1)m+ r2.

Then, if we let q = q2 + 1 and r = r2, we know that n = qm+ r and r = r2 < m. This case is done!

There are a few interesting things worth noticing in this proof. First, the principle of strong induction
has only one case, so the proof uses it, but internally the problem is broken into two cases (n < m and
n ≥ m) which it turns out to be nice to handle separately. So the case structure of the proof is independent
of the induction principle. To date, our cases have always been dictated by the induction principle, though
sometimes we still break the problem down more. For example, in a proof about big-step evaluation by
induction on Terms, when faced with an if expression, we consider separately whether the predicate evaluates
to true and whether it evaluates to false. Here we are given one big fat case and we can break it down as we
please. This flexibility comes in handy some times, just like above.

Another thing worth noting. Throughout the course I have emphasized that our proofs often correspond
to programs (interpreters, steppers, etc.). What about the proof of the above mathematical statement? If
we write the statement formally:

∀n,m ∈ N.m > 0 ⇒ ∃q, r ∈ N. n = qm + r ∧ r < m. (21.1)

We can see that it roughly says “give me two natural numbers n, and m, where m is positive, and I will give
you back two numbers q, r that are the quotient and remainder of n divided by m.

Indeed, the computational content of the above proof is exactly integer division! And indeed it is a
recursive function. Can you code it up?

Back to induction. Now, if we think about it, if we try to map the principle of strong induction back to
induction by definitions, we get a single rule:

0 ∈ N 1 ∈ N . . . n− 1 ∈ N
n ∈ N

Or slightly more formally
{n′ ∈ N′ | n′ < n }

n ∈ N′

And instances of this rule are as follows:

0 ∈ N
0 ∈ N
1 ∈ N

0 ∈ N 1 ∈ N
2 ∈ N

0 ∈ N 1 ∈ N 2 ∈ N
3 ∈ N · · ·

Here our rule stands for instances with any number of premises, not just some fixed number, as our old
language-based rules suggested. This is fine so long as we understand what counts as a legal rule instance, and
we do. This is exactly our description of rule-instances as pairs. Our rule instances for strong mathematical
induction are

Rstrong = { ⟨s, n⟩ ∈ P(N)× N | s = {n′ ∈ N | n′ < n } }

For some simplicity, let’s give the premise set a name based on the less-than comparator.

<n = {n′ ∈ N′ | n′ < n }
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Then our rule instance is:
<n
n

Notice two things: First, there is a rule instance for every n ∈ N by definition. Second, there is a
derivation for every n ∈ N that can be built up using the derivations for all of the smaller n’s. In fact, the
height of the derivation tree is bounded by the size of the number n itself. Thus, the above rule definitely
defines the same set N.

The takeaway lesson here is that the less-than operator < can be used to define the sets <n of numbers
less-than-n, which in turn gives us another inductive definition of numbers and thereby gives us a principle
of induction.

Furthermore, the inductive rules here are definitely deterministic, since for each number n, there is only
one rule instance, the one that takes in all the numbers less than it. Thus, we could define a function
by introducing a corresponding principle of recursion based on strong induction, called course of values
recursion. In fact the division function I described above, the computational content of the proof of the
division theorem, is defined by course of values induction.4

21.3 Generalizing Strong Induction: Well-founded Induction
What’s fascinating and powerful is that we can come up with new “less-than” operators that give us even
more new induction principles. Rather than constantly developing new sets of inductive rules, and carefully
showing that they will define the same set at we started with, we instead just define a new binary relation
on our set, and use that relation to properly construct the rules and give us a new reasoning principle. First
we start with an example and then we state the general criteria for doing this.

Let’s consider the following relation on natural numbers:
n <1 m iff m = n + 1.

This looks a lot like the < we know and love, but not quite. For instance, 5 <1 6, but it’s not true that
5 <1 7. In short, it only relates adjacent natural numbers.

Now consider the inductive rule:
<1n
n

where <1n has the analogous meaning to <n. This single rule induces the same set of rule instances as we
got for mathematical induction! The result is a different phrasing of the same principle of mathematical
induction:
Proposition 84 (Principle of Mathematical Induction). Let Φ(n) be a property of natural numbers. Then
Φ holds for all natural numbers if:

1. For all numbers n, if Φ(n′) holds for all n′ <1 n then Φ(n).
Funny, that doesn’t look the same! For example, there’s only one case, and no base case! Nonetheless,

this is the same inductive principle, and if we choose, we can break our problem up along the cases we had
before. Here is a rephrasing of the general structure of our earlier Summation Theorem proof:

Proof. By mathematical induction.
Suppose n is a number and the statement holds for all i <1 n. Well, we can decompose this problem into

two cases, depending on what kind of natural number n is:
Case 39 (n = 0). Then the sum of numbers from 0 to 0 is 0, which is the same as 02+0

2 .
Case 40 (n = m + 1 for some m ∈ N). Then by our assumption (i.e. the induction hypothesis), Φ(i), that
is ...

The proof is basically the same, but we got to choose how to break the problem space up. It turns out
that for the n = 0 case, we can’t rely on the induction hypothesis, because there are no numbers n <1 0, but
that’s okay because we didn’t need any.

4See the Wikipedia page on course of values recursion for more details, but ignore the Fibonacci function, because course
of values recursion is overkill for it (see the next footnote)!
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21.3.1 Well-founded relations
So we’ve been able to define two induction principles by establishing a “less-than” relation, but does this
work more generally? The answer is yes, and the kind of relation that we want for this is of the following
kind.5

Definition 11 (Well-foundedness). A binary relation < ⊆ S × S is well-founded if it has no infinite
descending chains, i.e. no unbounded strings of the form:

· · · < s3 < s2 < s1 < s0

As it turns out, given any set S and a well-founded relation <, we immediately get a corresponding
principle of induction. This makes for a very general statement:

Proposition 85 (Principle of Well-founded Induction). Let S be a set, let < be a well-founded relation on
S, and let Φ(s) be a relation on S. Then Φ(s) holds for all s ∈ S if

1. For all elements s ∈ S, if Φ(s′) holds for all s′ < s then Φ(s).

Formally:

(∀s ∈ S. (∀s′ ∈ S.s′ < s ⇒ Φ(s′)) ⇒ Φ(s)) ⇒ ∀s ∈ S.Φ(s) (21.2)

That’s quite a mouthful! But a powerful mouthful it is.

21.3.2 Common Examples
Now that we have a general framework for defining induction principles, we can build up a common set of
principles that come up a lot in practice. This way, you can quickly and easily tell what induction principle
is at work in any particular function definition. I’m often surprised how many textbooks and papers claim
that a particular definition is justified by some particular recursion principle when in fact it’s not.6

Coordinate Induction First, lets tackle the justification for the append function.

Definition 12. Suppose A and B are sets, and A has a well-founded relation <A. Then we can define
another well-founded relation < on pairs from A×B such that ⟨a1, b1⟩ < ⟨a2, b2⟩ if and only if a1 <A a2.

This well-foundedness relation is completely determined by the first elements in every pair. If B has a
well founded relation, then we could instead produce a foundation relation based on the second member of
each pair. Such a relation corresponds to the coordinate foundation-based recursion principle used to define
append. This generalizes to any ordered sequence of sets where one of them is well-founded.

Coordinate induction is particularly useful when you have to deal with tuples where only one component is
treated inductively. This happens in proofs over tuples, where the extra arguments are basically “parameters”.
The same happens when you wish to define a function of multiple arguments, but the definedness of the
function is determined “by recursion on the structure of the nth element”, and the rest just come along for
the ride.

Simultaneous Induction Some situations look like the above, where you have A × B but you want to
consider well-foundedness relations on both coordinates at the same time, in lock-step. We can do that. In
particular, we can define simultaneous foundation, which relies on every coordinate of a tuple decreasing:
⟨a1, b1⟩ < ⟨a2, b2⟩ if and only if both a1 <A a2 and b1 <B b2.

5In fact, the relation that I would argue is a crisper basis for the Fibonacci function is: n <fib m iff m = n+1∨m = n+2.
Work through the details to see why.

6To be fair, in most cases what’s presented is indeed a valid definition, but only according to some other recursion principle.
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Lexicographic Induction In both coordinate induction and simultaneous induction, it’s quite clear that
the resulting relation is well-founded, because something that can only decrease so much decreases each time.
Less obvious, but very useful, is lexicographic foundation, which we define for the simple case of pairs

Definition 13. Suppose A and B are sets with respective well-founded relations <A and <B. Then we
define the lexicographic foundation relation as follows: ⟨a1, b1⟩ < ⟨a2, b2⟩ iff

1. a1 = a2 and b1 <B b2 or

2. a1 <A a2.

Here are some examples of this well-founded relation, taking both A and B to be natural numbers:

1. ⟨4, 6⟩ < ⟨5, 7⟩

2. ⟨5, 6⟩ < ⟨5, 7⟩

3. ⟨4, 3000⟩ < ⟨5, 7⟩

In the lexicographic foundation relation, the second coordinate must go down if the first coordinate stays
the same, but if the first coordinate goes down, then the second coordinate may do whatever it likes.
Lexicographic induction corresponds to performing multiple inductions nested inside one another. Often
doing them all as one lexicographic induction will be more concise, and possibly even more clear.

Measure Induction Some of the most common and useful inductions are built around some function
from a set of interest to the natural numbers, which we will call a measure function.7 For example, in class
we defined a function size : Term → N that classifies the size of a term. Given such a function, it’s easy to
define a well-ordering on terms:

t1 < t2 if and only if size(t1) < size(t2).

It’s easy to see that this is a well-founded relation because every chain corresponds to a descending chain of
natural numbers. Using this relation gets us what would be called “induction on the size of Terms t.”

Proposition 86 (Principle of Induction on size(t)). Let Φ(t) be a property of Terms. Then Φ(t) holds for
all terms t if the following is true: If Φ(t′) holds for all terms t′ such that size(t′) < size(t) then Φ(t) holds
as well.

You can establish similar principles for many number-valued functions: the depth of a term t, the length
of a reduction sequence t −→∗ t, and even the height of a derivation tree D.

Reduction Induction Here is what I consider the strangest, but terribly useful, induction I have ever had
to use. I am putting it here just to document it and to maybe give you some crazy ideas. I had a language
in which program reduction t −→ t did not necessarily terminate, but if you limited yourself to a certain
subset of reductions t −→S t, those would always terminate. I defined a well-founded relation as t < t′ if and
only if t′ −→S t. Since −→S terminates (I proved that), it follows that < is well-founded, and with it came
a useful induction principle. Doing this helped me prove something I otherwise did not know how to prove.

21.4 Well-founded Recursion: Recursive Definitions Unchained!
So far, we’ve described how “re-defining” a set can be used to explain many of the induction principles that
appear in the literature, and empower you to develop your own induction principles, which may simplify
your proof problems. But throughout the course we have also used induction principles as a means to justify
definitions of recursive functions (namely functions whose definite descriptions consist of propositions that
fundamentally involve equations wherein reference to function itself sometimes appears on both sides of the

7I just made this name up so don’t necessarily expect to find it in the literature, but it makes so much sense, that it wouldn’t
surprise me if someone else came up with it before, or if I saw it elsewhere and just stole it.
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equations). You might wonder if redefinition can empower us with new recursion principles, and the answer
is yes!

In particular, we are going to describe “the mother of all (induction-induced) recursion principles”: well-
founded recursion. I think of this as the mother of all recursion principles in the sense that it captures in
an abstract and quite general way all of the recursion principles we have seen so far. In particular, we can
quite directly prove each of the previous induction-induced recursion principles we have seen using this one:
just a little book-keeping is required.

This principle is phrased in terms of some non-descript well-founded relation, which we can instantiate
to match many of our previous inductive definitions, but with some manual labour to determine how to split
things into cases, as we did with our proofs by well-founded induction.

Let’s state the principle, and then spend some time unpacking it. Then we can see an example of
shoehorning a previous recursion principle into the structure of well-founded recursion so you can see the
pattern, and recognize the flexibility. Bear in mind: well-founded recursion is quite the bazooka, so in
practice you should only use it when its flexibility is necessary: structural or primitive recursion will more
clearly convey many many function definitions. Constraints can be clarifying.

Proposition 87 (Principle of Well-founded Recursion).

1. Let I be a set, (• < •) ⊆ I × I be a well-founded relation, and <i := { io ∈ I | i0 ⊑ i } ;

2. Let S be some set;

3. Let HI : D → S, where D := { ⟨i, f⟩ for i ∈ I, f ∈ <i → S } ;

Then there exists a unique function F : I → S such that

F (i) = HI

(
i, F

∣∣<i

)
where F |<i is the restriction of F to the domain <i, i.e. the unique function G : <i → S such that
G(i) = F (i).

Well, that’s a mouthful! It’s also not the easiest proposition to make heads or tails of given all the layers
of abstraction. Let’s take it in parts.

First, step 1 essentially picks an inductively defined set. Or, more specifically, it takes some set I, defined
however the heck you want, and a well-founded relation that empowers us to re-define I inductively. So this
corresponds to the usual “consider some inductively-defined set”, albeit without actually saying it.

Step 2 is where we commit to the codomain S of the function that we are setting out to define. So at
lest this part should be comfortable.

Step 3 is where things start to get crazy. Instead of identifying particular elements s of S, one for
each “base case”, and enumerating a collection of functions H, one for each rule schema from an inductive
definition, we identify one big honking crazy function HI ! And this function has a pretty wild domain D.
But at least, like our old principles, the codomain of this function is S.

Let’s examine this domain D in detail. It is a set of element-function pairs. In particular each element
i is paired with a function from all elements that are “less than” i (remember, < need not be an ordering
relation, just well-founded, hence the scare quotes). So for any particular i, the set D will have one entry for
every possible function that you can form from <i to S. That can be a lot of functions, specifically |S||<i|

of them! To summarize, D has |S||<i| pairs for each i ∈ I. Good thing :: slaps on JZF :: this bad boy can
hold so many.

Here’s where I recommend that you think of this domain as a big ole spreadsheet of spreadsheets. Each
entry ⟨i, f⟩ has in its first column an element i of the domain, and the second column is a reference to another
sheet that associates one element of S to each element of <i: one for each smaller element.

Now let’s consider the function HI . This function has one job. Given one row of the spreadsheet, i.e. given
one ⟨i, f⟩ pair, it needs to associate that to an element s of S. In principle such a function can be maximally
flexible, taking into account every last detail of i itself, and every last detail of each individual ⟨i0, s⟩ entry
in the accompanying referenced spreadsheet f . So HI has lots and lots of wiggle room. Furthermore, you
(the forger of new functions F : I → S have access to the full power of set theory to define an HI . You don’t
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always need such great power, and to be honest, the vast majority of the time you just need a teensy bit of
it beyond the simpler recursion principles. So its expressiveness scales with your needs.

Now that we’ve talked about the inputs to the principle, it’s time to discuss what great payoff we have
reaped! The output of the principle is a proof that there exists a unique function F : I → S that is
determined by a single equation involving HI . What does this equation tell us? I’ll describe it two different
ways.

First, let’s go with the mathematical perspective, which is purely proposition-driven. One almost taken-
for-granted facet of this statement is the principle that given any function G : A → B and any subset
C ⊆ A, there is a unique function G

∣∣
C
: C → B, the restriction of G to the domain C. So in practice we’re

talking about a whole lot of functions, but we can view this as the outcome of selecting a bunch of rows of a
spreadsheet and copying them to a new sheet to create a new “smaller” function from an old one. So for any
Function F : I → S we can associate any i ∈ I to a function F |<i. Bear in mind that two elements io ̸= i1
may induce the same set <i0 = <i1. The most obvious case is minimal elements for which <i = ∅, which are
all associated with F |∅8

Ok, so given any function F : I → S, we get a unique set of restricted functions F |<i. The final part
of the theorem, and the part that’s a little mind-blowing is that given any HI : D → S, there exists a
function that satisfies F (i) = HI

(
i, F |<i

)
, and moreover, any two such functions are identical! In short, HI

uniquely determines (a.k.a. “describes”) F . The proof of this looks a lot like the proof of the principle of
structural recursion, but gets a little more jazzy because it uses well-founded induction (naturally, since this
is a principle of well-founded recursion) and the assumption that HI exists.

So that was the “declarative” mathematical definition. Now for an “algorithmic” explanation, for which
all of the usual caveats apply. Given a particular element i, we can imagine being able to determine the
collection <i. Furthermore, we can imagine that a “call” to HI(i, f) will use its first argument i to decide
which elements of f(i0) are needed, based on i0 < i, to produce the appropriate result s. Those elements
can be thought of as “recursive function calls”, so long as you dont have to worry that in principle there
may be an infinite number of them9

Ultimately the real work in using the principle of well-founded recursion amounts to defining the right
HI to get you what you want. Don’t let the full power of HI confuse you into thinking that defining it is
just as hard as defining F . This is analogous to the difference between defining a set of rule instances and
using them to inductively define a set: the latter is the “complex” goal that the former facilitates.

21.4.1 Well-founded Sheep in Structural Clothing
To get some first insight into well-founded recursion, let’s consider the principle of primitive recursion for
the B set from the first section and we will show how to use the principle of well-founded recursion to prove
it. This will show some direct connections. It should also be clear how the principle of structural recursion
relates too, since it just has fewer components than the principle of primitive recursion.

Proposition 88 (Principle of Primitive Recursion for b ∈ B). Let:

1. S be a set;

2. st be an element of S;

3. sf be an element of S;

4. H• : B ×B × S × S → S be a total function.

Then there is a unique function F : B → S such that

1. F (t) = st;

2. F (f) = sf ;

3. F (b1 • b2) = H•(b1, b2, F (b1), F (b2)).
8Yes, for every set B there is a unique function ∅ → B: it’s ∅! Think about it.
9That’s right, <i can be infinite. This corresponds to having an infinitely “wide” derivation tree that still has finite “height”.
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Our strategy for sketching a proof of the above proposition is to define an appropriate well-founded
relation, and then apply the principle of well-founded recursion. Our well-founded relation (• <B •) ⊆ B×B
is defined by the two rules:

b1 <B b1 • b2 b2 <B b1 • b2

Since we already have some set S, then we can determine the domain D for the HB : D → S function.

D = { ⟨b, f⟩ for b ∈ B, f ∈ <b → S }
= { ⟨t, ∅⟩ } ∪ { ⟨f, ∅⟩ } ∪ { ⟨b1 • b2, f⟩ for b1 ∈ B, b2 ∈ B, f ∈ { b1, b2 } → S } .

We can view the domain as having three distinct kinds of pairs:

1. A pair of t with the unique total function f : ∅ → S, namely ∅. If you check the requirements for being
a total function from some set A to some set B, you will find that ∅ is always a legitimate total function
if the domain is ∅. This takes getting used to, but remember: an empty spreadsheet is a perfectly fine
spreadsheet!

2. A pair f with ∅. This is similar to the above. An interesting thing about the empty total function is
that, unlike most total functions you’ve seen you can’t even call this one. That doesn’t mean it’s not
a function, it just means that it contains no interesting information, except that it has entries for all
zero elements of B that are below f.

3. A pair of b1 • b2 with a function f : { b1, b2 } → S. But remember that a function is just a spreadsheet,
so we could rewrite f as f = { ⟨b1, s1⟩ , ⟨b2, s2⟩ }.

Now that we’ve seen the structure of D, we can define a function HB that produces a unique function, and
then double-check that the resulting function satisfies the equations from Prop. 88 (and only one function
can do that).

HB(t, ∅) = st

HB(f, ∅) = sf

HB(b1 • b2, { ⟨b1, s1⟩ , ⟨b2, s2⟩ }) = H•(b1, b2, s1, s2)

There are a couple of interesting things happening up above. First, everything is quite uniform: even
the cases for t and f are paired with a function, albeit a vacuous one. Second, we can see quite clearly that
the “function” second argument is really just a tabulation of component elements and their corresponding
elements, but as a set of pairings rather than a quadruple that lists all of the component elements before
the corresponding elements. The only difference is the structure of the encoding. The main difference is
that the function-based encoding is much more flexible, and can handle an arbitrary number of component
elements. The use of domain D allows us to describe how the number and nature of premise components
depends explicitly on the first element of the pair.

If we give HB to the principle of well-founded recursion, we get a unique function F : B → S that satisfies
F (b) = HB

(
b, F

∣∣<b

)
, which when analyzed by cases on B gives us:

F (t) = HB

(
t, F

∣∣<tb

)
= HB(t, ∅) = st

F (f) = HB

(
f, F

∣∣<fb

)
= HB(f, ∅) = st

F (b1 • b2) = HB

(
b1 • b2, F

∣∣<(b1•b2)

)
= HB(b1 • b2, { ⟨b1, s1⟩ , ⟨b2, s2⟩ }) = H•(b1, b2, s1, s2)

Voila: we’ve recovered the primitive recursion equations! Technically we are still on the hook to prove
that at most one function can satisfy the primitive recursion equations, since all we’ve done is prove that
the well-founded recursive function also satisfies these, but not that these are sufficient to determine the
function. We are not going to worry about that here though.
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One interesting difference between HB and H• is that H• is not applied to the entire expression b1 • b2,
but HB is. That’s because H• could reconstruct the input b1 • b2 from b1 and b2, so in this case what we
have is simply an optimization. However this kind of reconstruction is not possible in general when defining a
function by well-founded recursion. A well-founded relation may relate arbitrarily different elements, so long
as all descending chains are finite. In particular, two different elements may have the same set of “smaller”
elements. So the general solution is to pass along the element itself as an argument. It plays the role that we
typically play by supplying distinct subscripted elements and function inputs, but now everything is wrapped
up into HB .

21.4.2 A Nontrivial Use of Well-founded Recursion

We just showed that the principle of well-founded recursion can be used to define functions that we already
know how to define, using structural or primitive recursion principles. But we did that mostly to help us
understand how the principle works: what we provide and how it gives us a proper function definition.

Now let’s use well-founded recursion to justify a function that might otherwise be challenging to define.
For this one we choose a classic, due to the logician Wilhelm Ackermann.10 Speaking anachronistically,
Ackermann observed that the following function on natural numbers is total in the sense we use in this class
(that for any input we can deduce an output), but its description does not fit into the template laid forth
by primitive recursion. His function was as follows:11

A : N× N× N → N

A(m,n, 0) = m+ n

A(m, 0, 1) = 0

A(m, 0, 2) = 1

A(m, 0, p + 3) = m

A(m,n + 1, p + 1) = A(m,A(m,n, p + 1), p)

That this function is defined over a product N×N×N suffices for it to not directly be defined by primitive
induction over numbers. However, primitive recursion with respect to a particular coordinate-wise ordering
scheme, where only one coordinate determines order, is often treated as though it were synonymous to
primitive recursion with respect to N. Morally speaking, the extra elements of the product are “parameters”
that remain constant and do not affect the propriety argument for the definite description.

However, single-coordinate primitive recursion does not suffice to justify this function, since the last
equation depends on the value of A for a decrease in the third argument (for the outer self-referential
function application) as well as a decrease in the second argument (for the inner self-reference). To make
matters worse, the outer self-reference depends on the value of the inner self-reference, which may denote
any natural number whatsoever! So even a more general notion of coordinate-wise recursion does not suffice.

To justify this function definition, the following well-founded relation on N3 suffices:

⟨m,n, p⟩ <A ⟨m,n + 1, p⟩ ⟨m, o, p⟩ <A ⟨m,n, p + 1⟩

This relation embeds a 2-dimensional lexicographic ordering into N3, where the third position dominates the
second: if p decreases, then n may change arbitrarily. We could have more precisely tailored the order to
suit the A function specifically, but it is often useful to reuse existing orderings (or their embedding among
other arguments), because then well-foundedness is already assured.

10See https://en.wikipedia.org/wiki/Ackermann_function
11The binary function that we today call “the Ackermann function” was actually adapted from this function by Rósza Péter

(the “founding mother of recursion theory”) and Raphael Robinson (husband of the great Julia Robinson).

https://en.wikipedia.org/wiki/Ackermann_function
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Now we can justify A using the function:

HA : D → N
HA(⟨m,n, 0⟩ , f) = m+ n

HA(⟨m, 0, 1⟩ , f) = 0

HA(⟨m, 0, 2⟩ , f) = 1

HA(⟨m, 0, p + 3⟩ , f) = m

HA(⟨m,n + 1, p + 1⟩ , f) = f(m, f(m,n, p + 1), p)

We have omitted the definition of the domain D since it is schematic. The function HA looks a lot like the
A function, but it is not recursive. Each case makes use of the function f that was passed in.

Technically, we are on the hook to justify that HA is a total function D → N, but this is not too
difficult. We can prove that the four equations cover all possible elements of D, since each applies no
additional constraint to the function f (don’t forget that each of these functions has a different domain,
determined by the number triple that appears alongside it!). Proving this is often called coverage checking
or totality checking. Second, we can prove that the three equations are non-overlapping, in the sense that
each applies for a distinct set of possible triples from N3, and describes a total function over its own subset.
This property is not strictly necessary, but it greatly simplifies the proof that HA is a function in that
one need not prove that overlapping equations are mutually consistent for the arguments over which they
overlap. One power of mathematical functions is that it’s perfectly fine to have an overlapping equation like
HA(⟨m,n, p⟩ , f) = HA(⟨m,n, p⟩ , f), which overlaps with all of the equations so long as the entire collection
still yields a proper definite description of a total function. But such equations make manual reasoning (and
automated reasoning by way of implementing a decision procedure) more difficult.

Part of our reasoning about each equation invoves ensuring that any use of the function argument f
applies it to elements of the function’s domain. In particular, in the last equation f ∈ A → N where:

A = { ⟨m′, n′, p′⟩ ∈ N3 | ⟨m′, n′, p′⟩ <A ⟨m,n + 1, p + 1⟩ } .

We can prove that ⟨m,n, p + 1⟩ <A ⟨m,n + 1, p + 1⟩ immediately using the first rule. Then, since ⟨m, o, p⟩ <A
⟨m,n, p + 1⟩ for any o ∈ N whatsoever, and f(⟨m,n, p + 1⟩) ∈ N, we can use the second rule to prove that
⟨m, f(m,n, p + 1), p⟩ <A ⟨m,n + 1, p + 1⟩.

From here, we can apply equational reasoning to the results of the Principle of Well-founded Recursion
to prove that we have indeed constructed the A function.

21.5 Aside: Mutually Inductive Definitions
In addition to covering the idea of well-founded induction, let’s take a little aside to talk even more about
inductive definitions and their subtleties.

21.5.1 Preconditions vs. Side Conditions
To explain those, let’s consider a simple example that you’ve already seen. Suppose a set of terms t ∈ Term
and a small-step relation on it −→⊆ Term × Term. Then we can take the reflexive-transitive closure of
this relation: Here are the rules that define −→∗:

(incl)
t1 −→ t2
t1 −→∗ t2

(refl)
t −→∗ t

(trans)
t1 −→∗ t2 t2 −→∗ t3

t1 −→∗ t3

The (refl) and (trans) rules are the usual thing we are used to, but notice that the (incl) rule has a use
of −→ on top. To really get what’s going on, let’s desugar these rules for −→∗:

(incl)
⟨t1, t2⟩

where t1 −→ t2 (refl)
⟨t, t⟩

(trans)
⟨t1, t2⟩ ⟨t2, t3⟩

⟨t1, t3⟩

In the desugared form, it becomes apparent that the top of the sugared (incl) rule is really a side-condition,
not a premise. Premises can only be things that might be elements of the set being presently defined.
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Of course, if two terms t1 and t2 satisfy the side condition t1 → t2, then by definition, there must be a
derivation of this fact (assuming that −→ was also inductively defined), but that derivation is independent
of the current derivation.

Now, as a side note, consider the following seemingly peculiar inductive definition:

(incl)
t1−̸→ t2

t1At2
(refl)

tAt
(trans)

t1At2 t2At3

t1At3

Is this definition of A ⊆ Term × Term alright? Sure! the natural definition of −̸→ is as follows:

−̸→ = { p ∈ Term × Term | p /∈−→}

Well that’s a well-defined set. And once again its use on top of (incl) is a side-condition, so it produces a
perfectly fine set of rule instances. So what we get is the reflexive-transitive closure of “doesn’t single-step
to”. Why would I want that? Hell if I know, but that’s not the point: the point is that it’s a well-defined
set!

Why emphasize this? Because suppose I wrote the following and claimed that it was an inductive
definition:

(incl)
t1 −→ t2
t1/t2

(refl)
t/t

(trans)
t1/t2 t2 /̸t3

t1/t3

Well now this is problematic. If you try to desugar this, then you get stuck trying to translate the t2 /̸t3.
It has no meaning yet because you haven’t defined / yet, let alone /̸.

As a result of this phenomenon, many have come to learn the (correct) belief that having “negative
premises” is fundamentally wrong, but unfortunately then confuse negated side-conditions with negated
preconditions, a behaviour that is somewhat understandable of reasonable since side-conditions often get
typeset as if they were preconditions. However, the result is that some perfectly fine inductive definitions
get incorrectly criticized.

21.5.2 Mutually Inductive Definitions
So far, you’ve only seen inductive definitions where all of the preconditions are exactly references to the
elements of the set being defined. There’s one circumstance that seems like it’s not like this: when two or
more sets are mutually defined inductively. This is different from the example above where one set is defined
and then used as a side-condition to define the next.

We proceed with an example. Suppose a programming language that is kind of like our language of
mutable references, but it distinguishes terms that are executed for their side-effect only (which we’ll call
statements) from terms that are executed for their values (which we’ll call expressions). However, we will
allow expressions to execute statements before producing a value, and we will allow statements to evaluate
expressions. Here we’ll just introduce the syntax, and I’ll leave it to you to come up with a semantics.

n ∈ Z, x ∈ Var, e ∈ Expr, s ∈ Stmt
e ::= n | true | false | x | e + e | e-e | e = e | if e then e else e | do s in e
s ::= x ::== e | s;s | if e then s else s

For expressions, we have numbers, booleans, variable references, arithmetic, an equality operator, and
an if expression. There is also a do expression that runs a statement and then produces the result of the
following expression.

For statements, we have assignment, sequential composition, and an if statement, which is distinct from
the corresponding expression form.12

12I believe that this distinction first appeared in Algol 58.
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Here’s an example program
if a == 3 then
7

else do if b == 2 then
x ::== x++1

else
y ::== y-1

in
x++x-y

The key point here is that the syntax of expressions depends on the syntax of statements, and vice-versa.
This definitely happens in practice. The two are defined mutually.
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You may typically see such a set defined using rules like the following:

n ∈ Expr (num)
. . .

e1 ∈ Expr e2 ∈ Expr e3 ∈ Expr
if e1 then e2 else e3 ∈ Expr (ife) s ∈ Stmt e ∈ Expr

do s in e ∈ Expr (do)

. . .

s1 ∈ Stmt s2 ∈ Stmt
s1; ; s2 ∈ Stmt (seq)

. . .
e ∈ Expr

x ::== e ∈ Stmt (asgn)

Some of these rules, like (ife) and (seq) look normal with matching syntactic sugar on top and bottom,
but rules (asgn) and (do) look weird because they refer to different sets on top and bottom! What gives?!?
Well, what really is happening is that we’re defining a single set we’ll call SE that essentially contains both
Exp and Stmt, in a way that we can tell in each case which set the other came from.

Let’s desugar this definition. To tell the two sets apart, we introduce two atoms expr and stmt to tag
elements of the sets. Now with these we can present the desugared inductive rules for SE.

Here is the totally desugared and fixed version of these rules.

⟨n, expr⟩ (num)
. . .

⟨r1, expr⟩ ⟨r2, expr⟩ ⟨r3, expr⟩
⟨if r1 then r2 else r3, expr⟩ (ife)

⟨r1, stmt⟩ ⟨r2, expr⟩
⟨ do r1 in r2, expr⟩ (do)

. . .

⟨r1, stmt⟩ ⟨r2, stmt⟩
⟨r1; ; r2, stmt⟩ (seq)

. . .

⟨r, expr⟩
⟨x ::== r, stmt⟩ (asgn)

Notice that we got rid of references to e and s since they don’t exist yet. Instead, we use tags to mark
set elements.

Then, once we have the set SE, we can tease out our two desired sets.

Expr = { r ∈ Tree | ⟨r, expr⟩ ∈ SE }
Stmt = { r ∈ Tree | ⟨r, stmt⟩ ∈ SE }

Now that we have an inductive definition of SE, the inductive and recursive principles that we get for
free are for SE, not for Stmt, and not for Expr alone.

However, in most cases we can act as though they are. Suppose a property Φs of statements s, and a
property Φe of expressions. Then we can build a property

Φ(se) ≡ (se = ⟨r, expr⟩ ∧ Φe(r)) ∨ (se = ⟨r, stmt⟩ ∧ Φs(r)).

If we plug this property into the Principle of Induction for elements of SE, then we get:

Proposition 89 (Principle of Mutual Induction for Elements e ∈ Expr and s ∈ Stmt). Let Φs be a property
of statements s, and Φe be a property of expressions. Then Φs(s) holds for all s ∈ Stmt and Φe holds for
all e ∈ Expr if:

• Φe(n) for all n ∈ Z;

• If Φe(ei) for i ∈ { 1, 2, 3 } then Φe(if e1 then e2 else e3);

• …

• If Φs(s) and Φe(e) then Φe( do s in e);

• If Φs(si) for i ∈ { 1, 2 } then Φs(s1; ; s2);

• …

• If Φe(e) then Φs(x ::== e).

When one proves a property of a language by mutual induction, one is appealing to a proof of the above
form.

Similarly, one can produce a Principle of Mutual Recursion, in its most general form, by following a
similar pattern.
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Proposition 90 (Principle of Definition by Mutual Recursion for e ∈ Expr and s ∈ Stmt). Suppose some
set Qs and some set Qe and a collection of functions:

• En : n → Qe;

• Eif : Qe ×Qe ×Qe → Qe;

• …

• Edo : Qs ×Qe → Qe;

• S; : Qs ×Qs → Qs;

• …

• S:= : Var ×Qe → Qs

Then there are unique functions Fs : Stmt → Qs and Fe : Expr → Qe such that:

• Fe(n) = En(n);

• Fe(if e1 then e2 else e3) = Eif(Fe(e1), Fe(e2), Fe(e3));

• …

• Fe( do s then e) = Edo(Fs(s), Fe(e));

• Fs(s1; ; s2) = S;(Fs(s1), Fs(s2));

• …

• Fs(x ::== e) = S:=(x, Fe(e)).

The trick is to set Q = (Qs ×{ stmt })∪ (Qe ×{ expr }) and build a function F : SE → Q using the given
parts. Then you can tease out of this the two functions Fs and Fe and prove that they exist and then prove
that they are unique by mutual induction.

As a concrete example, consider the following definition of a pair of size functions for this language:

sizee :: Expr → N
sizes :: Stmt → N

sizee(n) = 1

sizee(if e1 then e2 else e3) = sizee(e1) + sizee(e2) + sizee(e3)
. . .

sizee( do s then e) = sizes(s) + sizee(e)
sizes(s1; ; s2) = sizes(s1) + sizes(s2)

. . .

sizes(x ::== e) = sizee(e) + 1

This counts as a definition of the two functions thanks to the principle of definition by mutual recursion
for Stmt and Expr.

[RG: Some stuff from Spring 2013]
In a recent homework assignment, I gave a definition of a mathematical function

append : ECtxt × ECtxt → ECtxt
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for combining two valuation contexts. I defined it as follows:

append(E,□) = E

append(E1, E2[□ + t]) = append(E1, E2)[□ + t]
append(E1, E2[v + □]) = append(E1, E2)[v + □]

append(E1, E2[if □ then t1 else t2]) = append(E1, E2)[if □ then t1 else t2]

Recall that earlier in the term I said that a set of propositions (like the above equations) only counts as
a definition if we establish that they indeed state the properties of a single object. In this case, how do we
know that there is a single function f ∈ ECtxt × ECtxt → ECtxt that satisfies these equations? You
might be tempted to say “by the principle of definition by recursion on the structure of contexts E2”, and
you’d be pretty much right, but not completely. In particular, the principle evoked above is for defining
functions f ∈ ECtxt → S for some set S, but append above has as its domain the set of pairs of evaluation
contexts, not single contexts. So what gives?

21.6 Induction on Terms, Generalized
Throughout the course we have been using inductive rules to define sets and prove properties of them. Here
we take a step back to the early days to note how one of our earlier ideas generalizes.

First some review. In Lecture 3, we used inductive rules to define the syntax of the Boolean language,
building on the set of Trees, as below.

(r-true) true ∈ Term (r-false) false ∈ Term (r-if)
r1 ∈ Term r2 ∈ Term r3 ∈ Term

if r1 then r2 else r3 ∈ Term
Based on the structure of the definition, we knew that Term ⊆ Tree, since the definition was essentially

carving out a subset of trees explicitly.
We next introduced a principle of induction on the structure of derivation, followed by a principle of

induction on the structure of Terms. Here I repeat that principle, but with a slight modification from the
earlier statement.

Proposition 91 (Principle of Structural Induction on terms t ∈ Term).
Let Φ(r) be a property of Trees r. Then Φ holds for all Terms t if:

1. Φ(true) holds;

2. Φ(false) holds;

3. If Φ(t1) Φ(t2), and Φ(t3) hold then Φ(if r1 then r2 else r3) holds.

The statement is a generalization of our earlier statement. The only difference here is that Φ is a property
of Trees, not Terms. Of course that means that Φ is also a property of Terms, but it’s well defined for all
Trees. This change means that we can apply the principle of induction for more general properties, without
worrying about whether the element under question is specifically a Term. Below you’ll see why we care
about this.

21.6.1 Two Inductions for the Multi-Step Relation
In a recent homework, we gave rules to define two relations, −→∗⊆ Term×Term and −→□⊆ Term×Term.

Here are the rules that define −→∗:

(incl)
t1 −→∗ t2

t1 −→ t2 (refl)
t −→∗ t

(trans)
t1 −→∗ t2 t2 −→∗ t3

t1 −→∗ t3

and here are the rules that define −→□:

(zero)
t −→□ t

(plus-1)
t2 −→□ t3

t1 −→□ t3
t1 −→ t2
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You were asked to state the corresponding principles of induction for each of these relations, and to prove
that −→∗ and −→□ are in fact one and the same relation! So we end up with two different definitions and
names for the same set.

With this realization may come a little concern: does it matter which mathematical definition we use for
this set? In particular, if we use the −→□ definition, are we banned from using the induction principle that
we get from −→∗? The answer is a resounding NO! To make this point clearer, let’s state the principles of
induction that are analogous to the principle of induction on the structure of terms:
Proposition 92 (Principle of Rule Induction (t −→∗ t)).
Let Φ(t, t) be a property of pairs of terms. Then Φ(t1, t2) holds for all t1 −→∗ t2 if:

1. If t1 −→ t2 then Φ(t1, t2) holds;

2. Φ(t, t) holds; and

3. If Φ(t1, t2) holds and Φ(t2, t3) holds, then Φ(t1, t3) holds.
Proposition 93 (Principle of Rule Induction (t −→□ t)).
Let Φ(t, t) be a property of pairs of terms. Then Φ(t1, t2) holds for all t1 −→∗ t2 if:

1. Φ(t, t) holds; and

2. If Φ(t2, t3) holds and t1 −→ t2 then Φ(t1, t3) holds.
Here, something interesting happens. When we stated the definition of induction on the structure of

terms, it looks plainly like we are talking about how a particular term is built: maybe start with a true, and
a false and another true and build up aif true then false else true term from it. But now we’re just talking
about pairs of terms, t1, t2. They aren’t “built” up based on either of these principles, but each of these
principle is guided by the inductive rules that we used to define the set. For this reason, we call the above
principles instances of rule induction, because the structure of the terms and the rules used to define them
don’t coincide (but they did when we defined the terms, so the distinction was lost).

Notice that both Principles are stated in terms of −→∗ now: −→□ is only mentioned in the name of
one principle so that you can see where the principle came from. Now, we can use either of our definitions,
whichever one seems to capture our intuitive notion of multi-step, but we get to use keep both of these
principles. In this case, I choose −→∗ as our definition because it very explicitly captures the idea of
“reflexive-transitive closure of −→”. There’s one rule for reflexivity and one rule for transitivity, and one rule
for what’s being closed over. If my formal definition matches my intuitive definition, then I’m more likely to
have captured what I meant to. Only then do we need to worry about what reasoning principles we want.13

21.7 Defining append manually
In the last section, we learned how to get new induction principles for an old set: give a new definition for
it. In fact, this is essentially how we can justify the definition of the append function. Usually we take the
set ECtxt × ECtxt for granted, since we can always form pairs, but we can also provide a new definition
for pairs:

E × []

E1 × E2

E1 × E2[[] + +t]

E1 × E2

E1 × E2[v ++[]]

E1 × E2

E1 × E2[if [] then t2 else t3]

The above rules define the same set ECtxt×ECtxt, but they give us a new induction principle for the
same set. What’s further, the rule set is deterministic, meaning that there is exactly one derivation tree for
every member of the set. This is particularly easy to tell in this case, because for each member of the set,
only one rule could possibly at the bottom of the derivation. Whenever this is true, you immediately get a
Principle of Definition by Recursion.14

13As an example of this broader point: note that you learn about Turing Machines when you are taught about the notion of
computation, because a Turing machine intuitively feels like a good formalization of computation. That they are equivalent to
lambda calculus gives you another way of reasoning though, hence the Church-Turing Thesis.

14When your rules are not deterministic, like for −→∗, you need extra constraints to ensure coherence of your definition,
meaning that it’s really a function, with one result for each input.
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Proposition 94. Let

1. S be some set;

2. H[] : ECtxt → S;

3. H[]++t : S × Term → S;

4. Hv++[] : S × Value → S;

5. Hif : S × Term × Term → S.

Then there is unique function F : ECtxt × ECtxt → S such that:

1. F (E,□) = H□(E);

2. F (E1, E2[□ + t]) = H□+t(F (E1, E2), t)

3. F (E1, E2[v + □]) = Hv+□(F (E1, E2), v))

4. F (E1, E2[if □ then t1 else t2]) = Hif(F (E1, E2), t1, t2).

This is principle of recursion that we use to define append. I’ll leave it as an exercise for the reader to
deduce the definitions of S and the various H functions.

You have to admit, it’s a bit of a pain that we would have to actually come up with a new definition
every time we want a principle of induction or a principle of recursion, and have to ensure that the definition
is deterministic too. Is there an easier way?
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