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Chapter 19

Procedural Abstraction

In this class we talk about a mechanism that all of you have used already: procedures. We often call them
functions, but I hope to use the other word more often to distinguish them from the mathematical functions
that we are working with in this class. This mechanism gives us a lot of power over how we can cleanly
organize our programs and break up their behavior in well-organized ways, avoid duplication, and give
meaningful names. We call this procedural abstraction. In particular, we will take a programming languages
approach to studying procedures, to see what they can do, and what many of the outstanding issues are
about programming with them.

Suppose you work for a promising startup company that develops software. After a long night of hacking,
you put together this phenomenally useful program:1

(if (zero? (- (+ 3 2) 1))
(+ 3 2)
(- (+ 3 2) 1))

Several of your colleagues think it’s a great piece of code, and they want to use it, but they need to
change it a bit to suit their purpose. Sure you could just give them the code and they could modify it for
their particular needs, but then any bug fixes or enhancements you make to your code will not immediately
show up in theirs. On the other hand, if your language supports procedural abstraction, the ability to write
and call procedures/functions, then you can re-structure your program to support their needs as well as your
own.

Racket, our example language, definitely supports defining procedures:
(define (f x) <procedure body>)

as well as calling them
(f 0)

Then you can take advantage of this abstraction mechanism to generalize your program for all of your friends.
However, there’s a very key issue to keep in mind: the way that you generalize your program depends on
the needs of your users. Let’s run through a few different scenarios:

Scenario 1: Different numbers Suppose your colleagues want to do the same computation but with
different values in place of 3+2. Well, piece of cake: replace every instance of 3+2 with a variable reference
and make that variable the formal parameter to your procedure:
(define (when-one x)

(if (zero? (- x 1))
x
(- x 1)))

Then you can get your previous results by calling it with the original expression as its argument:
1This program may look familiar...have you written it before? Or do you just need more coffee?
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(when-one (+ 3 2))

and your friends can use whatever other numeric expressions they want as their arguments to the procedure,
e.g.
(when-one 0)

Scenario 2: Different operation Suppose, on the other hand, that your friends definitely want to use
3, but they want to do something different from adding two (i.e. (+ ... 2)) to it in every spot. No Problem!
Following the same recipe as above, replace every instance of (+ ... 2) with a procedure call, where the
variable g represents the procedure, i.e. (g ...) and make that variable a formal parameter again:
(define (when-g3-is-one g)

(if (zero? (- (g 3) 1))
(g 3)
(- (g 3) 1)))

Now you can get your behavior back by defining a procedure for plus-two, and passing that procedure in.
(define (add-2 x) (+ x 2))

(when-g3-is-one add-2)

Well, this might look a little unusual to you. Here we’re passing a procedure as an argument to another
procedure and then using it. Only some programming languages let you do that,2 but as we see here, it can
be mighty useful. Now, your friends can use your code by passing along their own operations as procedures,
e.g.:
(define (times-2 x) (* x 2))

(when-g3-is-one times-2)

Scenario 3: Lots of double-calls Your friends are loving that they can pass in an operation to your
innovative procedure when-g3-is-one, but perhaps they find that they must often repeat the same pattern
over and over. For instance, maybe every procedure they pass in is an instance of repeating the same
operation twice. For example, the expression (+ x 2) can be viewed as adding 1 twice (i.e. (+ (+ x 1)))
and maybe someone else wants to multiply by four (i.e. (* (* x 2)2)) and yet some other poor fellow must
frobnicate the argument twice (i.e. (frobnicate (frobnicate x)))! You could write yet another version of
your function, of course called when-gg3-is-one, that applies its procedure argument twice, but that seems
unsatisfying. Sure you could then pass into it the function (define (g x)(+ x 1)) and frobnicate, but now
you can’t use (define (g x)(* x 2)) with when-gg3-is-one, you need to use when-g3-is-one, which means
that you need to keep two copies of the function around, and naturally whenever you fix a bug in one,
you have to fix it in the other. Yuk! You’d be stuck maintaining two versions of your f procedure, and
that’s exactly what you don’t want to do! Luckily there’s a way to have your code and run it too: instead
of rewriting your amazing procedure from scratch yet again, you can write a helper procedure that just
captures the idea of “doing something twice”:
(define (do-h-twice h)

(define (r y) (h (h y))) ; define a procedure r that applies h twice
r) ; and return that procedure

Here we define a procedure that:

1. takes a procedure (h)

2. in its body defines a new procedure r that uses h

3. returns the procedure r as its result.
2FORTRAN definitely doesn’t, but C does!
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Now given that procedure, you can define when-gg3-is-one in terms of when-g3-is-one!:
(define (when-gg3-is-one f)

(when-g3-is-one (do-h-twice f)))

and you can get your behavior by calling
(define (add-1 x) (+ x 1))
(when-gg3-is-one add-1)

while your friend gets her behavior by calling (when-gg3-is-one frobnicate).
Consider what’s going on with do-h-twice though. Not only is it taking a procedure as an argument, but

it’s returning a procedure as its result. Taking it even further, the procedure that it’s returning is defined
in terms of the procedure that you passed in, using it along the way.3 You can see here how this capability
can be useful. A language that lets you create procedures on the fly, pass them into functions, return them
as values, pretty much anywhere, is said to support first-class procedures.

In this example, though, isn’t it annoying that you have to give a name to the procedure that adds one
and then pass that name into the procedure? It’s not like I have to always write:
(define three 3)
(do-something-to three)

to call do-something-to with the value 3. The name three doesn’t add anything. Same for the body of
the procedure do-h-twice which defines a procedure named r and returns it. It would be nice if we could
simply write something that means “the procedure that takes a value and adds 1 to it”. Sounds like a
great idea! We can use the keyword λ to define a procedure in place without giving it a name. We
write (λ (x) <procedure body>) to define a procedure in-line without giving it a name. Then we can write
(when-gg3-is-one (λ(x)(+ x 1))) to call when-gg3-is-one with the add-1 procedure in-line, and we can go
back and redefine the procedure do-h-twice as
(define (do-h-twice h) (λ (y) (h (h y))))

Languages that support features like λ are said to support anonymous procedures, since they don’t need to
be given a name.

Our goal here is to support procedural abstraction in a way that is general enough to support all of the
examples above. As it turns out, it doesn’t take a whole lot to do that.

19.1 Lambda Abstractions as Procedures
Now that we have a model for what it means to call procedures, we need to actually add procedures to our
language! Based on the scenarios above, we want to be able to do a number of things, including passing
procedures to procedures and producing procedures as the results of other procedures. Amazingly, getting
this much power out of procedures, at least mathematically, takes very little additional machinery.

First, let’s introduce our notation for procedures.

t ::= . . . | λx.t

The symbol λ is the Greek character “lambda”, and the notation λx.t is called a lambda abstraction, because
it stands for abstracting the term t with respect to the parameter x. Referring back to tree form, this is the
common notation used for what is really under the hood a Tree of the form λ(x, t)

Comparing this to our earlier notation, a procedure like add-1 defined as

(define (add-1 x) (+ x 1))

which is the procedure that maps x to x+1 corresponds to the lambda abstraction

λx.x + 1.
3You definitely can’t do that easily in C!
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Notice that we didn’t even have to give this procedure a name. Now, our language already has a set of terms
that immediately stand for performing some operation on a term, like t = 0. Now we are going to be able to
write terms that produce new procedures and then we want to apply a computed procedure to an argument.
We also add new notation for this.

t ::= . . . | t t
The notation t1 t2

4

means to evaluate t1 to produce some procedure λx.t11, evaluate t2 to produce some argument v2, and
then apply the procedure to the argument. Under the hood, the notation t1 t2 corresponds to a Tree
like apply(t1, t2): for some odd reason, standard convention is to use juxtaposition of Terms to stand for
procedure application.

Notational Conventions The “dot” in a lambda abstraction λx.t acts kind of like a parenthesis, in that
it helps to determine what the body of a procedure is. One important aspect of dot is that it eats everything
to its right. For example, the expression λx.y x corresponds to the Tree λ(x, apply(y, x)). Similarly, the
expression λx.y λz.x corresponds to the Tree λ(x, apply(y, λ(z, x)). If you want to restrict the reach of
a lambda abstraction’s body, then you should place the entire expression in parentheses: for example, the
expression (λx.y) λz.x corresponds to the tree apply(λ(x, y), λ(z, x))

By convention, application associates to the left, so
t1 t2 t3 ≡ (t1 t2) t3 ≡ apply(apply(t1, t2), t3).

If you want one of the arguments to an application to be itself an application, then you must explicitly
parenthesize it, e.g., t1 (t2 t3).

It takes practice to get the notation for lambda abstractions and applications right. Make sure that you
can read and write these expressions by taking advantage of these conventions.

One thing to keep in mind is the relationship between applying our new procedures compared to the old
operators that we had in the language. If our language still had the term zero?(t), then it would not be legal
in our language to write: zero? t in the sense of apply(zero?, t), because zero? by itself is not a Term in the
language, only expressions of the form zero?(t) are. However, the expression λx.zero?(x) is a perfectly fine
Term, so we can always write (λx.zero?(x)) 0.

Let’s write down the rest of the formal semantics of our new language. We call it TFL because it’s a Tiny
Functional programming Language. It is much like the Boolean and Arithmetic Language, but we replace
unary arithmetic with proper integers, for greater convenience.5

n ∈ Z, t ∈ Term, x ∈ Var
t ::= n | t = t | t + t | t - t | t ∗ t

| true | false | if t then t else t
| x | λx.t | t t

Our big-step relation for Boolean and Arithmetic Expressions is defined by the following rules:

(elam)
λx.t ⇓ λx.t

(eapp)
t1 ⇓ λx.t11 t2 ⇓ v2 [v2/x]t11 ⇓ v

t1 t2 ⇓ v
(etrue) true ⇓ true

(efalse) false ⇓ false (eif-t)
t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2
(eif-f)

t1 ⇓ false t3 ⇓ v3
if t1 then t2 else t3 ⇓ v3

(en) n ⇓ n (eqt)
t1 ⇓ n t2 ⇓ n

t1 == t2 ⇓ true (eqf)
t1 ⇓ n1 t2 ⇓ n2

t1 == t2 ⇓ false n1 ̸= n2

(plus)
t1 ⇓ n1 t2 ⇓ n2

t1 ++t2 ⇓ n3
n3 = n1 + n2 (minus)

t1 ⇓ n1 t2 ⇓ n2

t1 - t2 ⇓ n3
n3 = n1 − n2

(times)
t1 ⇓ n1 t2 ⇓ n2

t1 ∗ t2 ⇓ n3
n3 = n1 × n2

4This is written in LaTeX as t_1\;t_2 where the \; gets the spacing right.
5Note that we’ve seen a stripped down version of this language in class.
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Notice that there is no rule for evaluating variables. We expect that their meaning is solely determined by
substitution for procedure parameters. Nonetheless, some of the rules can be instantiated to have variables
in them.

Substitution for this larger language needs to account for the new arithmetic operations as well as
procedure abstraction and application.

[t/x] : Term → Term
[t/x]true = true
[t/x]false = false

[t/x]x = t

[t/x]x0 = x0 if x0 ̸= x

[t/x](if t1 then t2 then t3) = if ([t/x]t1) then ([t/x]t2) else ([t/x]t3)

[t/x]n =???

[t/x]t1 == t2 =???

[t/x]t1 ++t2 =???

[t/x]t1 - t2 =???

[t/x]t1 ∗ t2 =???

[t/x]t1 t2 = ([t/x]t1 ∪ [t/x]t2

[t/x]λx0.t0 =???

I leave the cases for arithmetic expressions as an exercise to the reader. We can see above that substitution
for application is straightforward. Extending substitution to deal with lambda abstractions, however, is not
so straightforward. We deal with that next.

19.2 Substitution and Lambda Abstractions
In this section, we discuss how substitution and lambda abstractions interact. You might think that it
follows obviously based on what you’ve seen before, and you would be mostly right, but there is some
subtlety to getting substitution “right,” by which I mean behaving in a manner that actually matches your
intuitions. Historically programming languages like LISP (and to this day Emacs Lisp) got this “wrong.” In
this section, we’ll talk about some of the things that can go wrong with substitution into procedures, then
give a general-purpose definition of substitution.

Substitution for applications is quite easy, similar to the case for if:

[t/x]t1 t2 = ([t/x]t1) ([t/x]t2). (⋆)

The case for lambda abstractions is a bit more subtle though! You might be tempted to do the “obvious”
thing, proceed by recursion on the structure of Terms.

[t/x]λx0.t0 = λx0.[t/x]t0

But this equation implies results that we do not desire. To make this concrete consider the following two
examples:

[0/x]λy.x =???

[0/x]λx.x =???

The first case seems pretty straightforward: the x becomes the value 0 as a result of substituting for x:

[0/x]λy.x = λy.[0/x]x = λy.0.

The second case is a little more odd. Substitution is applied to the identity procedure, λx.x, which takes
an argument and immediately yields that argument as its result. That means that the reference to x is
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referring specifically to the x bound by the lambda abstraction. We do not want substitution to “break” this
procedure: after substitution, the same variable should refer to the same binding site, so something like

[0/x]λx.x = λx.0.

Would be painfully broken! Looking at it from yet another angle, consider the following example:

[y/x]λy.y x =???

The procedure body has a variable reference x that ostensibly points to outside of the procedure somewhere,
but if we use equation (⋆):

[y/x]λy.y x = λy.y y

Then that variable reference to x, which pointed outside the procedure is now captured by the procedure’s
parameter. What’s worse is that if we keep this behavior but change the name of the variable, then the
behavior of the procedure changes!

[y/x]λw.w x = λw.w y

Now the variable reference y that is substituted in is no longer captured. Intuitively, the meaning of the
program should not depend on which function parameter names you choose inside a procedure: that kind
of dependency breaks the abstraction barrier that we are trying to create (hence the name “procedural
abstraction”). This was exactly something that the LISP programming language got wrong in its early days
(and that Emacs LISP still has wrong).

The lesson to be learned here is that we must use care when defining substitution for lambda abstractions.
To do so, we must first introduce a few new concepts.

19.2.1 Free Variables
First, we must consider the status of variables in programs. Variables in this language stand for references
to procedure parameters that will eventually be replaced with values when the corresponding procedure is
applied. For this reason, we had better make sure that each variable is associated with a procedure parameter.
Consider the expression x++1. By itself, this expression does not associate x with any procedure parameter.
We say that the variable x occurs free in the term x + +1. On the other hand, in the expression λx.x + 1,
the argument to x + +1 is bound by the surrounding lambda abstraction. That is to say, there are no free
variables in the term λx.x + 1. We say that this term is closed. We formalize this concept by defining a
function that gives the free variables of any Term.6

FV : Term → P(Var)
FV(true) = ∅
FV(false) = ∅

FV(x) = {x }
FV(if t1 then t2 then t3) = FV(t1) ∪ FV(t2) ∪ FV(t3)

FV(n) =???

FV(t1 = t2) =???

FV(t1+t2) =???

FV(t1 - t2) =???

FV(t1 ∗ t2) =???

FV(t1 t2) = FV(t1) ∪ FV(t2)

FV(λx.t) = FV(t) \ {x }

6Once again, I leave it as an exercise for you to extended it to handle arithmetic expressions.
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Analogously, the following function formalizes the notion of bound variables:

BV : Term → P(Var)
BV(true) = ∅
BV(false) = ∅

BV(x) = ∅
BV(if t1 then t2 then t3) = BV(t1) ∪ BV(t2) ∪ BV(t3)

BV(n) =???

BV(t1 = t2) =???

BV(t1+t2) =???

BV(t1 - t2) =???

BV(t1 ∗ t2) =???

BV(t1 t2) = BV(t1) ∪ BV(t2)

BV(λx.t) = BV(t) ∪ {x }

Note that just as a variable may appear free multiple times in a single expression, a variable may be
bound more than once in an expression (e.g., λx.λx.x). Furthermore, a variable may appear both free and
bound in the same expression (e.g. (λx.0) x)).

19.3 Alpha-Equivalence For Procedures
One of the common threads in the discussion so far is that the parameter names in procedures shouldn’t
matter: for instance, the procedure λ(x, x) should be the same as λ(y, y). Only the internals of the procedure
should care about which parameter name is used: the rest of the program should not depend on it. The
alternative is a programming language where you have to worry all the time about what local variable names
are used within each function. That makes it hard to build correct modules independently.

To address this issue, we use the same solution as we did for let-bound variables: introduce the appropriate
notion of alpha equivalence:

Definition 10 (Alpha Equivalence). Let ∼a: Term × Term be defined by the following rules:

x ∼a x
t11 ∼a t21 t12 ∼a t22

t11 t12 ∼a t21 t22

t1 ∼a t2
λ(x, t1) ∼a λ(x, t2)

λ(x3, [x3/x1]t1) ∼a λ(x3, [x3/x2]t2)
λ(x1, t1) ∼a λ(x2, t2)

x1 ̸= x2,
x3 /∈ FV(t1) ∪ FV(t2)

As for the BL language, most of the cases that define this relation look exactly like equality. In fact,
if we throw out the last rule, then the definition is just an inductive definition of equality. This makes it
quite direct to show that that identical terms are alpha-convertible. The last rule, then, is the interesting
one. Essentially it says that two lambda abstractions are alpha-convertible if renaming their parameters to
a common parameter results in alpha-convertible terms.

Given this relationship between Terms, we can formalize the sense in which parameter names don’t
matter:

Proposition 76. If t1 ∼a t2 and t3 ∼a t4 then [t3/x]t1 ∼a [t4/x]t2.

Proof. By induction over t1 ∼a t2.7

Proposition 77. If t1 ∼a t2 and t1 ⇓ v1 then t2 ⇓ v2 and v1 ∼a v2.

Proof. An exercise.
7I recommend working through this.
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In essence, these propositions say that if two programs differ only in their choice of bound variables, then
their results also only differ in their bound variable names.

We call ∼a “alpha-equivalence” because it forms an equivalence relation.
Proposition 78 (∼a is an equivalence relation). Given t1, t2, t3 ∈ Term, the following are true:

1. t1 ∼a t1;

2. If t1 ∼a t2 then t2 ∼a t1;

3. If t1 ∼a t2 and t2 ∼a t3 then t1 ∼a t3.

19.4 Defining an Evaluator
We’re not done yet! Our language isn’t fully defined until we have produced an evaluator for it. We have a
few considerations to take into account in defining our language.

19.5 Legal Programs
What will count as programs in this language? Well, recall that variable references are given meaning by
substitution, and our semantics only performs substitution for bound procedure variables when the procedure
is called. It naturally follows, then that our programs should be such that all variables are bound, i.e., that
there are no free variables.

Formally, we define two sets, the set of closed terms and the set of closed values:
Term0 = { t ∈ Term | FV(t) = ∅ } .

Value0 = { v ∈ Value | FV(v) = ∅ } .

These will be our legal programs and our expected values.

19.5.1 Procedure results
We now have to consider what to do if a program results in a procedure. We could produce the procedure
as the result itself, but that’s a bit strange, and we don’t want to depend on the internals of the procedure
that we get back (if only because the language implementation may play some tricks with procedures that
you don’t want the user to see). So for this reason, we will simply report if a program results in a procedure,
without reporting which procedure. To do that, we introduce the new atom procedure as an observable result
of the evaluator.

19.5.2 The evaluator
Tying these concepts together, we get the evaluator for our language:

Pgm = Term0

k ∈ Const = Bool ∪ Z
Obs = Const ∪ { procedure }
eval : Pgm ⇀ Obs
eval(t) = k if t ⇓ k
eval(t) = procedure if t ⇓ λx0.t0
eval(t) undefined otherwise

First we distinguish the set of observable constants Const, and define evaluation to yield those constants,
but evaluation yields the atom procedure if the result is some procedure λx.t.

This evaluator, defined as a partial function, reflects only the successful evaluation of programs, and
leaves undefined any program that would signal an error or diverge. Our view is that it is always better to
be explicit about those phenomena. Without those additions, a safety theorem lacks the assurances that
lend confidence to such a semantics.

[RG: Integrate the following all all into the beginning of this chapter (and maybe the previous chapter]
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19.6 Working With Procedures
In our last class, we introduced the idea of procedural abstraction using the λ(x, t) expression and procedure
applications apply(t, t). This allowed us to capture common program patterns, introduce parameters to rep-
resent the uncommon part, and then produce particular instances by applying the procedure to a particular
argument. We motivated these features with some example programs that we’d like to write, but we haven’t
quite written those programs. In fact, it seems that we need more features to be able to write them. In this
lecture, we introduce some new features that correspond to what it looks like we’re missing, and then we
show how technically we don’t need them: procedures suffice.

19.7 Variable Binding
In our earliest example last class, we assumed that we could define a function with a name, and then call it,
as in the following repeated example:

f(x) = if zero?(pred(x))
then x
else succ(x)

f(succ(succ(z)))

Right now we have no way to give a function a name and use it later, we can just create lambda
abstractions. To do this, we’ll steal a feature from the Racket language: let binding. The syntax for let
binding follows:

t := . . . | let x = t in t

(talk about free variables)

FV(let x == t1 in t2) = FV(t1) ∪ (FV(t2)/ {x })

(talk about substitution)

[v/x](let x == t1 in t2) = let x == [v/x]t1 in t2

[v/x1](let x2 == t1 in t2) = let x2 == [v/x1]t1 in [v/x1]t2 if x1 ̸= x2

elet
t1 ⇓ v1 [v1/x]t2 ⇓ v

let x = t1 in t2 ⇓ v

Now with let, we can write the example program from class:

let f == λx.if zero?(pred(x))
then x
else succ(x)

in f succ(succ(z))

Its derivation follows:

λx. . . . ⇓ λx. . . .

...
succ(succ(z)) ⇓ succ(succ(z))

...
zero?(pred(succ(succ(z)))) ⇓ false

...
succ(succ(succ(z))) ⇓ succ(succ(succ(z)))

if zero?(pred(succ(succ(z))))
then succ(succ(z))
else succ(succ(succ(z))) ⇓ succ(succ(succ(z)))

let f == λx.if zero?(pred(x))
then x
else succ(x)

in f succ(succ(z)) ⇓ succ(succ(succ(z)))
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19.7.1 Technically, you don’t need let
(talk about the translation)

(show the proof tree for left-left-lambda and compare)

(λx.t2) ⇓ (λx.t2) t1 ⇓ v1 [v1/x]t2 ⇓ v

(λx.t2) t1 ⇓ v

If we ignore the first premise, which is a closed derivation of (λx.t2) ⇓ (λx.t2), then we end up with exactly
the same premises as for let. That means that the resulting v is exactly the same value result.

What this tells us is that lambda abstraction can express the same computation as the let can. Mind
you, we may still want let in our language, because it more clearly expresses what you are intending to do,
but we now know that we can replace let with lambda and any immediate lambda application with a let8

19.8 Multi-parameter functions
Now that we can name functions, it would also be great if we could define functions that take more than
one parameter, like
app(f,x) = f(x)
app(times2,6)

In this contrived example, the app function takes two arguments, a function and an argument to that
function, and applies the function to the argument.

Our language only defines functions that have one parameter, so you might think that we need to somehow
extend our language with support for multi-parameter functions so we can write:

let app = λ(f, x).f x
in app(times2, 6)

It turns out that we don’t need to.9
We can already write such a program as follows:

let app = λf.λx.f x
in app times2 6

What have we done? We’ve replaced a function of two arguments, with a function of one argument
that returns another function of one argument, and we can give it two arguments by applying them to the
function separately. This technique for factoring function arguments is called currying.10

Here is a succinct example of currying in action:

(λx. . . . ) ⇓ (λx. . . . ) z ⇓ z λy.if true then z else y ⇓ λy.if true then z else y
(λx.λy.if true then x else y) z ⇓ λy.if true then z else y false ⇓ false

true ⇓ true
if true then z else false ⇓ z

(λx.λy.if true then x else y) z false ⇓ z

19.9 Recursion
When we implemented our interpreters for IMP and the Boolean Language, we had to write some recursive
procedures, which called themselves. Rather than consider a whole interpreter, let’s consider a simpler
program, though it may not do anything interesting:

let f = λx.λy.f x y
in f z z

8In fact, the Chez Scheme optimizing compiler uses this correspondence to simplify compilation and generalize optimization.
9However, we might want to, and have good reasons for it!

10Currying is named after the American logician Haskell Curry; his first and last name has been used as the name for two
separate programming languages with lambdas like we’ve studied here. Incidentally, currying was invented not by Curry, but
by the Russian logician Moses Schönfinkel.
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Based on our earlier understanding of let, we can translate this to the following program.

(λf.f z z) (λx.λy.f x y)
Now we should pretty easily see a problem with this program. The f in the first abstraction is bound,

but the second f is free! It doesn’t refer to any binding of f. We might have hoped that this f would refer
to the function that we were defining, but that’s not the case. We’ll have to find another way to define a
recursive function.

To do this, we introduce a more general but independent language feature that allows us to define any
kind of object that refers to itself, not just recursive functions. The feature is the rec construct, and its
syntax is as follows:

t := . . . | rec x.t

The variable x is bound by the rec form, so we extend the free-variable function as follows:

FV(rec x.t) = FV(t)/ {x }

Furthermore, we extend substitution so that it doesn’t interfere with the variable bound by rec:

[v/x]rec x.t = rec x.t

[v/x1]rec x2.t = rec x2.[v/x1]t if x1 ̸= x2

The idea behind rec is that any reference to the bound variable within its body really refers to the entire
expression, including the rec . This behavior is captured by the following big-step rule.

(erec)
t[rec x.t/x] ⇓ v

rec x.t ⇓ v

The rec form is evaluated by substituting itself into itself!. If you stop and think about it, this can easily
lead to never-ending self-substitution. For example, the term rec x.x cannot build a derivation because it
keeps repeating since x[(rec x.x)/x] = rec x.x:

...
rec x.x ⇓
rec x.x ⇓
rec x.x ⇓

On the other hand, if we never refer to the bound variable in the body, nothing interesting happens:

z ⇓ z
rec x.z ⇓ z

Things actually get interesting when we use the bound variable, but still produce something that computes.
Let’s look back at our earlier example with its free variable. If we bind it using rec , then we’ll ultimately
get a lambda abstraction that refers to itself, and that term itself evaluates to a value.

λx.λy.(rec f.λx.λy.f x y) x y ⇓ λx.λy.(rec f.λx.λy.f x y) x y
rec f.λx.λy.f x y ⇓ λx.λy.(rec f.λx.λy.f x y) x y

Notice how the rec self-substitutes only once, but the body of the lambda prevents further substitution until
the function is called. Typically it takes something like a lambda abstraction to suspend evaluation and keep
this from running forever.

Now with this in hand, we can finally render our addition program.

let add = rec me.λx.λy.
if zero?(x)
then y
else succ(me (pred(x)) y)

in add succ(z) z

We needed to use rec to make the function self-referential (which is why we give the recursive variable
binding the tongue-in-cheek name me. We could have given that variable the name add as well, if we wished.
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19.9.1 You don’t need rec either!
Now let’s consider our silly recursive program again:

rec f.λx.λy.f x y
Well, wouldn’t you know it: we can do this without rec too!
Here’s the trick: We want f to somehow refer to itself, but how do we do that? Step one is to make a

subtle change: make it so that instead of actually being itself, f is instead a function that takes itself and
then acts like the body of the function itself.11 We can write this as follows:

λf.λx.λy.(f f) x y

The only textual changes here are that the rec is replaced with a λ, and the reference to f is replaced with
(f f) which feeds f to itself. Now if we assume that f represents a function that takes itself and then acts like
the body of the function, then (f f) should act like the body of the function. The challenge now then is to
find something to pass in for f. The answer is f itself!

let fn = λf.λx.λy.(f f) x y in fn fn
or more explicitly:

(λf.λx.λy.(f f) x y) λf.λx.λy.(f f) x y
The result of evaluating this expression (its derivation is an exercise for the reader) is:

λx.λy.((λf.λx.λy.(f f) x y) λf.λx.λy.(f f) x y) x y
or more succinctly:

λx.λy.(FN FN) x y
where FN stands for the entire original function.

19.9.2 All you really need is procedures!
In this class, we’ve shown that a few features like multi-parameter functions, name binding, and recursion,
would be useful but technically aren’t needed to write programs that we would like to. Of course, for reasons
of clarity, we want those features in the language we program in, but we can understand them in simpler
terms.

It turns out, that we can take these simplifications much further, to an extreme! In fact, using lambda,
you can encode boolean expressions like true, false, and if, and you can encode numbers and arithmetic. The
language of λx.t, x, and t t is all you need to express any computation whatsoever. This is at the core of the
Turing-Church thesis, which asserts that all of computation can be expressed using either Turing machines
or lambda calculus, a variant of the little language of procedures that we are using. But few people have
much interest in programming with Turing machines all day, and the same goes with the lambda calculus.

11yeah, this giving me a headache too.
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