
128



Chapter 14

Reduction (or Contextual) Semantics

We learned about structural operational small-step semantics, which let us reason about the process of
computation when evaluating a value. These semantics capture program execution as small rewrites on bits
of a program, captured by a derivation tree that finds a single piece of work and does it. We can make
this idea of computation-as-local-rewrites more explicit which can make for concise specifications, and later
will be useful for defining the semantics of programming language features that implement complex control
operations like exceptions and continuations.

We introduce reduction semantics a.k.a. contextual semantics, which is yet another way to define the
−→ single-step relation.

14.1 Evaluation Contexts
We already learned about the idea of frames for abstracting the structural rules of a structural operational
semantics:

f ∈ Frame
f ::= if [] then t1 else t2 | □ and t | □ or t | □ xor t | v xor □ | not □

Each frame captures a single expression with a hole in it. Then our (sf) frame rule can repeatedly appeal to
frames to decompose a program and find an interesting computation.

Reduction semantics refactor the combination of frames and rules by pushing the combination of frames
into the syntax of evaluation contexts, leaving the need for only a single level of rule application to define
the single-step relation.

To capture the entire context in which a computation may happen, we define the set ECtxt of evaluation
contexts:

E ∈ ECtxt
E ::= [] | E[if □ then t else t] | E[□ and t] | E[□ or t] | E[□ xor t] | E[v xor □] | E[not □]

The idea here is that we can build up a context of computation by following the small-step structural rules
and replacing them with context frames. So for example, [] is the empty context. If we place

a if [] then true else false frame inside its hole, we get a new context; if we place a [] and true frame inside
of that context’s hole, then we get yet another context. Putting this all together, the evaluation context
[][if [] then true else false][[] and true] represents a program with a hole in it that looks like the expression
if ([] and true) then true else false.

Now bear in mind that the notation we use for evaluation contexts is meant to give you an intuition for
what things mean. The hole notation [] gives you a sense that you could stick something in there to either
make a bigger context or a whole program. That’s why we use E[..] as notation for sticking .. in E’s hole.
However, the use of brackets in this notation is not the same mathematical expression as the plug function
that we defined for frames. To fully appreciate this, it may be helpful to consider a desugared tree-like

129



130 CHAPTER 14. REDUCTION (OR CONTEXTUAL) SEMANTICS

representation of evaluation contexts, much like our early presentation of the Boolean language, where we
had atoms like if and we drew trees in parenthesized style. Here is a Tree-like presentation of evaluation
contexts:

E ::= hole | in-if(E, t1, t2) | in-and(E, t) | in-or(E, t) | in-xor-l(E, t) | in-xor-r(E, v) | in-not(E)

If we strip away the syntactic sugar and look at this structure, a few things become apparent. Notice that
there is only one explicit reference to a hole, in the top-level hole structure, but the tree structures like in-if
just carry an evaluation context. This is so because it is an implicit property of in-if that there is a hole in
its argument position. To make this clearer, suppose we also wanted to support evaluation in the consequent
position of an if expression. In structural operational semantics, that would correspond to adding a rule:

(s-if-conseq)
t2 −→ t′2

if t1 then t2 else t3 −→ if t1 then t′2 else t3

In our sugared evaluation contexts, this corresponds to adding a new case:

E ::= . . . | E[if t1 then □ else t3]

but in our tree-based representation it does as well!

E ::= . . . | in-if-conseq(E, t1, t3)

So we tell where the hole is in an if expression based on which context frame we are introducing: in-if or
in-if-conseq.

Finally, notice that the construction in-and(E, t) takes as one of its argument its surrounding context.
That’s how this corresponds to E[[] and t]. This is why this form of evaluation context is called inside-out
evaluation contexts because when you have a context E, you can immediately see the inner-most context
frame, and as you decompose it, you work your way out to the top of the program1.

The program-with-a-hole
(true xor []) xor false

is written using our tree-based representation,

[][true xor []][[] xor false],

which desugars to
in-xor-l(in-xor-r(hole, true), false).

14.2 Plugging
Now that we have a representation of a program with a hole in it, we need a way to talk about an entire
program. Intuitively, if I have a context E, and I plug its hole with a term t, then the result should be an
entire program. This is exactly the case, and we capture this by defining a plug function that works just like
the one for frames ·[·] : ECtxt × Term → Term as follows:

[][t] = t

(E[if [] then t1 else t2])[t] = E[if t then t1 else t2]

(E[[] and t1])[t] = E[t and t1]

(E[[] or t1])[t] = E[t or t1]
(E[[] xor t1])[t] = E[t xor t1]
(E[v1 xor []])[t] = E[v1 xor t]

(E[not []])[t] = E[not t]

1There is also a notion of outside-in context, but we defer its description for now



14.3. REDUCTION SEMANTICS 131

Notice that plug is defined by recursion on the structure of evaluation contexts. As a helpful exercise, you
should state the principle of recursion for evaluation contexts, and see if you can redefine plug in longhand
form.

Note that the plug function E[t] is technically a different thing from the context constructors like
E[succ([])]. It’s a bit unfortunate that the same notation is used for technically different things, but on
the other hand the two are intuitively similar, so this overloading is a bit nice but could be formally mis-
leading. To tell the constructor notation apart from the plug function, look at what is in the hole: if it looks
like a frame, then this is a constructor, but if it looks like a term, it’s a reference to the plug function.

14.3 Reduction Semantics
We now have all of the machinery needed to re-present the semantics of the Boolean and Arithmetic Language
as a reduction semantics. Keep in mind that both reduction semantics and structural operational semantics
are examples of small step semantics. Not only this, both proceed by defining a small-step relation −→,
and then define the evaluator in terms of −→∗, the reflexive transitive closure of −→. In fact, the resulting
relation −→ is exactly the same in both cases. So what changed? As usual, what changed was the structure
of the definition, which gives you a different way of looking at the same language, and also gives you different
principles for reasoning about programs and the language as a whole.

Here are the main pieces of the reduction semantics. We start with the syntax of the language:

t ∈ Term, v ∈ Value, r ∈ Redex
t ::= true | false | if t then t else t | t and t | t or t | t xor t
v ::= true | false
r ::= if v then t else t | v and t | v or t | v xor v | not v

Then we introduce the syntax of evaluation contexts, which replaces all of the structural rules from the
structural operational semantics:

E ∈ ECtxt
E ::= [] | E[if □ then t else t] | E[□ and t] | E[□ or t] | E[□ xor t] | E[v xor □] | E[not □]

Then we introduce the interesting computational rules, which are called notions of reduction (for no great
reason as far as I can tell). The notions of reduction form a binary relation ; ⊆ Redex × Term:

if true then t2 else t3 ; t2

if false then t2 else t3 ; t3

true and t2 ; t2

false and t2 ; false
true or t2 ; true

false or t2 ; t2

v xor v ; false
false xor true ; true
true xor false ; true

not true ; false
not false ; true

The notions of reduction only characterize the interesting steps of computation. We need to combine
them with the evaluation contexts if we are to describe computation over arbitrary programs. We now
define our single-step relation −→ in terms of our notions of reduction, our plug function, and our evaluation
contexts:

t1 ; t2
E[t1] −→ E[t2]



132 CHAPTER 14. REDUCTION (OR CONTEXTUAL) SEMANTICS

As with frame-style S.O.S., this definition uses the plug function as a sugared side-condition. We can rewrite
the above inference rule to better indicate what components of it are side-conditions and what components
are part of the rule:

ta −→ tb
where ta = E[t1], tb = E[t2], and t1 ; t2.

In fact, since there are no premises, this is a rather flat inductive definition (to see why I say so, write down
the principle of induction for this definition). We could also write it down as in set comprehension notation
and add quantifiers to make it a little more precise:

−→ = { ⟨ta, tb⟩ ⊆ Term × Term | ∃E ∈ ECtxt. ∃t1 ∈ Term. ∃t2 ∈ Term. ta = E[t1] ∧ tb = E[t2] ∧ t1 ; t2 } .

This definition is equivalent to the rule-based definition above.
To make these concepts clearer, consider the program:

if zero?(pred(succ(z))) then false else true.

Under reduction semantics, we can simply underline the term that is subject to the notion of reduction at
each step.

if (if (true or (true xor true)) then false else true) then false else true
−→ if (if true then false else true) then false else true
−→ if false then false else true
−→ true

Under structural operational semantics, each of these steps requires a proof tree. Under reduction semantics,
on the other hand, each step requires an evaluation context E, and a notion of reduction t1 ; t2.

14.4 Discussion
One nice feature of reduction semantics is that they are very compact: provide a syntax for evaluation
contexts, a set of notions of reduction, and you can always assume the definition of −→. It’s not much more
compact than frame-style S.O.S., but the former is more common in the literature.

However, we’ll find that reduction semantics make some language features easier to define, or clearer to
understand. It’s also the case that this style of definition is more closely related to how you might implement
such a language than structural operational semantics.

The downside is that we lose our ability to easily prove properties of a reduction step by induction, since
the S.O.S. rules were our source of induction principles (induction over the structure of the context is often
not helpful). However, if a reduction semantics is well structured, then we can reverse-engineer a structural
operational semantics from it if we need one to make proving properties of the langauge easier.



274 CHAPTER 14. REDUCTION (OR CONTEXTUAL) SEMANTICS



Bibliography

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic,
volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.7, pages 739–782. North-
Holland, 1977.

J. Avigad. Reliability of mathematical inference. Synthese, 2020. doi: 10.1007/s11229-019-02524-y. https:
//doi.org/10.1007/s11229-019-02524-y.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New York, NY, USA,
1998. ISBN 0-521-45520-0.

J. Bagaria. Set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. The Metaphysics Re-
search Lab, winter 2014 edition, 2014. URL http://plato.stanford.edu/archives/win2014/entries/
set-theory/.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution
techniques. ACM Comput. Surv., 51(3):50:1–50:39, May 2018. ISSN 0360-0300. doi: 10.1145/3182657.
URL http://doi.acm.org/10.1145/3182657.

H. P. Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in logic and the
foundations of mathematics. North-Holland, 1985. ISBN 978-0-444-86748-3.

A. Bauer. Proof of negation and proof by contradiction. Mathematics and Computation Blog, March 2010.
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/.

L. Crosilla. Set Theory: Constructive and Intuitionistic ZF. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2020 edition, 2020.

M. Felleisen and D. P. Friedman. A syntactic theory of sequential state. Theoretical Computer Science,
69(3):243–287, 1989. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(89)90069-8. URL http:
//www.sciencedirect.com/science/article/pii/0304397589900698.

M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. MIT Press, 1st edition,
2009.

J. Ferreirós. The early development of set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019. URL https:
//plato.stanford.edu/archives/sum2019/entries/settheory-early/.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management
in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi:
10.1145/512529.512563. URL http://doi.acm.org/10.1145/512529.512563.

P. R. Halmos. Naive Set Theory. Springer-Verlag, first edition, Jan. 1960. ISBN 0387900926.
A classic introductory textbook on set theory.

P. R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, New York,
NY, USA, 2012. URL http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf.

275

https://doi.org/10.1007/s11229-019-02524-y
https://doi.org/10.1007/s11229-019-02524-y
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://doi.acm.org/10.1145/3182657
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
http://www.sciencedirect.com/science/article/pii/0304397589900698
http://www.sciencedirect.com/science/article/pii/0304397589900698
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
http://doi.acm.org/10.1145/512529.512563
http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf


276 BIBLIOGRAPHY

D. J. Howe. Proving congruence of bisimulation in functional programming languages. Inf. Comput., 124
(2):103–112, Feb. 1996. ISSN 0890-5401.

G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer Sciences on
STACS 87, pages 22–39, London, UK, UK, 1987. Springer-Verlag.

R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen, December 2015.
URL https://robbertkrebbers.nl/thesis.html.

C. Kuratowski. Sur la notion de l’ordre dans la théorie des ensembles. Fundamenta Mathematicae, 2(1):
161–171, 1921. doi: 10.4064/fm-2-1-161-171. https://web.archive.org/web/20190429103938/http:
//matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf.

P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964. doi: 10.1093/
comjnl/6.4.308. URL https://doi.org/10.1093/comjnl/6.4.308.

X. Leroy and H. Grall. Coinductive big-step operational semantics. Inf. Comput., 207(2):284–304, Feb. 2009.
ISSN 0890-5401.

P. Maddy. Believing the axioms. I. The Journal of Symbolic Logic, 53(02):481–511, 1988.
An interesting (though complicated) analysis of why set theorists believe in their axioms.

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I. Com-
mun. ACM, 3(4):184–195, 1960.

J. H. J. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts Institute
of Technology, Feb. 1969. URL http://hdl.handle.net/1721.1/64850.

A. M. Pitts. Nominal sets: Names and symmetry in computer science. Cambridge University Press, 2013.

G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60-61:3–15, 2004a.
doi: 10.1016/j.jlap.2004.03.009. URL http://dx.doi.org/10.1016/j.jlap.2004.03.009.

G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139,
2004b.

B. Popik. ”pull yourself up by your bootstraps”. Weblog entry, September 2012. https://www.barrypopik.
com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/.

E. Reck and G. Schiemer. Structuralism in the Philosophy of Mathematics. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2020 edition,
2020.

D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst., 31(4):
15:1–15:41, May 2009. ISSN 0164-0925.

W. Sieg and D. Schlimm. Dedekind’s analysis of number: Systems and axioms. Synthese, 147(1):121–170,
Oct 2005.

J. Spolsky. The law of leaky abstractions. Joel on Software Blog, November 2002. https://www.
joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.

G. L. Steele. Debunking the “expensive procedure call”” myth or, procedure call implementations consid-
ered harmful or, lamdba: The ultimate goto. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1977. URL http://dspace.mit.edu/handle/1721.1/5753.

S. Stenlund. Descriptions in intuitionistic logic. In S. Kanger, editor, Proceedings of the Third Scandinavian
Logic Symposium, volume 82 of Studies in Logic and the Foundations of Mathematics, pages 197 – 212.
Elsevier, 1975. URL http://www.sciencedirect.com/science/article/pii/S0049237X08707328.

https://robbertkrebbers.nl/thesis.html
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://doi.org/10.1093/comjnl/6.4.308
http://hdl.handle.net/1721.1/64850
http://dx.doi.org/10.1016/j.jlap.2004.03.009
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://dspace.mit.edu/handle/1721.1/5753
http://www.sciencedirect.com/science/article/pii/S0049237X08707328


BIBLIOGRAPHY 277

M. Tiles. Book Review: Stephen Pollard. Philosophical Introduction to Set Theory. Notre Dame Journal of
Formal Logic, 32(1):161–166, 1990.
A brief introduction to the philosophical issues underlying set theory as a foundation for mathematics.

C. Urban and M. Norrish. A formal treatment of the Barendregt variable convention in rule inductions. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable
Binding, MERLIN ’05, page 25–32, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595930728. doi: 10.1145/1088454.1088458. URL https://doi.org/10.1145/1088454.1088458.

C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule inductions. In Proceedings
of the 21st International Conference on Automated Deduction: Automated Deduction, CADE-21, page 35–
50, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 9783540735946. doi: 10.1007/978-3-540-73595-3_4.
URL https://doi.org/10.1007/978-3-540-73595-3_4.

D. van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994. ISBN 978-3-540-57839-0.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput., 115(1):38–94, Nov.
1994.

B. Zimmer. figurative ”bootstraps”. email to linguistlist mailing list, August 2005. http://listserv.
linguistlist.org/pipermail/ads-l/2005-August/052756.html.

https://doi.org/10.1145/1088454.1088458
https://doi.org/10.1007/978-3-540-73595-3_4
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html

	Reduction (or Contextual) Semantics
	Evaluation Contexts
	Plugging
	Reduction Semantics
	Discussion


