
120

Chapter 13

Structural Operational Semantics

So far we have been defining the semantics of our programming languages using big-step semantics. This
approach has some very nice properties:

1. Compared to using recursive functions, we have more flexibility for modelling languages with programs
whose semantics cannot be simply described by induction over the structure of the programs, or which
produce nondeterministic results.

2. The inversion lemmas on the inductive rules set up the skeleton of an interpreter for the language. If you
are already comfortable with writing interpreters, you can just about read the big-step rules (bottom-
up) as though they were the interpreter written in a compact and stylized notation. Technically the
interpreter embodies the derivation search process, but many big-step semantics immediately suggest
a proof search strategy.

3. Compared to an actual implementation, we can use big-step derivations to reason about particular
programs (e.g. what does this program evaluate to), and also about classes of programs (e.g. does a
certain program transformation always produce equivalent programs?).

However, big-step semantics have some shortcomings. In particular, if you consider the big-step relation
⇓, it’s really just a set of program/result pairs, and tells us nothing about the process of computation.
Although the derivations allude to a process, they have no intrinsic notion of the sequence in which steps of
computation might happen.

In this lecture we introduce a particular kind of small-step semantics called structural operational se-
mantics as our way of explicitly modelling steps of computation [Plotkin, 2004b].

13.1 The big picture
Let’s consider again the Boolean Language.

t ∈ Term, v ∈ Value
t ::= true | false | if t then t else t
v ::= true | false

To define its semantics, we introduced a big-step relation ⇓ ⊆ Term × Value, and then defined our
evaluator equationally as a total function in terms of it.

evalbs : Term → Value
evalbs(t) = v iff t ⇓ v.

Our goal here is to define the same evaluator eval, but do it in a way that lets us reason about steps of
computation. We do this as follows:

121

122 CHAPTER 13. STRUCTURAL OPERATIONAL SEMANTICS

1. Define a relation −→ ⊆ Term × Term that represents a single step of computation. It’s up to us to
determine what counts as a single step of computation, and our choice may vary depending on our
goals.

2. Use this relation to define a multi-step relation −→∗ ⊆ Term × Term, which represents taking 0 or
more steps of computation.

3. Observe that Value ⊆ Term in this semantics, so we can consider programs evaluating to completion
as instances of t −→∗ v, that is, Terms that multi-step all the way to a Value. This gives us a new
definition of our evaluator.

evalss : Term → Value
evalss(t) = v iff t −→∗ v.

Now one of our criteria for success here is to be sure that we have indeed defined the same semantics
(i.e., evaluator) for our language, which we are obligated to establish.

Proposition 54. evalbs = evalss.

To understand the meaning of the above statement, remember that a function is just a kind of binary
relation, and a binary relation in turn is just a set of pairs. So we have to prove that both sets have exactly
the same pairs in them, i.e.

∀ ⟨t, v⟩ ∈ Term × Value. ⟨t, v⟩ ∈ evalbs iff ⟨t, v⟩ ∈ evalss.

13.2 Small-step Semantics of BA
So to develop our small-step semantics, we need to establish a notion of what counts as a “small-step”. We
can look to our big-step semantics for some guidance.

First, consider the following big-step derivation:

true ⇓ true

Shall we count that as a step of computation? Maybe not: it doesn’t seem like this big-step did anything
interesting. Nothing happened. On the other hand, in the derivation:

true ⇓ true false ⇓ false
if true then false else true ⇓ false

Something interesting happens: the if operator examines it’s predicate and decides that it is indeed true,
and yields the consequent false in response. Again, the evaluation of true is not very interesting, and neither
is the evaluation of false, because they are both values so eValuate to themselves.

Taking these ideas together, we will claim that the above computation counts as a single step, i.e.

if true then false else true −→ false.

Let’s generalize this step to account for arbitrary consequent and alternative expressions and codify it as
a rule.

if true then t2 else t3 −→ t2
(sif-t)

.

Now consider this more complicated evaluation

true ⇓ true false ⇓ false
if true then false else true ⇓ false true ⇓ true

if (if true then false else true) then false else true ⇓ true

This computation includes the previous computation within the predicate position of the outer if expression,
but does more, so we would expect this evaluation to count as multiple steps of computation. If we consider

13.2. SMALL-STEP SEMANTICS OF BA 123

if true then false else true to be computed in one step, then in considering the whole program, the outer if
expression is considered to have taken a step if its predicate position has taken a step. So we want it to be
true that

if (if true then false else true) then false else true −→ if false then false else true
We can generalize this to a rule about single-stepping a conditional expression where the predicate can

take a step:
t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3
(sif)

After the first step, the resulting if itself can be resolved if its predicate is false:

if false then false else true −→ true

We generalize this as well to a new stepping rule:

if false then t2 else t3 −→ t3
(sif-f)

Since the Boolean language is tiny, these three rules suffice for all programs in the language. Here are
the rules, collected, for the single-step relation:

−→ ⊆ Term × Term

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(sif)

if true then t2 else t3 −→ t2
(sif-t) if false then t2 else t3 −→ t3

(sif-f)

And here are the two derivation trees corresponding to the two steps of single-step reduction:

if true then false else true −→ false (sif-t)

if (if true then false else true) then false else true −→ if false then false else true (sif)

if false then false else true −→ true (sif-f)

When simply describing the single-step evaluation of a program, we may write the terms in sequence
without proofs:

if (if true then false else true) then false else true
−→ if false then false else true
−→ true

That is to say: our program evaluates in two steps according to our model.
Now that we have our notion of “single steps of computation”, we need to tie them together into “zero

or more steps”. We define the −→∗ multi-step relation, also using inductive rules: −→∗ ⊆ Term × Term

t1 −→ t2
t1 −→∗ t2

(incl)
t −→∗ t

(refl) t1 −→∗ t2 t2 −→∗ t3
t1 −→∗ t3

(trans)

The (incl) rule, short for “include single-steps” just says that a single step of computation counts as a
multi-step. Note that the premise is really a side-condition on the rule, so we could rewrite it as follows to
emphasize that:

t1 −→∗ t2
(incl) t1 −→ t2.

This distinction between side-conditions and premises is significant when it’s time to explicitly spell out the
principle of induction that you can derive from these rules.

124 CHAPTER 13. STRUCTURAL OPERATIONAL SEMANTICS

The (refl) rule, short for “reflexive” says that a vacuous computation, which produces the same output as
its input, also counts as a multi-step. This case is used to account for programs that are themselves values,
and so require no further computation: they evaluate to themselves.

Finally, the (trans) rule, short for “transitive”, simply says that you can paste together two multi-steps
that meet at some common term t2 to produce one aggregate multi-step.

Generally speaking, a binary relation R ⊆ A×A is reflexive if a R a for all a ∈ A. The forward reasoning
principle induced by the (refl) rule explicitly asserts that multi-step is reflexive. A binary relation is transitive
if a1Ra2 and a2Ra3 implies a1Ra3. The forward reasoning principle induced by the (trans) rule explicitly
asserts that multi-step is transitive.

These three rules together imply that −→∗ is what is called the reflexive-transitive closure of −→: the
“smallest” binary relation on Terms that contains −→ and is also reflexive and transitive (this could be
stated more formally and proven).

A typically paper presentation of a structural operational semantics does not bother to explicitly present
the definition of −→∗, because it is always essentially the same relation: the reflexive-transitive closure of
whatever single-step relation −→ is presented. However the principles used for reasoning about structural
operational semantics can vary.

13.3 Many multi-step derivations
As we’ve seen a number of times so far, we can use derivations to prove that certain pairs of terms are in
the multi-step relation. But this relation has a somewhat different property from others we have seen. To
see this, consider the following derivation that true −→∗ true:

true −→∗ true (refl)

For most relations we have defined before, there was only one derivation of any given judgment, but not so
with multi-step. Here’s another derivation of true −→∗ true.

true −→∗ true (refl) true −→∗ true (refl)

true −→∗ true (trans)

and another one:

true −→∗ true (refl) true −→∗ true (refl)

true −→∗ true (trans) true −→∗ true (refl)

true −→∗ true (trans)

You might see where this is going. There are an infinite number of derivations of true −→∗ true! As you
imagine, by playing a similar game, we can tell that there are an infinite number of derivations of any member
of the multi-step relation. This may seem disconcerting, especially since most of them are annoying. But
it’s useful to get used to the idea that in general an inductive definition can provide many different ways of
deducing the same fact.

However, inductive definitions like the ones we have seen so far have a special place.

Definition 7 (Deterministic Inductive Definition). Let R be some set of rule instances. Then R describes
a deterministic inductive definition if each rule instance in R has a distinct conclusion.

If some set has a deterministic inductive definition, then there will be exactly one derivation for each
element of the defined set. If you go back and look at our previous inductive definitions, for terms, big-
stepping, and single-stepping, you will find that up until now, each has been deterministic. Each deterministic
inductive definition leads to a Principle of Function Definition by Recursion for that particular set. So far
we have only given such principles for abstract syntax like Term, but that is because they are the only sets
for which it was convenient to use this principle to define functions.

Since our definition of multi-step is non-deterministic, we could not as easily describe a principle of
recursion for it. However we can provide a different deterministic definition for multi-step:

13.3. MANY MULTI-STEP DERIVATIONS 125

−→ ⊆ Term × Term

t −→∗ t
(zero) t2 −→∗ t3

t1 −→∗ t3
(plus-one) t1 −→ t2.

The (zero) rule, as in “zero steps” is exactly the same as the (refl) rule from the earlier definition. The
(plus-one) rule, as in “plus one step”, is a hybrid between (incl) and (trans).

This definition is equivalent to the earlier one. Proving that it is reflexive (i.e. satisfies the (refl) forward
reasoning principle) amounts to just proving the (zero) forward reasoning principle. Proving that it is
transitive, on the other hand, requires a substantive proof by induction, whereas it was a simple forward
reasoning principle for (trans) in the other definition. This means that our earlier definition makes it easy
to splice together two compatible multi-steps. In the other direction, it takes only two forward reasoning
steps to prove that the original definition satisfies the forward reasoning principle for (plus-one). Ultimately
we could use these admissibility propositions to prove that these two definitions in fact define the same set.

On the other hand, proving the proposition ∀v ∈ Value. true −→∗ v ⇒ v = true involves only backward
reasoning for −→∗ and −→, especially that true does not single-step: ∀t ∈ Term. true −̸→ t. To prove
the same for the first definition, we must resort to proof by induction, because there are infinitely many
derivations of true −→∗ v for that definition, and we must consider all infinity of them.

The original definition of multi-step easily demonstrates that the relation is both reflexive and transitive.
However the cost is that the definition is non-deterministic, which can affect other reasoning principles, and
makes it more involved to define functions over multi-steps. On the other hand, our new definition has
exactly one derivation of true −→∗ true, and since −→ is a deterministic relation, in the sense that t −→ t1
and t −→ t2 implies t1 = t2, it can be shown that every derivation of t1 −→∗ t2 has one derivation.1 Since
−→ is deterministic, there can only be at most one string of steps (i.e. “path”) that goes from any term
t1 to tn. Thus this definition of −→∗ is a deterministic inductive definition, so we can state a Principle of
Definition by Recursion for multi-stepping according to the new definition.

Proposition 55. Let S be a set, Hzero : Term → S be a function and Hplus−one : Term × Term × S → S
be a function. Then there is a unique function F : (−→∗) → S such that

1. F (t, t) = Hzero(t); and

2. F (t1, t3) = Hplus−one(t1, t2, F (t2, t3)) if t1 −→ t2.

This recursion principle looks a bit different than the one we defined for Term, especially because the
structure of derivations does not match the syntactic structure of pairs of Term that multi-step. In contrast,
our derivations of r ∈ Term mirror the structure of the terms that they define. So here we can see that
the structure of functions follows the structure of derivations, not necessarily the structure of the judgments
that the derivations justify.

The most natural first example of a function defined using this principle is one that counts the number
of steps involved in a multi-step relation.

steps : (−→∗) → N
steps(t, t) = 0

steps(t1, t3) = 1 + steps(t2, t3) if t1 −→ t2

From this function we can show that

steps(if (if true then false else true) then false else true, true) = 2.

A second function defined over multi-step collects the terms that arise during multi-stepping.

collect : (−→∗) → P(Term)

collect(t, t) = { t }
collect(t1, t3) = { t1 } ∪ collect(t2, t3) if t1 −→ t2

1it’s inductive definition is also deterministic, but that’s a different property

126 CHAPTER 13. STRUCTURAL OPERATIONAL SEMANTICS

From this function we can show that

collect(if (if true then false else true) then false else true, true) = if (if true then false else true) then false else true,
if false then false else true,
true

 .

Exercise 4. What are the components S, Hzero, and Hplus−one that correspond to these definitions?

13.4 Frames: a simplifying abstraction
In our definition of the single-step relation, there seem to be two kinds of rules. Rules like (sif) don’t really
capture interesting computation: they just facilitate computation over some small term inside of some larger
terms. In particular, the (sif) in general serves just to find the spot in the program where an interesting
computation will happen:

(sif)
t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3

It basically says that if we can do interesting work in the predicate position of the if expression, then do
so. A larger programming language, with more features, would have more of these “structural” rules, which
describe those subexpressions of a term that can be stepped.

The really interesting computations happen in those rules that have no premises, namely (sif-t) and
(sif-f).

To make the definition of larger languages a bit more concise, we distinguish between the interesting
and uninteresting rules. In particular, we keep the rules that perform interesting computations, like (sif-t),
but we replace the myriad of structural rules that simply point to places in the program with a syntax for
representing “position in a program”. We call this representation a frame, which is a reference to the idea of
a “stack frame” that shows up in compilers literature.

Consider the (sif) rule again. For all practical purposes, it says “look at the predicate position of the if.”
We can capture that more explicitly with a bit of notation:

if [] then t1 else t2

We’ve marked the predicate position with a hole, and what we have is not a program anymore, but a simple
expression with a hole in it, which we’ll call a context frame, because what it is doing is describing the
context around a place where an interesting computation might happen.

However, we want to be able to build up these contexts for every possible position in a program that
might be the next place where a step of computation happens. We can describe all of these places simply
by looking at the uninteresting rules in the structural operational semantics, which we’ll call the structural
rules, and figure out what the corresponding context frame is.

For instance, suppose we added a short-circuiting conjunction to the language

t ::= . . . | t and t

And gave it some evaluation rules:

t1 −→ t1
t1 and t2 −→ t′1 and t2

(sand) false and t2 −→ false (sand-f) true and t2 −→ t2
(sand-t)

Then we could represent the (sand) rule using the frame [] and t which says “you can evaluate the first
argument.” This leads us to the following correspondence between structural rules and frames.

rule context frame
(sif) if [] then t1 else t2

(sand) [] and t

13.4. FRAMES: A SIMPLIFYING ABSTRACTION 127

This leads us to define the set of frames:

f ∈ Frame
f ::= if [] then t1 else t2 | □ and t

Plugging Now that we have a representation of an expression with a hole in it, we need a way to plug that
hole. Intuitively, if I have a frame f , and I plug its hole with a term t, then the result should be a full-fledged
term. We formalize this by introducing a function for plugging, whose fancy notation is f [t], which stands
for plugging the term t into f ’s hole.

·[·] : Frame × Term → Term
(if [] then t1 else t2)[t] = if t then t1 else t2

([] and t2)[t] = t and t2

Armed with this function, we can replace all of the structural rules from our semantics with a single rule:

t −→ t′

f [t] −→ f [t′] (sf)

Note that this rule makes explicit use of the plug function as part of its definition. We often use functions
in the definition of rules, and they should be viewed as side conditions on their results. For example, a
desugared version of this rule is as follows:

(sf)
t′1 −→ t′2
t1 −→ t2

∃f ∈ Frame. t1 = f [t′1] ∧ t2 = f [t′2]

So you see, the rule is constrained by a side condition that ensures that t′1 is a subpart of t1, t′2 is a subpart
of t2 and t1 and t2 are related by a common frame.

Typically a frame-style structural operational semantics does not bother to explicitly define the plug
function since it is trivial and always essentially the same. For this reason, this presentation can be quite
concise.

274 CHAPTER 13. STRUCTURAL OPERATIONAL SEMANTICS

Bibliography

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic,
volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.7, pages 739–782. North-
Holland, 1977.

J. Avigad. Reliability of mathematical inference. Synthese, 2020. doi: 10.1007/s11229-019-02524-y. https:
//doi.org/10.1007/s11229-019-02524-y.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New York, NY, USA,
1998. ISBN 0-521-45520-0.

J. Bagaria. Set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. The Metaphysics Re-
search Lab, winter 2014 edition, 2014. URL http://plato.stanford.edu/archives/win2014/entries/
set-theory/.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution
techniques. ACM Comput. Surv., 51(3):50:1–50:39, May 2018. ISSN 0360-0300. doi: 10.1145/3182657.
URL http://doi.acm.org/10.1145/3182657.

H. P. Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in logic and the
foundations of mathematics. North-Holland, 1985. ISBN 978-0-444-86748-3.

A. Bauer. Proof of negation and proof by contradiction. Mathematics and Computation Blog, March 2010.
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/.

L. Crosilla. Set Theory: Constructive and Intuitionistic ZF. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2020 edition, 2020.

M. Felleisen and D. P. Friedman. A syntactic theory of sequential state. Theoretical Computer Science,
69(3):243–287, 1989. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(89)90069-8. URL http:
//www.sciencedirect.com/science/article/pii/0304397589900698.

M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. MIT Press, 1st edition,
2009.

J. Ferreirós. The early development of set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019. URL https:
//plato.stanford.edu/archives/sum2019/entries/settheory-early/.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management
in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi:
10.1145/512529.512563. URL http://doi.acm.org/10.1145/512529.512563.

P. R. Halmos. Naive Set Theory. Springer-Verlag, first edition, Jan. 1960. ISBN 0387900926.
A classic introductory textbook on set theory.

P. R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, New York,
NY, USA, 2012. URL http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf.

275

https://doi.org/10.1007/s11229-019-02524-y
https://doi.org/10.1007/s11229-019-02524-y
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://doi.acm.org/10.1145/3182657
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
http://www.sciencedirect.com/science/article/pii/0304397589900698
http://www.sciencedirect.com/science/article/pii/0304397589900698
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
http://doi.acm.org/10.1145/512529.512563
http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf

276 BIBLIOGRAPHY

D. J. Howe. Proving congruence of bisimulation in functional programming languages. Inf. Comput., 124
(2):103–112, Feb. 1996. ISSN 0890-5401.

G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer Sciences on
STACS 87, pages 22–39, London, UK, UK, 1987. Springer-Verlag.

R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen, December 2015.
URL https://robbertkrebbers.nl/thesis.html.

C. Kuratowski. Sur la notion de l’ordre dans la théorie des ensembles. Fundamenta Mathematicae, 2(1):
161–171, 1921. doi: 10.4064/fm-2-1-161-171. https://web.archive.org/web/20190429103938/http:
//matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf.

P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964. doi: 10.1093/
comjnl/6.4.308. URL https://doi.org/10.1093/comjnl/6.4.308.

X. Leroy and H. Grall. Coinductive big-step operational semantics. Inf. Comput., 207(2):284–304, Feb. 2009.
ISSN 0890-5401.

P. Maddy. Believing the axioms. I. The Journal of Symbolic Logic, 53(02):481–511, 1988.
An interesting (though complicated) analysis of why set theorists believe in their axioms.

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I. Com-
mun. ACM, 3(4):184–195, 1960.

J. H. J. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts Institute
of Technology, Feb. 1969. URL http://hdl.handle.net/1721.1/64850.

A. M. Pitts. Nominal sets: Names and symmetry in computer science. Cambridge University Press, 2013.

G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60-61:3–15, 2004a.
doi: 10.1016/j.jlap.2004.03.009. URL http://dx.doi.org/10.1016/j.jlap.2004.03.009.

G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139,
2004b.

B. Popik. ”pull yourself up by your bootstraps”. Weblog entry, September 2012. https://www.barrypopik.
com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/.

E. Reck and G. Schiemer. Structuralism in the Philosophy of Mathematics. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2020 edition,
2020.

D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst., 31(4):
15:1–15:41, May 2009. ISSN 0164-0925.

W. Sieg and D. Schlimm. Dedekind’s analysis of number: Systems and axioms. Synthese, 147(1):121–170,
Oct 2005.

J. Spolsky. The law of leaky abstractions. Joel on Software Blog, November 2002. https://www.
joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.

G. L. Steele. Debunking the “expensive procedure call”” myth or, procedure call implementations consid-
ered harmful or, lamdba: The ultimate goto. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1977. URL http://dspace.mit.edu/handle/1721.1/5753.

S. Stenlund. Descriptions in intuitionistic logic. In S. Kanger, editor, Proceedings of the Third Scandinavian
Logic Symposium, volume 82 of Studies in Logic and the Foundations of Mathematics, pages 197 – 212.
Elsevier, 1975. URL http://www.sciencedirect.com/science/article/pii/S0049237X08707328.

https://robbertkrebbers.nl/thesis.html
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://doi.org/10.1093/comjnl/6.4.308
http://hdl.handle.net/1721.1/64850
http://dx.doi.org/10.1016/j.jlap.2004.03.009
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://dspace.mit.edu/handle/1721.1/5753
http://www.sciencedirect.com/science/article/pii/S0049237X08707328

BIBLIOGRAPHY 277

M. Tiles. Book Review: Stephen Pollard. Philosophical Introduction to Set Theory. Notre Dame Journal of
Formal Logic, 32(1):161–166, 1990.
A brief introduction to the philosophical issues underlying set theory as a foundation for mathematics.

C. Urban and M. Norrish. A formal treatment of the Barendregt variable convention in rule inductions. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable
Binding, MERLIN ’05, page 25–32, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595930728. doi: 10.1145/1088454.1088458. URL https://doi.org/10.1145/1088454.1088458.

C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule inductions. In Proceedings
of the 21st International Conference on Automated Deduction: Automated Deduction, CADE-21, page 35–
50, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 9783540735946. doi: 10.1007/978-3-540-73595-3_4.
URL https://doi.org/10.1007/978-3-540-73595-3_4.

D. van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994. ISBN 978-3-540-57839-0.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput., 115(1):38–94, Nov.
1994.

B. Zimmer. figurative ”bootstraps”. email to linguistlist mailing list, August 2005. http://listserv.
linguistlist.org/pipermail/ads-l/2005-August/052756.html.

https://doi.org/10.1145/1088454.1088458
https://doi.org/10.1007/978-3-540-73595-3_4
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html

	Structural Operational Semantics
	The big picture
	Small-step Semantics of BA
	Many multi-step derivations
	Frames: a simplifying abstraction

