
Chapter 1

Modeling Programming Languages
Formally

This course focuses on the design and analysis of programming languages. One of our key tools for this
endeavor will be mathematics, though not in the sense of arithmetic or calculus, like you see in high school
or early university studies. Instead we dive deeper into the foundations of mathematics: we appeal to
logic and set theory. These topics often appear in undergraduate discrete mathematics courses or theory of
computation courses for computer science students. Don’t worry too much if you haven’t taken one of these
courses, we’ll build up the necessary material as we go along. In fact, if you have been exposed to logic and
set theory before, I recommend that you pay close attention, because our approach is likely be quite different
than you were previously taught.

We model programs as mathematical objects in set theory, and programming languages as sets of pro-
grams and their meanings. In these notes, we start small: ridiculously small. Our first programming
language, though basic, gives us an opportunity to introduce a substantial number of important concepts.
We’ll build on these concepts for the remainder of our journey.

A side-note: below, a variety of mathematical machinery (e.g., sets, propositions, and proofs) is intro-
duced without much explanation. Don’t be frightened: we cover these in more depth as we proceed. I
expect that readers come from a variety of backgrounds, so we take the time to explain concepts in detail
and get you up to speed. My goal is to expose you to the material early and then work to improve your
understanding through explanation and exercises.

1.1 How Do We Model Programming Languages Mathematically?
Consider the following transcript of interacting with an extremely simplistic programming language, which
we’ll call Vapid version 0.0

Vapid Programming Language v0.0

> 1
2
> 2
1

This language has only two programs: 1, and 2. The next version of this language, Vapid version 1.0, adds
a new program, 3:

> 3

However this program doesn’t ever produce an answer: it just hangs. This is different from trying to run,
say 4:

1



2 CHAPTER 1. MODELING PROGRAMMING LANGUAGES FORMALLY

> 4
Error: bad program.

While 3 is a well-formed program with defined behaviour—nontermination—4 is not a program whatsoever,
so has no defined behaviour.

Our last version of Vapid, version 2.0, adds one last program, 5 (we skip 4 because that’s a terrible name
for a program, amiright? ,):

>5
Exception

Wait a second! If I try to run 4 I get that it’s a bad program, but if I run 5 I get an exception: what’s
the difference?!? Good question! It’s hard to tell the difference (except for the message) in an interpreter,
because it simultaneously:

• decides if the program is well-formed (i.e., a legal, meaningful, program); and

• evaluates it to produce some observable result.

We can more easily see the difference between these two behaviours if we write a compiler for Vapid 2.0.
We’ll call it vcc. The relevant interactions then look like this:

home > vcc -o one one.vpd
home > ./one
2
home > vcc -o two two.vpd
home > ./two
1
home > vcc -o three three.vpd
home > ./three
^C
home > vcc -o four four.vpd
four.vpd:1:1: error: bad program
4
home > ./four
-bash: ./four: No such file or directory
home > vcc -o five five.vpd
home > ./five
Exception

The vcc Vapid compiler separates checking for well-formedness from execution. Here we see that every
program in Vapid 2.0 compiles successfully and runs. However, the purported program 4 stored in four.vpd
does not compile because it is not meaningful: that is to say, it’s not a well-formed Vapid program. The
program 5, on the other hand compiles fine, but it throws an exception. That’s it’s meaning!

Hopefully these examples, even in such a vapid context, can give you an idea of some of the subtleties that
arise (and that you as a PL theorist must keep in mind) when building and analyzing models of programming
languages, whether you are designing a whole new language, or analyzing an existing language that appears
in the wild (and there are plenty of untamed languages out there!).

1.1.1 Semantics for the Vapids
These variations on the Vapid language provide an opportunity introduce the basic mathematical framework
for specifying languages.1 We specify these languages in three parts:

1Make no mistake about it: two “different versions of the same language” are not technically the same, though they are
likely related. In general, precisely characterizing the relationships between them can be a challenge.



1.1. HOW DO WE MODEL PROGRAMMING LANGUAGES MATHEMATICALLY? 3

1. A set of legal (i.e. well-formed) programs;

2. A set of possible observable results;

3. A mapping from programs to observable results, which we’ll call its evaluator (i.e. the function that
relates each program to its VALUe).

Let’s dive right in! Here is a definition of the Vapid 0.0 language in this framework:

Pgm = { 1, 2 }
Obs = { 1, 2 }
eval : Pgm → Obs
eval(1) = 2
eval(2) = 1

The entire collection, or set, of programs includes exactly 1 and 2 and nothing more. To express that, we
give an extensional definition of the set, where we just state the extension—fancy word for “members”—of
the set. In particular, the expression { 1, 2 } describes our set of interest as “the unique set S that has the
property that the set x is an element of S if and only if x is 1 or x is 2.” Though you’ve likely seen this
notation before, we’ll have occasion to discuss this further when we study the foundations of set theory.

Vapidly enough, the set of observables Obs is identical to the set of programs Pgm, are specified using
the same expression { 1, 2 }. For the sake of the humans who will read this model, we introduce the names
Obs and Pgm as synonyms for { 1, 2 }.2 The two “equations” Pgm = { 1, 2 }, Obs = { 1, 2 } provide no new
mathematical meaning: the simply introduce two human-friendly synonyms for the same set. I put equations
in quotes above because these are not equations, but rather directives. To be more accurate about intent we
should write Pgm := { 1, 2 } to make clear that this is a “macro definition” not an equation: from now on,
whenever you see the name Pgm, just replace it with the expression { 1, 2 }. Given this, it naturally follows
that Pgm = { 1, 2 } is true because after “macro expansion” you get { 1, 2 } = { 1, 2 }, which is a true equation
(we’ll discuss reasoning about equality in detail later). So you could call it an abuse of notation that we
wrote Pgm = { 1, 2 } instead of Pgm := { 1, 2 }. Such abuses of notation arise a lot in formal mathematics,
for better or worse, so take this as an early warning to be on the lookout. Ideally I will identify and explain
when and where such abuses show up and we’ll unpack them together.

To define the evaluator function for Vapid, we choose to take a somewhat direct equational approach,
which proceeds in three steps. First, we observe that once we know what the set Pgm is, and the set Obs,
we can immediately describe the set Pgm → Obs of all total functions from programs to observables. This
set of function inputs Pgm is called the domain, and the set of possible outputs Obs is called the codomain.3
Second, the expression eval : Pgm → Obs declares that eval is a total function from programs to observables,
that is, that it is an element of the set Pgm → Obs. The colon notation is common, and looks like a type
declaration from some programming languages, but could just as well be written eval ∈ Pgm → Obs, where
x ∈ X is the standard notation for saying that set x is an element of set X. Third, we state two equations
that we require our function to satisfy. These two equations suffice to describe a single (unique) function
that is a member of the set Pgm → Obs.

Since Vapid has only a finite number of programs, we can also define the evaluator equivalently using an
extensional definition, literally writing down the input-output pairs of the function. This kind of definition
makes evident that the eval function, in fact any set-theoretic function, is just a set of ordered pairs:

eval = { ⟨2, 1⟩ , ⟨1, 2⟩ } .

Every eval function you see in this course (in fact every set-theoretic function whatsoever!) will literally be
such a lookup table of pairs.4

However, we cannot typically define functions extensionally, especially if the domain of the function has
an infinite number of elements. We don’t have enough ink, paper, or time!

2Often, that human is ourselves several days, or hours, later.
3Codomain is short for “counter-domain.” The prefix“co-” appears a lot in mathematics in this way.
4As I often say: math functions don’t run: they’re more like database tables than computational procedures.



4 CHAPTER 1. MODELING PROGRAMMING LANGUAGES FORMALLY

A model of the Vapid 1.0 language is not much different:

Pgm = { 1, 2, 3 }
Obs = { 1, 2,∞}
eval : Pgm → Obs
eval(1) = 2
eval(2) = 1
eval(3) = ∞

Once again we model the evaluator as a function, adding a new program 3, and representing the possibility
of nontermination with the observable ∞. This addition is interesting because we are using a set-theoretic
object to represent a computational phenomenon: the failure of an expression to produce a value). We will
have to use similar techniques to represent other computational effects like input-output, mutable state, and
concurrent threads.

With these new definitions, Pgm ̸= Obs since the sets no longer comprise the same elements (which,
don’t forget, are also sets). Think back to our earlier interactions with Vapid 1.0, and compare the status
of 3, which is a program, to that of 4, which is not in the set Pgm so not a well-formed progam in this
language.

For a slight contrast in styles, here is a different model of Vapid 1.0 that makes one different modeling
choice:

Pgm = { 1, 2, 3 }
Obs = { 1, 2 }
eval : Pgm ⇀ Obs
eval(1) = 2
eval(2) = 1
eval(3) undefined

Like our earlier definition, this one presents an equational definition of its evaluator. The key difference is
that the evaluator is represented using a partial function rather than a total function. In particular, 3 is a
program now, but the evaluator is undefined for it—rather than mapping it to ∞, the partial function has
no mapping whatsoever for 3. eval(3) undefined ought literally be read: “there is no element of the form
⟨3, o⟩ in the set eval. In fact, given the definition of Pgm here, the three eval properties (two equations and
one more general proposition) are again equivalent to the extensional definition eval = { ⟨2, 1⟩ , ⟨1, 2⟩ } . The
difference here is that we treat eval as having a larger domain than is reflected in its elements. In short, 3
is now a program but it’s observable result is “undefined” so eval is a partial function, meaning that it may
not be defined for its entire domain. In this case, it is not defined for 3. This is indicated using a “harpoon”
⇀. This eval is identical to the set we defined for Vapid 0.0, but now we interpret it as meaning a partial
function from { 1, 2, 3 } rather than a total function from { 1, 2 }. Set theory has a very “untyped” feel to
it!!! This is both a blessing and a curse. It provides great flexibility, but demands similarly great discipline.

Comparing these two plausible models of Vapid 1.0—one using total functions and one using partial
functions—you could say that each has its benefits and shortcomings. The total-function model forces us to
provide a definition for every possible program; in contrast, the partial function model lets us simply leave
out programs that don’t terminate. On the other hand, the total-function model forces us to account for
all programs: we need not worry that we accidentally defined some program to diverge (fancy word for “not
terminate”) by simply forgetting to define it. As language semantics get more complex, this becomes a real
problem (we’ll see this later). As such, we’ll prefer the total-function models in this class: they force us to
be precise and clear (but more long-winded) about our intent.

Terminology: Syntax and Semantics

In real languages, where there are more than 3 programs, we resort to more sophisticated techniques to
describe the set of programs. This is especially true when there are an infinite number of programs: we
surely can’t list them all extensionally! Instead, we describe them in terms of a repeating phrase structure.
We call this structure the syntax of programs.

Similarly, given more complex and possibly infinite sets of programs, we must resort to more complicated
means of defining their evaluator, usually in terms of the syntax of programs (plus some extra bits as the



1.2. HOW DO WE REASON ABOUT OUR MODELS? 5

language gets more sophisticated). We call this general structured description of behaviour the semantics of
the language. Semantics is just a fancy word for “meaning”.

Sometimes you will see papers, books, etc. refer to static semantics and dynamic semantics of a language.
In general dynamic semantics refers to the behaviour of programs (what I call “semantics” above). Static
semantics typically refers to some aspects of what I call “syntax” above: those things that determine what
counts as a legal program. However there are some subtleties involved which make the term “static semantics”
make some sense. We’ll get into that later in the course. For these notes I will stick with “syntax” and
“semantics” as described above.

Exercise 1. Write a formal model of Vapid 2.0. Even if you think you get the idea in the abstract, I
recommend writing it down so that you have some practice writing down all of the details from scratch by
yourself. You will need to choose a representation for uncaught runtime exceptions.

1.2 How Do We Reason About Our Models?
Now we have precise formal models of some programming languages: whoop-dee-doo! Or rather, what do we
do with them? Well, one of the key things we can do is reason (formally) about the properties of programs
in our language, and the language itself!

First, let’s prove a property of a single program. Brace yourself:

Proposition 1. eval(2) = 1.

Proof. According to its equational definition, eval must satisfy the equation eval(2) = 1.

We’ve succesfully completed our first proof: let’s celebrate! Now, that may not have involved much work,
but in the general case, determining the result of a program is quite important. This is one way that we
can help validate that our implementation of the language is correct. There are plenty of arguments on
the internet about what some program in some language would do, based on “well my implementation does
this, so that’s what it should do,” rather than appealing to a formal definition of the language to figure out
whether there might be an inconsistency between the spec and the implementation.5

Now that we’ve proven a property of a single program in a language, let’s prove a property of the
entire language.

Proposition 2. There is (i.e., there exists) a Vapid 1.0 program that diverges.6.

Proof. Consider the program 3. Then according to its definition, eval(3) = ∞, which represents divergence.

This proof is a little different from the previous one. The statement of the theorem says essentially
that “somewhere out there, in the great big world of programs, there’s a program that runs forever.” To
prove this statement, we offer up a program and then show that, yes indeed, it diverges! In the proof of
Prop. 1, we could just follow our noses (i.e., consult eval) and be done. In this case, we needed some human
insight to find a candidate program that might satisfy the property, and then prove that it does. This is
the typical structure of an existence proof...we pull the witness for the proof—the object that satisfies the
property—essentially out of thin air, at least as far as the proof itself is concerned. In practice we may have
first done a bunch of work on the side (i.e. check out all the programs, make hunches and throw them at
the Vapid interpreter, read tea leaves, etc.), but that empirical work doesn’t show up in the proof. Insight
is often extra-logical.

Now let’s prove a property of all programs in a language. Technically for each of our semantics,
we are on the hook to prove that it fully defines the language, that is, it gives meaning to each and every
program. Let’s do so for one of them:

5I say inconsistency because in the real world, which one is right/wrong is a social problem, not a technical problem.
Throughout the course, we’ll conveniently assume that our formal semantics is the gold standard. However, in practice formal
specs and implementations are developed together, with observations about each informing the other, and when reverse-
engineering a formal semantics from a language without one, the role of gold standard is often taken by the implementation.

6In formal notation, ∃p ∈ Pgm.eval(p) = ∞.



6 CHAPTER 1. MODELING PROGRAMMING LANGUAGES FORMALLY

Proposition 3. In Vapid 1.0, eval is a total function from Pgm to Obs.

We’ll prove this two different ways: first an easy way, which demonstrates how sometimes the structure
of a definition immediately implies the property of interest, much like Prop. 1. Second we’ll demonstrate
a more involved proof that exploits the structure of the proposition being proved and the structure of the
definitions of sets that are referenced in its statement.7

Here’s the easy proof:

Proof. Since eval : Pgm → Obs, then eval must be total.

Our definition of eval begins with eval : Pgm → Obs, which means that we are choosing the unique
element from the set of total functions from Pgm to Obs that satisfies the given set of equations. So if our
purported definition is in fact a definition at all (more on that later), then we know that eval is a function
and it’s total (as well as the domain, codomain, and a few equations that it satisfies).

To motivate our second proof, suppose that we had instead written eval : Pgm ⇀ Obs. The definition
would still describe the exact same set. But the definition as stated no longer immediately implies that
eval is a total function, only that it is a partial function. Such a definition chooses from among the partial
functions that satisfy our equations, and not all partial functions are total (though all total functions are
partial functions, strange as it sounds). We must work harder to show that it is total. We can intuitively see
that eval is total simply by visually inspecting the definition, and that gestalt knowledge can be boiled down
to a series of precise formal observations from which we can deduce totality. Let’s explicitly prove totality:
that the evaluator is defined for every input program. We state the totality proposition more precisely and
then prove it:

Proposition 4. For every p ∈ Pgm, there is some o ∈ Obs such that eval(p) = o.8

Proof. Suppose p ∈ Pgm. Then we proceed by cases on p ∈ Pgm.
Case 1 (p = 1). Consider the observable 2 ∈ Obs. Then eval(1) = 2.
Case 2 (p = 2). Consider the observable 1 ∈ Obs. Then eval(2) = 1.
Case 3 (p = 3). Consider the observable ∞ ∈ Obs. Then eval(3) = ∞.

Here we proved the theorem by exhaustively considering each and every program and then showed that
we could evaluate each one.

Now notice the structure of the proposition: “for every ... there is some ... such that ... .” And compare
that to the structure of the proof: “suppose ... consider ... then ... .”

It turns out that these two structures line up:

1. the “for every ...” part of the proposition matches up with the “suppose ...”part of the proof;

2. the “there is some ...” part of the proposition matches up with the “consider ...” part of the proof.

This is quite common: in many cases, the structure of a proposition alludes to the structure of its proof.
This is especially true for proofs of small propositions (often called lemmas) which we combine to prove more
complex propositions.

Now what about the “proceed by cases” part of the proof? That part can be matched up with the structure
of our definition of Pgm. One of the main themes of this text is that the structure of your definitions affects
the structure of your reasoning (about the defined objects).

In this case, an extensional definition of programs (i.e., defining Pgm by explicitly listing the elements
of the set) licenses us with the ability to prove things about all programs by explicitly reasoning about
each individual program (checking each one). In particular, recall that we should interpret the expression
{ 1, 2, 3 } to mean “the unique set S that has the property that the set x is an element of S if and only if x
is 1 or x is 2 or x is 3.” As such, it suffices to prove a property individually for 1, 2, and 3, to prove that it
holds for any x that claims to be an element of the set. We can state this reasoning principle more precisely
as a general reasoning principle for proving properties that hold of all Vapid 1.0 programs:

7You’ll often hear me say: “the structure of your definitions determines the structure of your reasoning properties!”
8Formally, ∀p ∈ Pgm. ∃o ∈ Obs. eval(p) = o.



1.2. HOW DO WE REASON ABOUT OUR MODELS? 7

Proposition 5 (Principle of Cases on p ∈ Pgm). Let Φ be a property of Vapid programs p ∈ Pgm.
Then if Φ(1), Φ(2), and Φ(3), then Φ(p) holds for all p ∈ Pgm.9

In the proof of totality above, we used exactly this general principle, but specialized it to our problem:

Φ(p) := ∃o ∈ Obs.eval(p) = o.

Where := basically means “is a macro that expands to”. Here Φ does not represent a set, like Obs does, and
it’s not a variable representing an element of a set, like o, but rather it is a placeholder “macro” for a logical
proposition that takes an argument in place of p. This distinction is a bit subtle, and we’ll get into it more
later.

Later when we have languages with an infinite number of programs, this kind of reasoning principle will
not work (we’ll get hungry well before we finish checking each one). But that’s ok, because our approaches
to defining infinite sets provide their own effective reasoning principles.

In the above proof, each case requires only a single step of reasoning to find the observable result of each
program. In fact, the structure of eval’s definition gives plenty of guidance to language implementors. If
you squint your eyes a bit, you will see hiding in the proof of Proposition 4 a recipe for implementing an
interpreter for Vapid. Later, more complex languages will satisfy analogous propositions, and the proofs
of those propositions will similarly encode some method of deduction that starts from any program p and
arrives at some o, particularly the o that the evaluator associates with p, just like the theorem insists.

In general, we will encounter deep connections between deduction (i.e., systematic formal10 proof via
symbol-pushing by a human computer) and computation (i.e., systematic symbol-pushing as performed by
a mechanical computer) come up again and again, even as our languages become less vapid.

Now consider how we used eval. We defined eval a couple of ways: using equations, and explicitly listing
the set of pairs. Within the proof, we took advantage of the equations. Thus the structure of the definition
mattered here too. For illustration, let’s consider how a proof by cases might have looked if we used the “set
of pairs” definition of eval:
Case 4 (p = 1). Then eval(1) = n means that ⟨1, n⟩ ∈ eval for some n. By definition of eval, ⟨1, 2⟩ ∈ eval so
eval(1) = 2.

This proof case is in some ways pedantic, but it’s useful to get some sense of how the structure of the
two equivalent definitions can lead to slightly different steps of deduction. We’ll clarify this more later in
cases where the difference is less subtle.

So to summarize, for this proposition we proved a property of all programs (that they all evaluate) by
reasoning over all programs, and in each case we take advantage of the equations that we used to define
eval. We could prove other properties of all programs in roughly the same way, but substituting a different
property into our reasoning. As we proceed, we will introduce and exploit increasingly sophisticated reasoning
principles, starting from a rudimentary set of initial principles. We will use our tools to build more tools!

We will spend a lot of time defining models (as sets) using various formalisms, and then exploiting
general-purpose reasoning principles that arise from those definitions to deduce properties of those defined
sets. We’ll see some more interesting examples of this kind of reasoning very soon.

In informal practice, we take the general proof principles that arise from definitions of mathematical
objects for granted much of the time, but when our reasoning gets more complicated, being aware of these
principles and their explicit structure can help you write precise proofs, and catch bugs in your definitions
and theorems! One of my old professors used to say “your theorems are the unit tests of your definitions.”
This is a good analogy, except that properly stated theorems can be more comprehensive: if the proof is a
correct proof of the theorem, then you know the proposition is true. With test cases, unless you cover all
possible cases—which you often can’t—then there’s still room for bugs.11

To summarize, once we have a formal model of a programming language (or really any complex system
in computer science), we can exploit the structure of our definition to develop general-purpose reasoning
principles and use those to establish once and for all properties of interest. Some properties, like the result of

9Formally, Φ(1) ∧ Φ(2) ∧ Φ(3) ⇒ ∀p ∈ Pgm.Φ(p).
10Here the word “formal” refers to “forms”, as in symbols written on paper, not tuxedos and ball gowns. So “formal logic” is

just another way of saying symbolic logic: deduction via symbol-pushing. Nothing fancy here!
11Mind you proving things correct can be quite costly compared to testing, so there is a significant productivity tradeoff here.

And sometimes it’s too hard to even figure out what the appropriate proposition would even be, let alone prove it!



8 CHAPTER 1. MODELING PROGRAMMING LANGUAGES FORMALLY

evaluating one program, can serve as a source of test-cases for an existing implementation. Other properties,
like the fact that all programs produce results, can guide the development of an implementation in the first
place, and finally properties, like the existence of a diverging program, can tell us important things about
the general nature of a language as a whole.

We will see more examples of these ideas in action, especially in the context of language semantics that
are complex enough that the models and propositions are significantly more interesting and less vapid.



272 CHAPTER 1. MODELING PROGRAMMING LANGUAGES FORMALLY



Bibliography

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic,
volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.7, pages 739–782. North-
Holland, 1977.

J. Avigad. Reliability of mathematical inference. Synthese, 2020. doi: 10.1007/s11229-019-02524-y. https:
//doi.org/10.1007/s11229-019-02524-y.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New York, NY, USA,
1998. ISBN 0-521-45520-0.

J. Bagaria. Set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. The Metaphysics Re-
search Lab, winter 2014 edition, 2014. URL http://plato.stanford.edu/archives/win2014/entries/
set-theory/.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution
techniques. ACM Comput. Surv., 51(3):50:1–50:39, May 2018. ISSN 0360-0300. doi: 10.1145/3182657.
URL http://doi.acm.org/10.1145/3182657.

H. P. Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in logic and the
foundations of mathematics. North-Holland, 1985. ISBN 978-0-444-86748-3.

A. Bauer. Proof of negation and proof by contradiction. Mathematics and Computation Blog, March 2010.
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/.

L. Crosilla. Set Theory: Constructive and Intuitionistic ZF. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2020 edition, 2020.

M. Felleisen and D. P. Friedman. A syntactic theory of sequential state. Theoretical Computer Science,
69(3):243–287, 1989. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(89)90069-8. URL http:
//www.sciencedirect.com/science/article/pii/0304397589900698.

M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. MIT Press, 1st edition,
2009.

J. Ferreirós. The early development of set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019. URL https:
//plato.stanford.edu/archives/sum2019/entries/settheory-early/.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management
in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi:
10.1145/512529.512563. URL http://doi.acm.org/10.1145/512529.512563.

P. R. Halmos. Naive Set Theory. Springer-Verlag, first edition, Jan. 1960. ISBN 0387900926.
A classic introductory textbook on set theory.

P. R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, New York,
NY, USA, 2012. URL http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf.

273

https://doi.org/10.1007/s11229-019-02524-y
https://doi.org/10.1007/s11229-019-02524-y
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://doi.acm.org/10.1145/3182657
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
http://www.sciencedirect.com/science/article/pii/0304397589900698
http://www.sciencedirect.com/science/article/pii/0304397589900698
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
http://doi.acm.org/10.1145/512529.512563
http://www.cs.cmu.edu/%7Erwh/plbook/1sted-revised.pdf


274 BIBLIOGRAPHY

D. J. Howe. Proving congruence of bisimulation in functional programming languages. Inf. Comput., 124
(2):103–112, Feb. 1996. ISSN 0890-5401.

G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer Sciences on
STACS 87, pages 22–39, London, UK, UK, 1987. Springer-Verlag.

R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen, December 2015.
URL https://robbertkrebbers.nl/thesis.html.

C. Kuratowski. Sur la notion de l’ordre dans la théorie des ensembles. Fundamenta Mathematicae, 2(1):
161–171, 1921. doi: 10.4064/fm-2-1-161-171. https://web.archive.org/web/20190429103938/http:
//matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf.

P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964. doi: 10.1093/
comjnl/6.4.308. URL https://doi.org/10.1093/comjnl/6.4.308.

X. Leroy and H. Grall. Coinductive big-step operational semantics. Inf. Comput., 207(2):284–304, Feb. 2009.
ISSN 0890-5401.

P. Maddy. Believing the axioms. I. The Journal of Symbolic Logic, 53(02):481–511, 1988.
An interesting (though complicated) analysis of why set theorists believe in their axioms.

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I. Com-
mun. ACM, 3(4):184–195, 1960.

J. H. J. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts Institute
of Technology, Feb. 1969. URL http://hdl.handle.net/1721.1/64850.

A. M. Pitts. Nominal sets: Names and symmetry in computer science. Cambridge University Press, 2013.

G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60-61:3–15, 2004a.
doi: 10.1016/j.jlap.2004.03.009. URL http://dx.doi.org/10.1016/j.jlap.2004.03.009.

G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139,
2004b.

B. Popik. ”pull yourself up by your bootstraps”. Weblog entry, September 2012. https://www.barrypopik.
com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/.

E. Reck and G. Schiemer. Structuralism in the Philosophy of Mathematics. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2020 edition,
2020.

D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst., 31(4):
15:1–15:41, May 2009. ISSN 0164-0925.

W. Sieg and D. Schlimm. Dedekind’s analysis of number: Systems and axioms. Synthese, 147(1):121–170,
Oct 2005.

J. Spolsky. The law of leaky abstractions. Joel on Software Blog, November 2002. https://www.
joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.

G. L. Steele. Debunking the “expensive procedure call”” myth or, procedure call implementations consid-
ered harmful or, lamdba: The ultimate goto. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1977. URL http://dspace.mit.edu/handle/1721.1/5753.

S. Stenlund. Descriptions in intuitionistic logic. In S. Kanger, editor, Proceedings of the Third Scandinavian
Logic Symposium, volume 82 of Studies in Logic and the Foundations of Mathematics, pages 197 – 212.
Elsevier, 1975. URL http://www.sciencedirect.com/science/article/pii/S0049237X08707328.

https://robbertkrebbers.nl/thesis.html
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://web.archive.org/web/20190429103938/http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2122.pdf
https://doi.org/10.1093/comjnl/6.4.308
http://hdl.handle.net/1721.1/64850
http://dx.doi.org/10.1016/j.jlap.2004.03.009
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.barrypopik.com/index.php/new_york_city/entry/pull_yourself_up_by_your_bootstraps/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://dspace.mit.edu/handle/1721.1/5753
http://www.sciencedirect.com/science/article/pii/S0049237X08707328


BIBLIOGRAPHY 275

M. Tiles. Book Review: Stephen Pollard. Philosophical Introduction to Set Theory. Notre Dame Journal of
Formal Logic, 32(1):161–166, 1990.
A brief introduction to the philosophical issues underlying set theory as a foundation for mathematics.

C. Urban and M. Norrish. A formal treatment of the Barendregt variable convention in rule inductions. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable
Binding, MERLIN ’05, page 25–32, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595930728. doi: 10.1145/1088454.1088458. URL https://doi.org/10.1145/1088454.1088458.

C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule inductions. In Proceedings
of the 21st International Conference on Automated Deduction: Automated Deduction, CADE-21, page 35–
50, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 9783540735946. doi: 10.1007/978-3-540-73595-3_4.
URL https://doi.org/10.1007/978-3-540-73595-3_4.

D. van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994. ISBN 978-3-540-57839-0.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput., 115(1):38–94, Nov.
1994.

B. Zimmer. figurative ”bootstraps”. email to linguistlist mailing list, August 2005. http://listserv.
linguistlist.org/pipermail/ads-l/2005-August/052756.html.

https://doi.org/10.1145/1088454.1088458
https://doi.org/10.1007/978-3-540-73595-3_4
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html
http://listserv.linguistlist.org/pipermail/ads-l/2005-August/052756.html

	Modeling Programming Languages Formally
	How Do We Model Programming Languages Mathematically?
	Semantics for the Vapids

	How Do We Reason About Our Models?


