
Supplement: LaTeX Cheat-Sheet (In-Progress)

CPSC 509: Programming Language Principles

Ronald Garcia∗

1 February 2014

Here’s where I throw in a bunch of LaTeX that I have been using. For sanity’s sake I need your help
to grow this organically. Ideally It will help you with typsetting your own materials. Let me know what
pieces are missing and I will add them.

1 Explicit Sets, Set Comprehensions, and Tuples

I use the braket.sty package to typeset tuples and sets:

{ a, b, c }
{ a ∈ A | a /∈ B }

〈a, b, c〉

2 Object Language Bits

Why so blue? Well, because I typeset object language items using the \mbsf{} or \tbsf{}macros defined
in defs.tex.

3 Typesetting BNF’s

Here’s the language of Boolean and Arithmetic Expressions:

t ∈ TERM, v ∈ VALUE, nv ∈ NUM
t ::= true | false | if t then t else t
| z | succ(t) | pred(t) | zero?(t)

v ::= true | false | nv
nv ::= z | succ(nv)

If you look at the file, you will see things like \<if> t \<then> t \<else> t which come out like
if t then t else t. I am using the keyword feature of the semantic.sty package to define special keywords
that I can refer to in angle brackets. In this particular case, the definition in defs.tex that brings things to
life is:

\reservestyle{\oblang}{\tbsf}

\oblang{if-then-else,
true,false,if[if\;],then[\;then\;],else[\;else\;]

}
∗ c© Ronald Garcia. Not to be copied, used, or revised without explicit written permission from the copyright owner.

1

LaTeX for CPSC509 Time Stamp: 16:37, Saturday 2nd November, 2019

The \reservestyle macro creates a new “style” command (in this case \oblang) which I can use
to create keywords (the thing before the square brackets) and what text they will render (the thing inside
the square brackets) using the style function given in the \reservestyle keyword. For example, \<if>
actually translates to \tbsf{if\;} where \; is the latex command for “leave some space”.

4 A Function Definition

Let nat : NUM → N be defined by

nat(z) = 0

nat(succ(nv)) = 1 + nat(nv).

5 An Inductive Definition

⇓⊆ TERM × VALUE

true ⇓ true
(etrue)

false ⇓ false
(efalse)

t1 ⇓ true t2 ⇓ v2
if t1 then t2 else t3 ⇓ v2

(eif-t)

t1 ⇓ false t3 ⇓ v3
if t1 then t2 else t3 ⇓ v3

(eif-f)
z ⇓ z

(ez)
t ⇓ nv

succ(t) ⇓ succ(nv)
(esucc)

t ⇓ succ(nv)
pred(t) ⇓ nv

(epred)

t ⇓ z
zero?(t) ⇓ true

(ezero?-z)
t ⇓ succ(nv)

zero?(t) ⇓ false
(ezero?-s)

In the past I have tended to use \inference from semantic.sty to define inductive rules, and
\infer from proof.sty to write derivations, because I think the \inference is prettier, but using it
to write derivations is a big space hog. I’m moving toward consistently using \infer for everything just
to keep it simple. Hence, the rules above are typeset using \infer.

Beware! \inference and \infer take their arguments in opposite order, so if you switch, then you
have to switch the arguments too, otherwise you’ll end up with errors or upside-down derivations/rules.

6 A Concrete Derivation

As an example derivation of an entailment relation, here is a derivation of ∅ ` A∨⊥⊃A true, meaning that
it is a theorem of constructive propositional logic (it can be entailed with no assumptions):

{A ∨ ⊥} ` A ∨ ⊥ true {A ∨ ⊥,A } ` A true
(hyp)

{A ∨ ⊥,⊥} ` ⊥ true
(hyp)

{A ∨ ⊥,⊥} ` A true
(⊥E)

{A ∨ ⊥} ` A true
(∨E)

∅ ` A ∨ ⊥⊃ A true
(⇒I)

7 Abstract Derivations and Properties of Derivations

This is useful for seeing how to typeset abstract derivations, where you don’t see everything
Let P (D) be a predicate on (or property of) derivations D. Then P holds for all derivations D if:

1. P

(
true ∈ TERM

(r-true)
)

holds;

Page 2

LaTeX for CPSC509 Time Stamp: 16:37, Saturday 2nd November, 2019

2. P

(
false ∈ TERM

(r-false)
)

holds;

3. If P
(

D1

r1 ∈ TERM

)
, P
(

D2

r2 ∈ TERM

)
, and P

(
D3

r3 ∈ TERM

)
hold then

P

 D1

r1 ∈ TERM
D2

r2 ∈ TERM
D3

r3 ∈ TERM

if r1 then r2 else r3 ∈ TERM
(r-if)


holds.

Note the use of \deduce instead of infer to omit the horizontal bar. The \sarray macro, profided by
defs.tex is a trick to get the large parentheses to size correctly (try removing it and see what happens).

Notice that when writing properties of derivations, I wrap the derivation in an \sarray form, which
is defined in defs.tex. That keeps there from being extra annoying blank space at the bottom of the
derivation. I don’t have a good explanation for why this is necessary I’m afraid.

8 A Definition by Cases

This definition uses the case environment to lay out the three possible cases.
Define evalBA : TERM → { true, false } ∪ N by

evalBA(t) =


true if t ⇓ true
false if t ⇓ false
nat(nv) if t ⇓ nv

9 A Proposition

Proposition 1 (Inversion).

1. If true ⇓ v then v = true.

2. If false ⇓ v then v = false.

3. If if t1 then t2 else t3 ⇓ v then either

(a) t1 ⇓ true and t2 ⇓ v or
(b) t1 ⇓ false and t3 ⇓ v

4. If z ⇓ v then v = z.

5. If succ(t) ⇓ v then t ⇓ v1, v1 ∈ NUM, and v = succ(v1).

6. If pred(t) ⇓ v then t ⇓ succ(v) and v ∈ NUM.

7. If zero?(t) ⇓ v then either

(a) t ⇓ z and v = true or
(b) t ⇓ succ(nv) and v = false.

10 A Logical Statement (about derivations)

To prove these propositions, we first expand them to be formal statements about derivations. For example,
item 7 expands to the following:

Proposition 2. ∀D.D :: zero?(t) ⇓ v ⇒ ((∃E .E :: t ⇓ z) ∧ v = true) ∨ ((∃E .E :: t ⇓ succ(nv)) ∧ v = false)

Page 3

LaTeX for CPSC509 Time Stamp: 16:37, Saturday 2nd November, 2019

11 A Trace (Using Let)

let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→

let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ let x = 5
in x+ x

−→ · · ·

Page 4

