
IMP: An Imperative Programming Language

CPSC 509: Programming Language Principles

Ronald Garcia

28 January 2013

The Boolean Language was rather small and possibly a bit unfamiliar for some (although using Racket
or some other functional programming language may have given you a similar flavor).

Now it’s time for a language that may look more familiar. It is considered to be an imperative program-
ming language in that it has commands that act as instructions to do something, not simply expressions to
be reduced. We’ll make clearer what we mean by that below. This is also a chance to see the semantics of
an even more complex language

1 IMP

In this section we define the IMP Language. IMP is an imperative language in the spirit of Pascal, Algol,
and other languages that support so-called structured programming.

n ∈ Z, bv ∈ BOOL, X ∈ LOC, a ∈ AEXP, b ∈ BEXP, c ∈ COM,
a ::= X | n | a + a | a−a | a ∗ a
b ::= true | false | a = a | a ≤ a | ¬b | b ∧ b | b ∨ b
c ::= skip | X := a | c; c | if b then c else c | while b do c

bv ::= true | false

This is just the syntax, but given its similarity to many programming languages in the wild, you can
probably guess what some programs do.

IMP has arithmetic expressions, boolean expressions, and commands. We refer to all three categories
generically as expressions. The language features locations X1. Since locations are arithmetic expressions,
we know that they always stand for numbers.

1.1 Big-step semantics

For the semantics of this language, we use the big-step approach. First, we need to define a few sets that
are used in specifying the semantics.

σ ∈ STORE = LOC → Z
ACFG = AEXP × STORE

BCFG = BEXP × STORE

CCFG = COM × STORE

First, we introduce the set of STOREs σ, each of which is a mapping from locations to numbers Z. We use
stores to model the changing values associated with particular locations. You can think of it as an abstract
representation of the state of a computer’s memory while running a program.

1These are typically called variables by programmers, but we’re saving that name for a very particular concept

1

CPSC 509: Programming Language Principles IMP: An Imperative Programming Language

In the IMP language, we must always interpret the meaning of its terms (arithmetic expressions, boolean
expressions, and commands) relative to the values in the current store. Notice that arithmetic expressions
include references to locations, whose values are determined by the store. Furthermore, boolean expres-
sions can contain arithmetic expressions, and finally commands can contain boolean expressions. These
relationships make our depenence on stores deep. For this reason we need to introduce a notion of config-
urations for each kind of term, which pairs a term with a store. It’s these configurations that our semantics
will consider.

⇓AEXP ⊆ ACFG × N
⇓BEXP ⊆ BCFG × BOOL

⇓COM ⊆ CCFG × STORE

(enum)
〈n, σ〉 ⇓AEXP n

(eloc)
〈X,σ〉 ⇓AEXP σ(X)

(eplus)
〈a1, σ〉 ⇓AEXP n1 〈a2, σ〉 ⇓AEXP n2

〈a1 + a2, σ〉 ⇓AEXP n1 + n2

(eminus)
〈a1, σ〉 ⇓AEXP n1 〈a2, σ〉 ⇓AEXP n2

〈a1-a2, σ〉 ⇓AEXP n1 − n2
(etimes)

〈a1, σ〉 ⇓AEXP n1 〈a2, σ〉 ⇓AEXP n2

〈a1 ∗ a2, σ〉 ⇓AEXP n1 ∗ n2

(etrue)
〈true, σ〉 ⇓BEXP true

(efalse)
〈false, σ〉 ⇓BEXP false

(eeq)
〈a1, σ〉 ⇓AEXP n1 〈a2, σ〉 ⇓AEXP n2

〈a1 = a2, σ〉 ⇓BEXP bv
bv =

{
true n1 = n2

false n1 6= n2

(eleq)
〈a1, σ〉 ⇓AEXP n1 〈a2, σ〉 ⇓AEXP n2

〈a1 ≤ a2, σ〉 ⇓BEXP bv
bv =

{
true n1 ≤ n2
false n1 > n2

(enot)
〈b, σ〉 ⇓BEXP bv1

〈¬b, σ〉 ⇓BEXP bv2
bv2 =

{
true bv1 = false
false bv1 = true

(eand)
〈b1, σ〉 ⇓BEXP bv1 〈b2, σ〉 ⇓BEXP bv2

〈b1 ∧ b2, σ〉 ⇓BEXP bv3
bv3 =

{
true bv1 = bv2 = true
false otherwise

(eor)
〈b1, σ〉 ⇓BEXP bv1 〈b2, σ〉 ⇓BEXP bv2

〈b1 ∨ b2, σ〉 ⇓BEXP bv3
bv3 =

{
true bv1 = true or bv2 = true
false otherwise

(eskip)
〈skip, σ〉 ⇓COM σ

(eassign)
〈a, σ〉 ⇓AEXP n

〈X := a, σ〉 ⇓COM σ[X 7→ n]

(eseq)
〈c1, σ〉 ⇓COM σ′ 〈c2, σ′〉 ⇓COM σ′′

〈c1;c2, σ〉 ⇓COM σ′′
(eif-t)

〈b, σ〉 ⇓BEXP true 〈c1, σ〉 ⇓COM σ′

〈if b then c1 else c2, σ〉 ⇓COM σ′

(eif-f)
〈b, σ〉 ⇓BEXP false 〈c2, σ〉 ⇓COM σ′

〈if b then c1 else c2, σ〉 ⇓COM σ′
(ewhile-f)

〈b, σ〉 ⇓BEXP false
〈while b do c, σ〉 ⇓COM σ

(ewhile-t)
〈b, σ〉 ⇓BEXP true 〈c, σ〉 ⇓COM σ′ 〈while b do c, σ′〉 ⇓COM σ′′

〈while b do c, σ〉 ⇓COM σ′′

Page 2

CPSC 509: Programming Language Principles IMP: An Imperative Programming Language

1.2 Defining the evaluator

We define the evaluator for the language as follows:

eval : CCFG → STORE ∪ {∞}
eval(c) = σ iff 〈c, σz〉 ⇓COM σ,
eval(c) =∞ otherwise

where σz is the everywhere-zero store σz(X) = 0. Our semantics for this language is defined in terms of
the big-step semantics, but imposes the additional constraint that the program is run starting from a well-
defined store. For now, we do not explicitly describe divergence. Instead we decree that any program which
does not converge (i.e. big-step to a final store) diverges. This perspective is common in the literature, albeit
somewhat unsatisfying and dangerous.

1.3 An Example

Now given our semantics, we can calculate the evaluation of a progam. Consider the program:

X := 1;
while ¬(X = 0) do X := X − 1

Let’s compute it. Recall that we need to find out how it big-steps from σz . Let’s do it!

Page 3

C
PSC

509:Program
m

ing
Language

Principles
IM

P:A
n

Im
perative

Program
m

ing
Language

〈1, σz〉 ⇓AEXP 1

〈X := 1, σz〉 ⇓COM σz [X 7→ 1]

〈X, σz [X 7→ 1]〉 ⇓AEXP 1 〈0, σz [X 7→ 1]〉 ⇓AEXP 0

〈X = 0, σz [X 7→ 1]〉 ⇓BEXP false

〈¬(X = 0), σz [X 7→ 1]〉 ⇓BEXP true

〈X, σz [X 7→ 1]〉 ⇓AEXP 1 〈1, σz [X 7→ 1]〉 ⇓AEXP 1

〈X − 1, σz [X 7→ 1]〉 ⇓AEXP 0

〈X := X − 1, σz [X 7→ 1]〉 ⇓COM σz

〈X, σz〉 ⇓AEXP 0 〈0, σz〉 ⇓AEXP 0

〈X = 0, σz〉 ⇓BEXP true

〈¬(X = 0), σz〉 ⇓BEXP false

〈while ¬(X = 0) do X := X − 1, σz〉 ⇓COM σ
′

〈while ¬(X = 0) do X := X − 1, σz [X 7→ 1]〉 ⇓COM σz

〈X := 1; while ¬(X = 0) do X := X − 1, σz〉 ⇓COM σz

Page
4

CPSC 509: Programming Language Principles IMP: An Imperative Programming Language

Notice that in this tree, the same while command is big-stepped twice, but it produces different values
because it starts at a different store. This behavior is at the heart of imperative programming.

1.4 Some commentary on IMP

One interesting aspect of IMP compared to our language of Boolean and Arithmetic expressions is that IMP
programs by design can never crash. That is to say, you don’t have to worry about predicates not evaluating
to booleans, arithmetics not evaluating to numbers etc. The language is syntactically constrained to prevent
such errors. This is a taste of a more sophisticated syntactic restriction mechanism that we call types. We
discuss this in more depth later.

2 Backward Reasoning Principles

As with our previous inductive definitions, we can easily establish a set of very useful backward reasoning
principles.

Proposition 1 (Backward Reasoning).

1. If 〈n1, σ〉 ⇓AEXP n2, then n1 = n2.

2. If 〈X,σ〉 ⇓AEXP n then n = σ(X).

3. If 〈a1 + a2, σ〉 ⇓AEXP n then 〈a1, σ〉 ⇓AEXP n1, 〈a2, σ〉 ⇓AEXP n2, and n = n1 + n2.

4. If 〈a1 ∗ a2, σ〉 ⇓AEXP n then 〈a1, σ〉 ⇓AEXP n1, 〈a2, σ〉 ⇓AEXP n2, and n = n1 ∗ n2.

5. etc. . . .

6. If 〈c1;c2, σ〉 ⇓COM σ′′ then 〈c1, σ〉 ⇓COM σ′ and 〈c2, σ′〉 ⇓COM σ′′

7. If 〈if b then c1 else c2, σ〉 ⇓COM σ then either

(a) 〈b, σ〉 ⇓BEXP true and 〈c1, σ〉 ⇓COM σ′; or
(b) 〈b, σ〉 ⇓BEXP false and 〈c2, σ〉 ⇓COM σ′.

8. If 〈while b do c, σ〉 ⇓COM σ′ then either

(a) 〈b, σ〉 ⇓BEXP true, 〈c, σ〉 ⇓COM σ′′, and 〈while b do c, σ′′〉 ⇓COM σ′; or
(b) 〈b, σ〉 ⇓BEXP false and σ′ = σ.

As we saw in class, the inversion lemmas can be used as the basis for implementing an evaluator for
IMP. Conceptually, each lemma suggests a strategy for searching for a proof that an expression big-steps.

3 Reasoning about IMP Programs

The big-step semantics for IMP gives us a means of proving whether and what a particular program eval-
uates to, and even gives us some guidance for implementing the language as an interpreter. One of the
most important things that our semantics gives us, though, is a means or reasoning more broadly about the
properties of programs written in IMP.

As a basic example, we can use the big-step semantics of IMP to prove that some program transforma-
tions preserve the meaning of programs. In class I gave the example that whenever we write a program
with a while loop while b do c, σ, I can always safely replace it with an expression that unrolls the loop once:
if b then c; (while b do c) else skip.

Why might I make this change? It could be that the latter program will run faster than the former
(this semantics doesn’t tell us anything about this, but other kinds of semantics can do so). However, it’s
important to know that this transformation is meaning-preserving. Let’s prove that the two expressions are
equivalent2.

2In class we proved this slightly using a less formal style. This is a more refined and preferred approach to the proof.

Page 5

CPSC 509: Programming Language Principles IMP: An Imperative Programming Language

Proposition 2. 〈while b do c, σ〉 ⇓COM σ′ iff 〈if b then c; (while b do c) else skip, σ〉 ⇓COM σ′.

Proof. We prove both directions of the bi-implication separately. Here we only show the forward direction
and leave the reverse direction as an exercise for the reader.
Case (⇒ (only if)). Suppose 〈while b do c, σ〉 ⇓COM σ′. Then by the inversion lemma we have two cases:

Case (〈b, σ〉 ⇓BEXP true). Then 〈c, σ〉 ⇓COM σ′′ and 〈while b do c, σ′′〉 ⇓COM σ′. Really this means that there is
some derivation D1 :: 〈b, σ〉 ⇓BEXP true, and there are two derivations D2 and D3, respectively, of the latter
statements. We can use these to build the following derivation tree.

D1

〈b, σ〉 ⇓BEXP true

D2

〈c, σ〉 ⇓COM σ′′
D3

〈while b do c, σ′′〉 ⇓COM σ′

〈c; (while b do c), σ〉 ⇓COM σ′

〈if b then c; (while b do c) else skip, σ〉 ⇓COM σ′.

Case (〈b, σ〉 ⇓BEXP false). Then σ′ = σ, and we can build the following tree:

D1

〈b, σ〉 ⇓BEXP false 〈skip, σ〉 ⇓COM σ

〈if b then c; (while b do c) else skip, σ〉 ⇓COM σ.

Notice how we use the Inversion lemmas to decompose our hypothetical derivation; then once we have
the pieces that we want, we build up a new derivation of something else. Many proofs have this overall
structure.

Page 6

