
Bound Variable Names Shouldn’t Matter
a.k.a. Alpha-Equivalence Classes as Syntax

a.k.a. Barendregt’s Variable Convention, Formally
CPSC 509: Programming Language Principles

Ronald Garcia*

April 24, 2020

James Bond: “There seems to be some mistake. My name is—”
Mr. Big: “Names is for tombstones, baby!”
— Live and Let Die (1973).1

1 Introduction

Lexically-scoped variables are great for programming, but a source of headaches for theorists. For the
programmer, lexical scoping ensures that their choice of local bound variable names has no affect on the
meaning of the rest of a program. This prevents strange forms of “spooky action at a distance” where some
unfortunate confluence of names chosen in two parts of a software system cause chaos. For the theorist,
however, lexical scoping imposes the obligation to ensure that bound variable names don’t matter. This is
most easily seen in the definition of capture-avoiding substitution, which must jump through some hoops
to avoid the problems that naı̈ve substitution might cause.2

In [Barendregt, 1985], the logician Hendrik “Henk” Barendregt, proposes a clever, intuitive, and now-
ubiquitous approach to getting almost the best of both worlds: lexical scoping for programmers with mini-
mal extra hoops for the theorist. He summarizes his approach as follows:

1. Identify two terms if each can be transformed to the other by a renaming of its bound
variables.

2. Consider a λ-term as a representative of its equivalence class

3. Interpret substitution [t/x]t0 as an operation on the equivalence classes of t and t0. This
operation can be performed using representatives, provided that the bound variables are
named properly as formulated in the variable convention below.3

Barendregt goes on to state two conventions that are used throughout the book:

1. Convention 2.1.12: Terms that are α-congruent are identified.4 So now we write λx.x ≡ λy.y, etcetera.

2. Variable Convention 2.1.13: If t1, . . . , tn occur in a certain mathematical context (e.g. definition, proof),
then in these terms all bound variables are chosen to be different from the free variables.

Following an example, there is stated a:

*© Ronald Garcia.
1https://www.youtube.com/watch?v=7pMWa33uVVE
2Both capture-avoiding substitution and naı̈ve substitution are defined below.
3The substitution notation has been modified from the original to match this exposition.
4We define this term below under it’s modern name α-equivalence.

1

https://www.youtube.com/watch?v=7pMWa33uVVE

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

1. Moral 2.1.14: Using conventions 2.1.12 and 2.1.13, one can work with λ-terms in the naı̈ve way.

Naı̈ve means that substitution and other operations on terms can be performed without questioning
whether they are allowed.

Conventions 2.1.12 and 2.1.13 are often referred to as Barendregt’s variable convention.5 Many PL papers in
the literature include an off-hand remark roughly of the form: “Following Barendregt, we identify terms up
to choice of bound variables.” While the general outline of this idea seems pretty straightforward and easy,
the formal implications, featuring a few unexpected traps and pitfalls, which may arise when applied with-
out care, are definitely not. Rendering it formally, and extending it beyond capture-avoiding substitution,
takes some work. Some work in the context of automating the mechanization of an analogous convention
in the Isabelle/HOL proof assistant, goes so far as to critique Barendregt’s conventions as being insufficient
even for some purposes to which it is applied in the monograph [Urban and Norrish, 2005, Urban et al.,
2007]. Teaching a computer to automatically identify bound variable names exposed some gaps, which also
arise when working rigorously on paper.6

Here we treat Barendregt’s conventions quite formally, so as to expose the subtleties and proof obli-
gations in high relief. This note shows in gory detail just how much machinery such seemingly off-hand
statements evoke, involving quite a few definitions, propositions, and proof obligations. Most uses of this
strategy do not go into quite so much detail about what’s involved in “identifying terms up to ...”, but I
think that seeing the details can help you:

1. precisely formalize these conventions, and other related notions of identifying terms up to some ig-
norable detail. By knowing how the precise details work, you can often see things that need more
care than might otherwise be expected;

2. appreciate that doing this formally yields a new notion of syntax, which fundamentally involves an
interplay between a quite abstract notion of syntax—even more abstract than syntax trees—and more
concrete representatives of that syntax—whose role is played by our previous abstraction of syntax
trees. In short, this approach builds a new expressive abstraction for syntax atop your old one;

3. draw out important implications for computer implementations of algorithms and interpreters for
semantics based on syntax “modulo choice of bound variables.” The key takeaway is that implemen-
tations have a lot of flexibility. These programs operate on representations of syntax objects, in that
they may choose bound variable names any way they wish. In a very real sense, choice of names no
longer matters.

4. identify where and how misunderstandings can lead to broken definitions, theorems, and proofs,
and why in practice this approach can sometimes be confusing. As we see below, working this way
typically involves the use of standard concrete term notation as a stand-in for abstract operators over
equivalence classes of concrete terms that in reality are denoted using a combination of concrete terms,
injection operations, and abstract operators over sets of terms. The concrete term notation more di-
rectly conveys the essence of definitions and formal developments, but to some extent it requires you
to “read between the notation”, which is easier to do if you know what precisely the missing notation
would look like.

Used well, this machinery provides a useful abstraction that quite admirably dispatches concerns about the
names of bound variables.

This exposition also intends to convey a more abstract meta-lesson. When it comes to set-theoretic
mathematics of syntax and semantics, “concrete” and “abstract” are merely relative notions. Previously
we appealed to syntax trees to dispatch the headaches caused by consideration of syntax as strings of
characters. Here, we address additional facets of syntax that cause headaches for semantics and other
metatheory, by adding another layer on top of our representations of terms as trees. In doing so, our old
abstract syntax trees become for our purposes too concrete, and our new notion of abstract syntax exhibits
some nice new properties. In general, access to the full power of set theory enables us to build up useful

5I know, I know: there are two conventions, but nonetheless they are typically evoked simultaneously. Barendregt was just trying
to write a book, and it turns out that book has been highly influential.

6Urban et al.’s work uncovers additional subtleties with scaling up the automation of this approach. It is recommended reading.

Page 2

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

abstractions that encapsulate messy details so that we can ignore them. Just as we can build beautiful clean
precise programming abstractions atop X86, so can we do mathematical counterpart atop set theory.

2 Syntax

We begin with syntax in the style we’ve typically followed. Here, though, we’ll call it “concrete” to allude to
the idea that it exposes too many implementation details, in particular the choice of bound variable names.

Definition 1 (Concrete Syntax).

x ∈ VAR, n ∈ Z, t ∈ CONCRETETERM
t ::= n | t + t | x | λx.t | t t | let x = t in t

Through the rest of these notes, we build up a notion of “abstract syntax”, and use that to define our
language. We’ll find that the relationship between our abstract syntax and an implementation, for example,
becomes a bit more remote than before, but also opens up more options for faithfully encoding our syntax
as data structures. That’s kind of the point: we want to abstract away from details that should not constrain
the implementor.

To define our abstract syntax, we need some relation and function definitions. There is more than one set
of definitions that can get us ultimately to the same place (i.e., Defn. 8), each exposing different properties
of the final product. Consider the path that we take in the following to be somewhat arbitrary. Somewhat.

To start, we establish a few standard notions related to variables: free variables, occurring variables, and
naı̈ve substitution, and capture-avoiding substitution. We exploit each of these to construct our new ab-
stract syntax, called TERM, but we also use some of them to illustrate differences between CONCRETETERM
and this new notion, by developing analogous notions in some cases, or explaining why no analogous
notion exists in other cases.

Definition 2 (Free Variables).

FV : CONCRETETERM → P(VAR)
FV (n) = ∅

FV (t1 + t2) = FV (t1) ∪ FV (t2)

FV (x) = {x }
FV (λx.t) = FV (t) \ {x }
FV (t1 t2) = FV (t1) ∪ FV (t2)

FV (let x = t1 in t2) = FV (t1) ∪ (FV (t2) \ {x })

Definition 3 (Occurring Variables (i.e. Free or Bound Variables)).

Vars : CONCRETETERM → P(VAR)
Vars(n) = ∅

Vars(t1 + t2) = Vars(t1) ∪Vars(t2)

Vars(x) = {x }
Vars(λx.t) = {x } ∪Vars(t)

Vars(t1 t2) = Vars(t1) ∪Vars(t2)

Vars(let x = t1 in t2) = Vars(t1) ∪Vars(t2)

Page 3

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Definition 4 (Naı̈ve Substitution).

[x Z⇒ t] : CONCRETETERM → CONCRETETERM
[x Z⇒ t]n = n

[x Z⇒ t](t1 + t2) = ([x Z⇒ t]t1) + ([x Z⇒ t]t2)

[x Z⇒ t]x = t

[x Z⇒ t]x0 = x0 if x 6= x0

[x Z⇒ t]λx.t = λx.t

[x Z⇒ t]λx0.t0 = λx0.[x Z⇒ t]t0 if x 6= x0

[x Z⇒ t](t1 t2) = ([x Z⇒ t]t1) ([x Z⇒ t]t2)

[x Z⇒ t](let x = t1 in t2) = let x = [x Z⇒ t]t1 in t2
[x Z⇒ t](let x0 = t1 in t2) = let x0 = [x Z⇒ t]t1 in [x Z⇒ t]t2 if x 6= x0

Recall that naı̈ve substitution is naı̈ve in the sense that it can cause free variables to be captured as a
result of substitution. For example, [y Z⇒ x]λx.y = λx.x. On the other hand, [y Z⇒ x]λz.y = λz.x. So naı̈ve
substitution does not preserve free variables. Capture-avoiding substitution (Defn. 7) solves this problem,
but by adding both annoying and excessively specific complexity to its definition.

Now using the above notions, we introduce alpha equivalence, a relationship between CONCRETETERMs
which says that they are identical but for their choice of bound variables. For many purposes, we consider
such CONCRETETERMs to be “the same”, even though set theory says otherwise. Our goal here is to rig-
orously blur this distinction, replacing this notion of equivalence for CONCRETETERM with set-theoretic
identity for our soon-to-be-defined set TERM.

Definition 5 (Alphabetic equivalence (a.k.a. Alpha Equivalence)).
∼a ⊆ CONCRETETERM × CONCRETETERM

n ∼a n (αnum)
t11 ∼a t21 t12 ∼a t22
t11 + t12 ∼a t21 + t22

(αplus)
x ∼a x (αvar)

t1 ∼a t2
(λx.t1) ∼a (λx.t2)

(αlam1)

(λx3.[x1 Z⇒ x3]t1) ∼a (λx3.[x2 Z⇒ x3]t2)

(λx1.t1) ∼a (λx2.t2)
(αlam2) x1 6= x2,

x3 /∈ (Vars(t1) \ {x1 }) ∪ (Vars(t2) \ {x2 })

t11 ∼a t21 t12 ∼a t22
(t11 t12) ∼a (t21 t22)

(αapp) t11 ∼a t21 t12 ∼a t22
let x = t11 in t12 ∼a let x = t21 in t22

(αlet1)

let x3 = t11 in [x1 Z⇒ x3]t12 ∼a let x3 = t21 in [x2 Z⇒ x3]t22

let x1 = t11 in t12 ∼a let x2 = t21 in t22
(αlet2)

x1 6= x2,
x3 /∈ (Vars(t12) \ {x1 }) ∪ (Vars(t22) \ {x2 })

The key rules underlying α-equivalence are (αlam2) (αlet2): removing them would give an inductive
definition of equality. In essence, these two rules say that two lambda abstractions (or let abstractions) with
different bound variables are equivalent if renaming their bound variables to some common variable yields
equivalent terms. We use naı̈ve substitution to specify renaming, and use the Vars function to restrict the
possible common variable names, so as to avoid variable capture. We could have use capture-avoiding sub-
stitution instead of naı̈ve substitution, yielding a slightly different inductive definition of the same relation.
It’s worth taking a moment to ask yourself what that difference would be, and what other changes could
be made without breaking the relation.

Of utmost importance to us is that (· ∼a ·) is an equivalence relation.

Page 4

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proposition 1 ((· ∼a ·) is an Equivalence Relation).

1. ∀t ∈ CONCRETETERM. t ∼a t. In words, ∼a is reflexive;

2. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ t2 ∼a t1. In words, ∼a is symmetric;

3. ∀t1, t2, t3 ∈ CONCRETETERM. t1 ∼a t2 ∧ t2 ∼a t3 =⇒ t1 ∼a t3. In words, ∼a is transitive.

Any equivalence relation can be used to convey the idea that “sure these two things are not necessarily
identical as far as mathematics is concerned, but I want to treat them as the same when we ignore certain
details.” In many mathematical arguments, we can replace set-theoretic identity (i.e. equality) with some
other equivalence relation, which gives us more “slack”. Another approach is to use the equivalence rela-
tion to define a new set of sets of equivalent objects. This set is typically called the set of equivalence classes for
a particular equivalence relation, and the process of constructing it is, for somewhat archaic reasons that
come from abstract algebra, called quotienting the original set with respect to an equivalence relation. Once
this is done, we can lift relevant operators over concrete elements to apply to equivalence classes.

In the following, we quotient CONCRETETERM, with respect to α-equivalence, and then lift our oper-
ations to apply to α-equivalence classes, which become our notion of TERMs that don’t care about bound
variable names.

This lets us be rigorous and abstract in our reasoning, and flexible regarding the relationship between
our maths and our implementations. Plus it lets us hide distracting details from our subsequent develop-
ments and treat those details in a highly permissive and flexible fashion.

We start with the tedium that we later abstract: defining capture-avoiding substitution. We can prove
that the equations in Defn. 7 definitely describe a unique function starting at least a couple of different
ways:7

1. We can inductively define capture-avoiding substitution as a quaternary inductive relation, then
prove that this relation is a partial function, is total, and satisfies the equations in Defn. 7;

2. We can define capture-avoiding substitution in terms of naı̈ve substitution, exploiting the principle of
recursion on the size of CONCRETETERMs. We can then apply equational reasoning to prove that this
function satisfies the equations in Defn. 7.

Either way, we have proven the existence of a function that satisfies the equations in Defn. 7, at which
point we prove that at most one function satisfies these equations, proceeding by induction on the size of
CONCRETETERMs.

Either way, we appeal to the size of CONCRETETERMs, so here is the relevant function definnition, as
well as an equational definition of capture-avoiding substitution.

Definition 6 (Size of a CONCRETETERM).

size : CONCRETETERM → N
size(n) = 1

size(t1 + t2) = 1 + size(t1) + size(t2)

size(x) = 1

size(λx.t) = 1 + size(t)

size(t1 t2) = 1 + size(t1) + size(t2)

size(let x = t1 in t2) = 1 + size(t1) + size(t2)

7Neither of these is as straightforward as is often claimed in texts. In particular, it is not defined by structural recursion on terms!

Page 5

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Definition 7 (Capture-Avoiding Substitution).

[·/·]· : CONCRETETERM × VAR × CONCRETETERM → CONCRETETERM

[t/x]b = b

[t/x]x = t

[t/x]x0 = x0 if x 6= x0

[t/x](if t1 then t2 else t3) = if [t/x]t1 then [t/x]t2 else [t/x]t3

[t/x](let x = t1 in t2) = let x = [t/x]t1 in t2
[t/x](let x0 = t1 in t2) = let x1 = [t/x]t1 in [t/x][x1/x0]t2

if x 6= x0

where x1 =

{
x0 x /∈ FV (t2) ∨ x0 /∈ FV (t)

minx∈VAR(x /∈ Vars(t) ∪Vars(t2))) otherwise

Notice that we are using Haskell Curry’s “trick” (described in the appendix of Barendregt [1985]) of
assuming that VAR has some associated total order (we don’t care about the details of the ordering, just that
there is one). This gives us a deterministic mechanism for choosing fresh variables with respect to some
relevant terms. This trick is but one of the annoying overly-specific details that we wish to do without.
On the other hand, the notion of freshness here is quite precise about which variables the chosen one may
not overlap with. This is useful for understanding a system in detail (rather than claiming the need for
a “globally fresh variable”, whatever that means, when such a claim is sheer overkill). If we ignore the
“minimum” requirement, then we get the truly relevant constraints.

Proposition 2 ([·/·]· is well-defined). The equations in Defn. 7 describe a unique function.

F ∈ CONCRETETERM × VAR × CONCRETETERM → CONCRETETERM.

3 Abstract Syntax

Ok, we have concrete syntax, alpha equivalence, and our motivating example of capture-avoiding substitu-
tion. Let’s get abstract. First, we exploit a key property of all equivalence relations. An equivalence relation
partitions a set into disjoint subsets of equivalent members. We call these subsets equivalence classes. Here’s
the definition for our particular case.

Definition 8 (Terms as Alpha-equivalence Classes).

tα ∈ TERM = CONCRETETERM/∼a

=

 S ∈ P(CONCRETETERM)

∣∣∣∣∣∣∣
(
∃t ∈ CONCRETETERM. t ∈ S

)
∧(

∀t ∈ CONCRETETERM. t ∈ S ⇐⇒
∀t0 ∈ CONCRETETERM. t0 ∈ S ⇐⇒ t0 ∼a t

)

This technique of defining an abstract object as an equivalence class has a long tradition going back
at least to the mathematician and logician Richard Dedekind. He “defined” the integers Z as equivalence
classes of pairs of natural numbers, the rationals Q as equivalence classes of pairs of integers, and the real
numbers R as sets of rationals. At each step of construction, he ensured that operations on the “simpler”
entity (like addition) could be lifted to the new entities. His goals, and results, were different in some key
ways, but the general technique is still the same [Sieg and Schlimm, 2005].

What the...??? And now you can see the punchline laying before you. Our new notion of TERMs is going
to be the alpha-equivalence classes of CONCRETETERMs. At first this may seem highly unsatisfying. My
first response to it was: “What in the world does it mean for my single program TERM to really stand for a

Page 6

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

set of CONCRETETERMs? My programs are single trees, not sets of trees! Ohhh that hurts...” Years later, my
answer to this is: “Don’t worry: your terms have been strange sets of sets all along, so this is no change at
all!” What do I mean by that? Well, remember that set theory at its base is extremely impoverished, just like
machine code. Instead of ones and zeros, we have the empty set, the set with the empty set, ad infinitum.
We use these entities to encode abstract syntax trees. Going this route ensures that our mathematical entities
are rigorously well defined...well, at least as well-defined as set theory, which has held up to lots and lots
of “fuzz testing” for the last century, so we’re feeling about as good as we can about it. So the syntax that
we are using for abstract syntax trees really represents strange sets, or really families of sets that all satisfy
the algebraic properties that we care about. Once we know the relevant algebraic properties, we can ignore
the model that satisfies them. That’s how we build up a high-level abstraction. But we want to know that
something under the hood could represent that abstraction.

The same thing has happened here: we’ve built up a new family of objects, TERM, in terms of an old
abstraction CONCRETETERM. What we have not yet done is build up our new API, our abstraction, over
this new family of objects, such that we can go back to mostly ignoring the low-level details. The weird
thing is that our new interface to TERM will look a whole lot like our old interface to CONCRETETERM,
namely constructors and destruction principles. They will look so similar that we will start using the exact
same notation for both of them. However, their properties are not exactly the same, and that is where some
care is needed to ensure that what you write still makes sense. The analogy is tight, but not perfect.

So yeah, this sort of feels like cheating, but that’s basically the entire dirty secret behind abstraction in
computer science: come up with some painfully complicated artifacts, then lovingly wrap them in a human-
friendly straight jacketˆHˆHˆHˆH notation for talking about them. The takeaway is: ultimately we will care
about the API, not the junk underneath that we use to demonstrate that the API is “implementable”.

Let’s start on building up that interface. For our purposes, it will be very important to map
CONCRETETERMs to their corresponding equivalence classes. This is one of the core tricks underlying
the formalization of Barendregt’s conventions. To do so we define the injection function:

Definition 9 (Injection).

A[[·]] : CONCRETETERM → TERM

A[[t]] = { t0 ∈ CONCRETETERM | t ∼a t0 }

That’s a pretty spartan definition, so let’s draw out some of its implications as theorems. The follow-
ing properties can be deduced one-by-one, and are somewhat overlapping, but are generally useful, so
presented here as a group. They expose some of the properties which I believe that Barendregt intended
to exploit in his approach to syntax: operate on TERMs, but mostly by referring to CONCRETETERMs that
represent them, leaving any necessary injection operations implicit.8

Proposition 3 (Representation).

1. ∀t ∈ CONCRETETERM. t ∈ A[[t]]. In words, each representative is an element of the class it represents;

2. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 ⇐⇒ A[[t1]] = A[[t2]].
In words, A[[·]] exactly conveys the alpha-equivalence classes;

3. ∀tα ∈ TERM.∀t ∈ tα. tα = A[[t]]. In words, any element of tα can represent it;

4. ∀tα ∈ TERM.∃t ∈ CONCRETETERM. tα = A[[t]]. In words, A[[·]] is surjective: every TERM can be repre-
sented by a CONCRETETERM.

The key idea behind Barendregt’s variable convention is that we can encapsulate and abstract away
from issues that arise due to bound-variable names by 1) operating over alpha-equivalence classes TERM,
but 2) doing so by referencing and working with CONCRETETERMs as representatives of the underly-
ing alpha-equivalence classes. In short, we can implicitly treat a CONCRETETERM as whichever alpha-
equivalent analogue is most convenient to operate with at that moment. Part 1) corresponds to Convention

8You’ll see below that we’re going to build on that idea but go further, by developing an algebra for alpha-equivalent syntax, such
that everything is precisely specified, leaving behind CONCRETETERMs as representatives (but we’ll steal their notation).

Page 7

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

2.1.12, and Part 2) corresponds to Variable Convention 2.1.13. Part 2 in particular is meant to once-and-for-
all introduce side-conditions on expressions that can now be assumed implicitly. The idea is that so long
as those side-conditions hold, each manipulated term can be interpreted as a proposition about the TERMs
that arise via injection A[[·]].

Here is an example: later we introduce the following reduction rule:

(λx.t) v −→ [v/x]t
(sapp)

However, reduction is defined as operating on TERMs, not CONCRETETERMs, so this can’t be quite right.
Following Barendregt’s conventions, the appropriate interpretation is the following:

A[[(λx.t) v]] −→ A[[[v/x]t]]
(sapp)

BV (λx.t) ∩ FV (v) = ∅, BV (v) ∩ FV (λx.t) = ∅

Let me spell this out with even more side-conditions, just to make a bit more explicit what this rule says:

tα1 −→ tα2
(sapp)

∃x ∈ VAR, t ∈ TERM, v ∈ VALUE.

(BV (λx.t) ∩ FV (v) = ∅) ∧ (BV (v) ∩ FV (λx.t) = ∅) ∧
(tα1 = A[[(λx.t) v]]) ∧ (tα2 = A[[[v/x]t]]).

Part of why this makes sense is a critical property that requires proof: that capture-avoiding substitution
preserves alpha-equivalence.

So this inductive rule is really about relating TERMs to one another, but that relationship is expressed
in terms of CONCRETETERMs and the relationships that hold between them. Two TERMs are related by
reduction only if constraints on two CONCRETETERMs, which inject to them, can be satisfied. So since
the description is primarily in terms of CONCRETETERMs, the variable convention suggests that we leave
implicit the fact that the description is ultimately about TERMs, and phrase the constraints as a universal
assumption that need never be repeated.

However, when working on paper it is easy to accidentally cross abstraction boundaries, or not precisely
understand where the boundaries lie (because there is no notation to help you “type check” your formalism:
you have to do “injection-inference” in your head, which is easy to get wrong. This technique of quotienting
carries over to other language aspects. For example, in a language with memory addresses, how do we
formally express that we don’t care which memory address is mapped to a value? Felleisen and Friedman
[1989] demonstrate this in action.

One key principle behind this quotienting is that the most relevant reasoning principles for CONCRETETERM
can be lifted to analogous principles for TERM, at first through the lens of A[[·]], but then we devise a high-
level API for terms by introducing TERM “constructors”, functions that abstract away the gory details of
equivalence classes.

First, consider some quite-standard backward-reasoning lemmas for CONCRETETERM

Lemma 1 (Inversion). Let t ∈ CONCRETETERM. Then exactly one of the following is true:

1. ∃!n ∈ Z. t = n;

2. ∃!t1, t2 ∈ CONCRETETERM. t = t1 + t2;

3. ∃!x ∈ VAR. t = x;

4. ∃!x ∈ VAR, t0 ∈ CONCRETETERM. t = λx.t0;

5. ∃!t1, t2 ∈ CONCRETETERM. t = t1 t2;

6. ∃!x ∈ VAR, t1, t2 ∈ CONCRETETERM. t = let x = t1 in t2.

UsingA[[·]], we can state and prove the following reasoning lemmas for TERM, which quite intentionally
look like the ones for CONCRETETERM, but for that pesky A[[·]].

Lemma 2 (Representational Inversion). Let tα ∈ TERM. Then exactly one of the following is true:

Page 8

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

1. ∃!n ∈ Z. tα = A[[n]];

2. ∃!t1, t2 ∈ CONCRETETERM. tα = A[[t1 + t2]];

3. ∃!x ∈ VAR. tα = A[[x]];

4. ∃x ∈ VAR, t ∈ CONCRETETERM. tα = A[[λx.t]];

5. ∃!t1, t2 ∈ CONCRETETERM. tα = A[[t1 t2]];

6. ∃x ∈ VAR, t1, t2 ∈ CONCRETETERM. tα = A[[let x = t1 in t2]].

Notice that some of the new propositions no longer assert unique existence; we’ll talk about that shortly.

4 Beyond Barendregt: Alpha-equivalent Syntax

TERM “constructors” Now we deal with the pesky A[[·]], or by hiding it behind some more abstracting
machinery. In particular we lift CONCRETETERM constructors to TERM “constructor” operations.

The definitions of the operators here are “elementary” in the sense that they are simple definitions (easily
seen to be well-defined), though these equations do not adequately express the fundamental principles of
interest: we state these properties immediately afterward. Technically we could state the fundamental
equations and then prove that they definitely describe a function instead. It’s a little weird since ultimately
we want to use a “nondeterministic” representation description that uses a CONCRETETERM t to denote a
TERM tα.

Definition 10 (TERM Operators).
·α : (Z ∪ VAR)→ TERM
nα = A[[n]]
xα = A[[x]]

@α : TERM × TERM → TERM
tα1 @α tα2 = { (t1 t2) ∈ TERM | t1 ∈ tα1 , t2 ∈ tα2 }

+α : TERM × TERM → TERM
tα1 +α tα2 = { t1 + t2 ∈ TERM | t1 ∈ tα1 , t2 ∈ tα2 }

λα : VAR → TERM → TERM
λα[x]tα = {λx.t ∈ TERM | t ∈ tα }

letα : VAR × TERM × TERM → TERM
letα(x, tα1 , t

α
2) = { let x = t1 in t2 ∈ TERM | t1 ∈ tα1 , t2 ∈ tα2 }

The definitions above are “elementary”, requiring only simple reasoning to justify the existence of each
function. The equational reasoning principles that we really intend to work with follow:

Proposition 4 (Liftings).

1. ∀t1, t2 ∈ CONCRETETERM.A[[t1]] @α A[[t2]] = A[[t1 t2]];

2. ∀t1, t2 ∈ CONCRETETERM.A[[t1]] +α A[[t2]] = A[[t1 + t2]];

3. ∀x ∈ VAR, t ∈ TERM. λα[x]A[[t]] = A[[λx.t]].

In principle we could have defined these three operators directly as the unique functions that satisfy
the equations stated in the proposition, but proving that these propositions (which on the surface are about
CONCRETETERMs) justify definitions of the given functions (which ultimately are about TERMs) require
additional reasoning beyond what we usually take for granted in an equational function definition. So
we separate concerns: define the functions in an elementary way, and then separately build the reasoning
principles that we will use when working with these functions.

Page 9

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Finally, take note of the atomic injection operation ·α, which embeds numbers and variables into our
TERM classes. This concept makes direct sense in CONCRETETERM, where a variable reference x is not the
same thing as a binder λx. You can think of the variable reference as being var[x], an operator indexed on a
particular variable, and a number being num[n], an operator indexed on a particular number. So N and VAR
are injected into CONCRETETERM, even though our notation makes that implicit. Our approach to TERM
makes it explicit.

Now armed with operators that lift our term construction principles from CONCRETETERM to TERM,
we can analogously lift our TERM analysis principles:

Proposition 5 (Structural Inversion). Let tα ∈ TERM. Then exactly one of the following is true:

1. ∃!n ∈ Z. tα = nα;

2. ∃!tα1 , tα2 ∈ TERM. tα = tα1 +α tα2 ;

3. ∃!x ∈ VAR. tα = xα;

4. ∃x ∈ VAR, tα ∈ TERM. tα = λα[x]tα;

5. ∃!tα1 , tα2 ∈ TERM. tα = tα1 @α tα2 ;

6. ∃x ∈ VAR, tα1 , t
α
2 ∈ TERM. tα = letα(x, tα1 , t

α
2).

One key difference between structural inversion on alpha-equivalence classes versus concrete terms is
that inversion on lambda abstractions and let-bindings do not decompose TERMs into unique constituents.
A TERM A[[λx.t]] decomposes into many possible VARs x and TERMs tα. This loss of uniqueness is both
a boon and a curse. We can prove that all but a finite number of variables x can arise, or in a sense be
demanded. We’ll see that that finite number of unavailable variables corresponds to the proper notion of
free variables for TERM, and is sometimes called its finite support (a term from nominal logic, a theory for
modeling binders developed by Andrew Pitts and colleagues Pitts [2013]). This leads to extremely useful,
more powerful principles for terms with bound variables.

Proposition 6 (Structural Inversion with Finite Support). Let tα ∈ TERM. Then

1. ∀tα ∈ TERM. (∃x1 ∈ VAR, tα1 ∈ TERM. tα = λα[x1]tα1) =⇒
∀X ∈ Pfin(VAR).∃x2 ∈ VAR, tα2 ∈ TERM.x2 /∈ X ∧ tα = λα[x2]tα2 .

2. ∀tα ∈ TERM. (∃x1 ∈ VAR, tα11, t
α
12 ∈ TERM. tα = letα(x1, t

α
11, t

α
12) =⇒

∀X ∈ Pfin(VAR).∃x2 ∈ VAR, tα21, t
α
22 ∈ TERM.x2 /∈ X ∧ tα = letα(x2, t

α
21, t

α
22).

In essence, these propositions guarantee that it is always possible to decompose a term with a binder
such that the newly free variable is surely not in some freely chooseable finite set of variables X .

It may be a little confusing that the notation tα is used for a whole metavariable, whereas nα and xα

are applications of a function ·α to numbers n and VARs x respectively. I’ve allowed myself to use a bit of
notational punning, so as to avoid inventing distinct notation for TERM metavariables, while still alluding to
this concept lifting into alpha-equivalence classes. I hope this bit of syntactic sugar is not too confusing.

4.1 Induction On Alpha-Equivalence Classes

The direct definition of TERM does not automatically induce the kind of reasoning principle that we are
used to exploiting for syntax. Here we develop a bespoke induction principle for TERM, in painful detail.
First, following the usual strategy, we define “some structural term subset” ST of TERM (hint, it’s not just
any subset).

Definition 11 (Structural Term). ST ⊆ TERM

nα ∈ ST (STn)
tα1 ∈ ST tα2 ∈ ST
tα1 +α tα2 ∈ ST (ST+)

xα ∈ ST (STx)
tα ∈ ST

λα[x]tα ∈ ST
(STλ)

tα1 ∈ ST tα2 ∈ ST
tα1 @α tα2 ∈ ST (ST@)

tα1 ∈ ST tα2 ∈ ST
letα(x, tα1 , t

α
2) ∈ ST

(STlet)

Page 10

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Then we conveniently discover that the subset we’ve identified inductively is in fact the entire set, thereby
letting us use the new induction principle to reason about the old set.

Proposition 7 (Redefinition). TERM ⊆ ST.

Corollary 1. TERM = ST.

And voila! By extensionality TERM inherits ST’s induction principle:

Proposition 8 (Principle of Rule Induction on the structure of TERM). Let Φ be a predicate on TERMs tα. Then
Φ(tα) holds for all tα ∈ TERM if:

1. ∀n ∈ N.Φ(nα);

2. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 +α tα2);

3. ∀x ∈ VAR.Φ(xα);

4. ∀x ∈ VAR, tα ∈ TERM.Φ(tα) =⇒ Φ(λα[x]tα);

5. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 @α tα2);

6. ∀x ∈ VAR, tα1 , t
α
2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(letα(x, tα1 , t

α
2)).

The above inductive definition and corresponding induction principle are appealing: they make TERM
look and feel a lot like CONCRETETERM, providing analogous reasoning principles. However, we some-
times want stronger reasoning principles for TERM, which give us even stronger “induction hypotheses”
when performing proof by induction.

To explain, consider the induction lemma induced for Λ, Prop. 8.4. It says that having assumed a par-
ticular variable x and a particular tα and the property Φ holding for that particular tα, we must prove
that

Φ(λα[x](tα) holds. The unsatisfying thing about this lemma is that a term λα[x](tα) can be represented
by many different x′, tα′ pairs, such that λα[x′](tα′) = λα[x](tα), and at different points in a proof we might
benefit from considering other such decompositions. Unfortunately, the above principle does not let us
assume that Φ(tα′), only Φ(tα). This can be a severe limitation, especially when combining induction with
backward reasoning. Luckily we can do better.

First, we introduce a new well-founded relation on TERM that is motivated by the structure that we
have superimposed on the set.
@ ⊆ TERM × TERM α-Structural Order

tα1 @ t
α
1 @α tα2 tα2 @ t

α
1 @α tα2 tα @ λα[x](t̂) tα1 @ letα(x, tα1 , t

α
2) tα2 @ letα(x, tα1 , t

α
2)

To prove well-foundnedness, it suffices to show that tα1 @ tα2 implies size(tα1) < size(tα2) given an appro-
priate size function for TERM. We discuss how to use the size function for CONCRETETERM to define the
analogous function for TERM in the next section.

The @ relation induces a principle of well-founded induction on TERM that exhibits the power that we
seek. The key observation is that the standard rule for well-founded induction collects all elements tα1 such
that tα1 @ tα2 as the premises for the rule with conclusion tα2 . This means that the instances of the rule for a
lambda abstraction will have the form:

{ tα ∈ TERM | ∃x ∈ VAR. λα[x](tα) = λα[x0]tα0 }
λα[x0]tα0

(@ λ)

Thus, the premise includes all candidate TERM bodies. We can then take the corresponding induction
principle and explicitly distinguish the structure of TERM to yield the following more expressive one.

Page 11

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proposition 9 (Principle of Rule Induction on the α−structure of TERM). Let Φ be a predicate on TERMs tα.
Then Φ(tα) holds for all tα ∈ TERM if:

1. ∀n ∈ N.Φ(nα);

2. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 +α tα2);

3. ∀x ∈ VAR.Φ(xα);

4. ∀x ∈ VAR, tα ∈ TERM. (∀x0 ∈ VAR, tα0 ∈ TERM. λα[x0]tα0 = λα[x]tα =⇒ Φ(tα0)) =⇒ Φ(λα[x]tα);

5. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 @α tα2);

6. ∀x ∈ VAR, tα1 , t
α
2 ∈ TERM.Φ(tα1) ∧ (∀x0 ∈ VAR, tα0 ∈ TERM. letα(x0, t

α
1 , t

α
0) = letα(x, tα1 , t

α
2) =⇒

Φ(tα0)) =⇒ Φ(letα(x, tα1 , t
α
2)).

It may seem odd that we are not keeping the corresponding binding variables x0 around, but since our
reasoning says that there must exist such an x0, we just ”pick/choose” such an x0 when we need it.

One last observation: it is often the case that a proof using α-structural Induction could also have been
performed using Induction on the size of TERM, and the proof would have a similar structure. Can you see
why?

4.2 Lifting Functions

One of the keys to our smooth development of abstract syntax is that we can adapt many functions from
concrete syntax with minimal effort. In particular, we have the following proposition

Proposition 10 (Lifting). Let S be some set, and F : CONCRETETERM → S. Then if
∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ F (t1) = F (t2), then there is a unique function Fα : TERM → S such
that ∀t ∈ CONCRETETERM. Fα (A[[t]]) = F (t).

Thus it suffices to prove that a function is invariant for alpha-equivalent terms in order to justify a lifted
version of a function. Here is an example.

Proposition 11. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ FV (t1) = FV (t2).

This proposition gives us a natural (expected) notion of free variables for TERMs. We can recast it
equationally by proving the analogue of each equation post-hoc, e.g.:

Proposition 12. ∀x ∈ VAR, tα ∈ TERM. FV α (λα[x]tα) = FV α(tα) \ {x } .

On the other hand, notions like all occurring variables Vars or especially bound variables BV , have no
immediately direct analogue in TERM. The latter fact is in essence the entire point of our construction: bound
variable names are insignificant. Here is a typical definition of a bound variables function:

Definition 12 (Bound Variables).

BV : CONCRETETERM → P(VAR)
BV (n) = ∅

BV (t1 + t2) = BV (t1) ∪ BV (t2)

BV (x) = ∅
BV (λx.t) = BV (t) ∪ {x }
BV (t1 t2) = BV (t1) ∪ BV (t2)

BV (let x = t1 in t2) = BV (t1) ∪ (BV (t2) ∪ {x })

Note that λy.y ∼a λx.x but BV (λy.y) = { y } 6= { x } = BV (λx.x). In fact, A[[λx.x]] = {λx.x | x ∈ VAR },
so in a sense every variable whatsoever appears bound in this alpha-equivalence class! Thus you could argue
that the concept of bound variables has little to no meaning here. Indeed!

Page 12

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

4.3 Lifting Capture-Avoiding Substitution

Just as we were able to use concrete term construction and concrete term analysis to define analogues for
our abstract terms, so can we now do so for many other operations on abstract syntax. BUT NOT ALL: some
notions don’t make sense on alpha-equivalence classes. For example, Naı̈ve substitution does not have an
obvious analogue for TERM: in fact that was kind of the point. However, it is important that if we wish
TERM to be our idealized syntax, then we must make sure that the operations we want CAN be lifted to
TERM.

[RG: Demonstrate how/where naı̈ve substitution breaks down, and where it succeeds].
However, capture-avoiding substitution does remain meaningful after we lift our syntax from CONCRETETERM

to TERM!

Proposition 13 (Capture-Avoiding Substitution Preserves Alpha-equivalence).

∀x ∈ VAR, t11, t12, t21, t22 ∈ CONCRETETERM. t11 ∼a t21 ∧ t12 ∼a t22 =⇒ [t11/x]t12 ∼a [t21/x]t22.

The above proposition differs from our earlier ones in a couple of interesting ways. First, capture-
avoiding substitution is a function of three arguments: two CONCRETETERMs and one VAR. Technically,
capture-avoiding substitution preserves alpha equivalence in several ways:

1. two CONCRETETERMs being substituted into the same target CONCRETETERM may be alpha-equivalent;

2. two CONCRETETERMs being targeted with substitution by the same CONCRETETERM may be alpha-
equivalent;

3. two alpha-equivalent CONCRETETERMs may be substituted respectively into two other alpha-equivalent
CONCRETETERMs.

Since any CONCRETETERM is alpha-equivalent to itself, the third case subsumes the first two.
Another interesting aspect of this situation is the outcome: In the case of free variables or size, the results

for equivalent inputs were equal. In the case of substitution, the outputs, which are CONCRETETERMs need
only be alpha-equivalent. So our lifting of capture-avoiding substitution does not yield a CONCRETETERM,
but rather a TERM, just like our lifted constructors. That’s easy to address: compose capture avoiding
substitution with lifting and you get the desirable property:

Corollary 2 (Capture-Avoiding Substitution Lifts).
Let F : CONCRETETERM × VAR × CONCRETETERM → TERM be defined by F = A[[·]] ◦ [·/·]·. Then
∀x ∈ VAR, t11, t12, t21, t22 ∈ CONCRETETERM. t11 ∼a t21 ∧ t12 ∼a t22 =⇒ F (t11, x, t12) = F (t21, x, t22).

Now we can apply Prop 10 to (A[[·]] ◦ [·/·]·) to lift capture-avoiding substitution.

Definition 13 (Lifted Substitution).

[·/·]α· : TERM × VAR × TERM → TERM

[A[[t1]]/x]αA[[t2]] = A[[[t1/x]αt2]].

Ultimately with some work [RG: Do it], we can arrive at an equational description of lifted substitution
that looks a lot like our earlier one for naı̈ve substitution.

Proposition 14 ((Capture-avoiding) Substitution, Recursive-ishly). The [·/·]α· function is the function in TERM×
VAR × TERM uniquely described by the following equations:

[tα/x]αn = n

[tα/x]α(tα1 +α tα2) = ([tα/x]αtα1) +α ([tα/x]αtα2)

[tα/x]αxα = tα

[tα/x]αx0
α = x0

α if x0 6= x

[tα/x]α(tα1 @α tα2) = ([tα/x]αtα1) @α ([tα/x]αtα2)

[tα/x]αletα(x0, t
α
1 , t

α
2) = letα(x0, ([t

α/x]αtα1), ([tα/x]αtα2)) if x 6= x0

[tα/x]α(λα[x0]tα0) = λα[x0]([tα/x]αtα0) if x 6= x0

Page 13

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

One might want to rewrite this definition using “top-level injection”, but that would lead to some “type
errors”, in the sense that you cannot apply the lifted substitution to individual terms...you’d end up refer-
ring to substitution on individual terms, which is where we started.

4.4 Pay no attention to the sets behind the curtain!

“The relations or laws which are derived entirely from the conditions . . . and therefore are al-
ways the same in all ordered simply infinite systems, whatever names may happen to be given to
the individual elements, form the next object of the science of numbers or arithmetic.” – Richard
Dedekind (as translated in Sieg and Schlimm [2005])

Now we can put the final seal on our new abstraction layer, and pay no further mind to the messy
details. The following may feel like some notational sleight of hand, but it’s so much more than that: it’s
just another example of building the higher-level tools and abstractions that you need and want.

In the above development, we have defined a new notion of TERMs as somewhat unpleasant nebulous
blobs of sets of CONCRETETERMs, our old notion, by taking the concept of alpha-equivalence to turn mere
equivalence relationships into set-theoretic identities. Then, we tamed these blobby sets by building up a
more pleasant “structural” interface to them: we constructed operators like λα and @α, which are directly
analogous to our constructors for CONCRETETERMs. We also lifted capture-avoiding substitution to form
a corresponding notion of substitution, which is by its very nature capture-avoiding: our old naı̈ve substi-
tution doesn’t even make sense for TERM. And finally we developed inversion principles, and “structural”
induction principles.

With this nice clean syntax-like API for TERM, we don’t really care what a TERM is made up of internally:
we can ignore the internals and just use our construction, destruction, and induction principles just like
CONCRETETERM. So that’s exactly what we’re going to do: from now on we we change notation, using
the original notation for CONCRETETERMs to refer to our constructed operators for TERMs! We don’t care about
CONCRETETERMs anymore, so our notation need never refer to them again. This is kind of like shadowing
native language operator names with your own (as we can do with ease in a language like Racket!).

Definition 14 (Abstract Syntax).

x ∈ VAR, n ∈ Z, t ∈ TERM
t ::= n | t + t | x | λx.t | t t | let x = t in t

Note: TERMs are identified up-to choice of bound variable names.

What you may not realize or remember is that we use an exactly analogous technique to give meaning
to CONCRETETERM in the first place! There is no such thing as an “abstract syntax tree” in set theory: we
build up the concept of the set TREE and then inductively define CONCRETETERM. Then we show that we
never really cared about a concrete notion of TREE, but rather just the algebraic structure induced by the
constructors: any model of those constructors will do. This is what Dedekind alludes to in the quote that
begins this subsection: whether one uses Roman numerals, Coq-like unary numerals, binary numerals, or
Indo-Arabic numerals, all of these notations represent a singular object of science: the natural numbers. We
seek a pleasant notation and reasoning principles for “terms up to choice of bound variable names.”

Here we’ve done the same exact thing, but the resulting algebraic structure, of “terms modulo choice of
bound variable name” is more involved of a construction. But ideally our construction process has given
you confidence that we have defined the right kind of structure, and deduced the right structural properties
in terms of our abstract constructor operations. Now we can treat TERM as an opaque set of constructors
with interesting identities.

Def. 14 is a phenomenal compression of the entire construction process that we described above, cor-
responding in essence to Def. 10, which gives construction principles, Prop. 5, which gives destruction
principles, and Prop. 8, which gives induction principles, which is just as we typically interpret BNFs,
though for a much more straightforward notion of syntax.

In essence, this is what Barendregt alludes to as a practice, albeit with fewer of the details spelled out
(like the reasoning principles), and some anachronisms sneaking in from CONCRETETERM (e.g., a TERM has

Page 14

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

no coherent notion of “bound variables”, though it does have a coherent notion of “free variables” which
affects how formulae can be precisely interpreted).

Some caution must still be exercised, though, when we consider the definition of new relations and
functions over TERM, thanks to the fact that it is not a simple inductive definition, and its inductive char-
acterization and corresponding principle of induction is not the same as your typical syntactic definition.
In particular, Defn. 11 is not a deterministic inductive definition: because of choice of bound variables, a
member of ST can be constructed multiple ways. This means that we do not as straightforwardly get a
corresponding Principle of Definition by Recursion: we must ensure that the given equations are invariant
with respect to choice of bound variables.

For example, here is a legitimate (re)-definition of capture-avoiding now with our new notation.

Definition 15 (Substitution (with abstract TERMs)).
[·/·]· : TERM × VAR × TERM → TERM

[t/x]n = n

[t/x](t1 + t2) = ([t/x]t1) + ([t/x]t2)

[t/x]x = t

[t/x]x0 = x0 if x0 6= x

[t/x](t1 t2) = ([t/x]t1) ([t/x]t2)

[t/x]let x0 = t1 in t2) = let x0 = ([t/x]t1) in ([t/x]t2) if x 6= x0

[t/x]λx0.t0 = λx0.[t/x]t0 if x 6= x0

This definition is meant to be interpreted exactly the same as Defn. ??: only the notation is different. Recall
though that this function definition was justified by a process of lifting Defn. ?? from CONCRETETERM to
TERM.

In particular, if we were to compare this to the Principle of Definition by Recursion for CONCRETETERM,
we would see that this does not match that recursion schema. To see this, it’s worth comparing the above
definition to Def. ??, the one for Naı̈ve substitution. Aside from the particulars of the substitution notation,
each equation looks like one from Naı̈ve substitution, but there are two fewer equations here: the equations
for lambda and let from naı̈ve substitution that handle collisions with matching bound variables have been
omitted. Technically such equations could be added as well, but they would be redundant here. In the
case of Naı̈ve substitution, they are needed to complete the definite description. Here they are just extra
properties.

Must we always define functions over TERM by appealing back to CONCRETETERM and lifting the
result every time??? That would really suck: it would mean that our new abstraction does not enjoy all of
the benefits that we have come to enjoy from BNFs and other inductive definition abstractions. In short, we
need a definition principle that could rightfully be called α-structural recursion for TERM. Such a principle
should allow us to state the definition of functions over TERM as equations that we know to definitely
describe a unique function merely by consulting the shape (i.e., schema) of the relevant equations.

[RG: Flesh this idea out here]

5 Semantics

Okay, now we have a rigorous syntax for our language, let’s write some semantics. The funny thing is that
because of the notational sleight-of-hand, the results look the same as they did without alpha-equivalence
classes. But to clarify what is going on, we’ll also desugar some of the definitions just so you can see where
exactly all this machinery that we’ve developed (and now proceed to hide aggressively) comes into play.

Page 15

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Definition 16 (Dynamic Semantics Artifacts).

v ∈ VALUE ⊆ PGM, F ∈ FRAME, r ∈ REDEX ⊆ PGM
f ∈ FAULTY ⊆ REDEX, err ∈ ERROR, c ∈ CONFIG
p ∈ PGM = { t ∈ TERM | FV (t) = ∅ } , OBS = {procedure,∞} ∪ Z ∪ ERROR
v ::= n | λx.t
F ::= � p | v � | let x =� in t | � + p | v +�
r ::= v v | let x = v in t | v + v
f ::= v1 v2 v1 /∈ {λx.t ∈ TERM }

| v1 + v2 { v1, v2 } * Z
err ::= mismatch
c ::= p | err

We’ll begin our unpacking with the defintiion of PGM, the set of programs. Don’t let the metavariable
t fool you, we really mean tα. And we’re not using the free variable function on CONCRETETERM either.
We’ve just dropped the ·α. So really:

PGM = { tα ∈ TERM | FV α(tα) = ∅ }

Ok, not bad so far.
Now for the definition of VALUE, which is a subset of PGM, we’re using the subtle trick that values must

be closed, so the BNF can only be interpreted as a shorthand for a trivial inductive definition of a subset of
PGM:

VALUE ⊆ PGM

nα ∈ VALUE λα[x]tα ∈ VALUE tα ∈ TERM

The second rule is the interesting one. Since VALUE is defined as a subset of PGM, we automatically get the
constraint that λα[x]tα ∈ PGM for any legal instance of this rule. Note as well that the rule has no premise,
just a side-condition. So this is really just definition by cases.

The definition of FRAME is rife with syntactic sugar as always. There are no special uses of any TERM
or CONCRETETERM constructors anywhere. The syntax we use, as usual, alludes to the role of each kind of
frame and how it behaves when plugged with a PGM.

The definition of FAULTY is most precisely presented using something other than faux BNF, as done here:
we have abused BNF quite badly. But BNF is such a common social standard for syntax definition, so it is
hard to stray from it. Like VALUE, this too can be interpreted as trivial inductive definitions but with more
interesting side-conditions.

Ok, now we can consider the structural operational semantics for the language.

Definition 17 (Single-step Reduction). −→ ⊆ PGM × CONFIG

(λx.t) v −→ [v/x]t
(sapp)

let x = v in t −→ [v/x]t
(slet) n3 = n1 + n2

n1 + n2 −→ n3
(splus)

f −→ mismatch (serr)
p1 −→ p2

F [p1] −→ F [p2]
(Fstep)

p1 −→ err

F [p1] −→ err
(Ferr)

Let’s take one example and work through it. The (sapp) rule can be precisely rendered as follows:

(λα[x]tα) @α v −→ [v/x]αtα
(sapp)

Notice the use of TERM “constructors” to structure this rule. Here is where our representation is very much
non-algorithmic because of the use of higher-level operators. But this is most in-line with what is meant
throughout. Conveniently enough we could rewrite this rule using properties of all of these operators, to
phrase it all in terms of injection:

A[[(λx.t1) t2]] −→ A[[[t2/x]t2]]
(sapp)

t2 ∈ v

Page 16

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

This rephrasing of the rule says exactly the same thing, albeit with a bit less abstraction. Notice that in order
to precisely phrase it, I had to grab some representative out of v, which is some alpha-equivalence class of
CONCRETETERMs. This is arguably a violation of abstraction boundaries, but then using A[[·]] can also be
considered such a violation.

One nice thing about this latter presentation is its implications for language implementors. The language
is defined over equivalence classes, but the intrepid programmer may represent those classes using any
representative that works. This means that any technique for freshening variables (where needed) is con-
sidered valid, since the representative is just a stand-in for its entire class (via A[[·]]). For example, when
performing substitution, no longer are we tied to Curry’s particular choice of fresh variable names, which
is fantastically annoying to implement. Any fresh name generation mechanism is fair game.

Divergence is pretty abstract, referring to single-step reduction as a side-condition, so there’s nothing to
worry about here.

Definition 18 (Divergence). ∞−→ ⊆ PGM

p1 −→ p2 p2
∞−→

p1
∞−→

Evaluation benefits from some treatment.

Definition 19 (Evaluation).

eval : PGM → OBS

eval(p) = n if p −→∗ n
eval(p) = procedure if p −→∗ λx.t
eval(p) = err if p −→∗ err

eval(p) =∞ if p ∞−→

Since OBS includes literal numbers, rather than (boring) alpha-equivalence classes of numbers, we need
to unpack a bit. Similarly, procedures should be desugared. The rest is as-is.

eval(p) = n if p −→∗ nα

eval(p) = procedure if p −→∗ λα[x]tα

5.1 Redux

Having shown how some of the constructs desugar above, I hope that it is clearer that there are some sub-
tleties involved. The (sapp) rule only makes sense because [·/·]α· is well-defined, which requires proof.
Furthermore, there is some work involved to insert “constructors” or injections in all the right places to
yield the right definition. At no point did we, for example, identify derivation trees up to alpha, or iden-
tify reductions up to alpha. All of that work was done during the definition of TERM, and the lifting of
constructors and operations. The inductive definition is of the same form as we’ve always done, but now
over equivalence classes of CONCRETETERMs rather than CONCRETETERMs themselves. But both of these
entities are sets as far as set theory is concerned, so there’s no difference. If we added a type system to this
language, the development would proceed much like it did for single-step reduction: typing rules would
apply to TERMs, injections would need to be appropriately placed, and that’s it. Even typing contexts Γ
could be the same as always.

Similar identification processes can be applied to other things besides bound variable names. For in-
stance, Felleisen and Friedman [1989] presents a rigorous treatment of store locations, providing a seman-
tics that abstracts away from the specific choice of store locations, and discusses the implications of that
construction.

The common claim of “identifying terms up to alpha-equivalence” can be understood based on in-
tuitions about what that might mean, but the devil is in the details, especially making sure that all the

Page 17

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

relevant operations are well-defined for equivalence classes, and recognizing where representatives versus
class members appear in the development.

[RG: more gobbledygook] So we can represent entire alpha-equivalence classes of CONCRETETERMs
using a single CONCRETETERM. Technically when we do so we are almost always referring to the class
not the individual CONCRETETERM. However we do so using the notation of the original CONCRETETERM
even though we are really talking about some TERM. Technically it takes a bunch of machinery to justify
this, but such is often the case when building up clean abstractions.

References

Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in logic and
the foundations of mathematics. North-Holland, 1985. ISBN 978-0-444-86748-3.

Matthias Felleisen and Daniel P. Friedman. A syntactic theory of sequential state. Theoretical Computer
Science, 69(3):243–287, 1989. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(89)90069-8. URL
http://www.sciencedirect.com/science/article/pii/0304397589900698.

Andrew M Pitts. Nominal sets: Names and symmetry in computer science. Cambridge University Press, 2013.

Wilfried Sieg and Dirk Schlimm. Dedekind’s analysis of number: Systems and axioms. Synthese, 147(1):
121–170, Oct 2005.

Christian Urban and Michael Norrish. A formal treatment of the Barendregt variable convention in rule in-
ductions. In Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding, MERLIN ’05, page 25–32, New York, NY, USA, 2005. Association for Computing Machin-
ery. ISBN 1595930728. doi: 10.1145/1088454.1088458. URL https://doi.org/10.1145/1088454.
1088458.

Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s variable convention in rule in-
ductions. In Proceedings of the 21st International Conference on Automated Deduction: Automated De-
duction, CADE-21, page 35–50, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 9783540735946. doi:
10.1007/978-3-540-73595-3 4. URL https://doi.org/10.1007/978-3-540-73595-3_4.

[RG: Toggle on and off proof visibility]

A Proofs

Proposition 15 (Principle of Structural Induction for CONCRETETERM). Let Φ be a property of terms t. Then
∀t ∈ CONCRETETERM.Φ(t) if:

1. (num) ∀n ∈ N.Φ(n);

2. (plus) ∀t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(t1 + t2);

3. (var) ∀x ∈ VAR.Φ(x);

4. (lam) ∀x ∈ VAR, t ∈ CONCRETETERM.Φ(t) =⇒ Φ(λx.t);

5. (app) ∀t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(t1 t2);

6. (let) ∀x ∈ VAR, t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(let x = t1 in t2).

Proposition 16 (Principle of Size Induction for CONCRETETERM).
Let Φ be a property of CONCRETETERMs t. Then the following holds:(
∀t1 ∈ CONCRETETERM.

(
∀t2 ∈ CONCRETETERM. size(t2) < size(t1) =⇒ Φ(t2)

)
=⇒ Φ(t1)

)
=⇒ ∀t ∈ CONCRETETERM.Φ(t)

Page 18

http://www.sciencedirect.com/science/article/pii/0304397589900698
https://doi.org/10.1145/1088454.1088458
https://doi.org/10.1145/1088454.1088458
https://doi.org/10.1007/978-3-540-73595-3_4

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proposition 17 (Principle of Rule Induction for (· ∼a ·)). Let Φ be a property of t1 ∼a t2 instances. Then
∀(t1 ∼a t2).Φ(t1, t2) if:

1. (αnum) ∀n ∈ N.Φ(n, n);

2. (αplus) ∀(t11 ∼a t12), (t21 ∼a t22).Φ(t11, t21) ∧ Φ(t12, t22) =⇒ Φ(t11 + t12, t21 + t22);

3. (αvar) ∀x ∈ VAR.Φ(x, x);

4. (αlam1) ∀x ∈ VAR, (t1 ∼a t2).Φ(t1, t2) =⇒ Φ((λx.t1), (λx.t2));

5. (αlam2) ∀x1, x2, x3 ∈ VAR, t1, t2 ∈ CONCRETETERM. x1 6= x2 ∧ x3 /∈ (Vars(t1) \ { }x1) ∪ (Vars(t2) \
{ }x2)Φ((λx3.[x1 Z⇒ x3]t1), (λx3.[x2 Z⇒ x3]t2)) =⇒ Φ((λx1.t1), (λx2.t2));

6. (αapp) ∀(t11 ∼a t12), (t21 ∼a t22).Φ(t11, t21) ∧ Φ(t12, t22) =⇒ Φ(t11 t12, t21 t22);

7. (αlet1)
∀x ∈ VAR, (t11 ∼a t12), (t21 ∼a t22).Φ(t11, t21)∧Φ(t12, t22) =⇒ Φ((let x=t11 in t12), (let x=t11 in t12));

8. (αlet2) ∀x1, x2, x3 ∈ VAR, t11, t12t21, t22 ∈ CONCRETETERM.
x1 6= x2 ∧ x3 /∈ (Vars(t12) \ { }x1) ∪ (Vars(t22) \ { }x2) ∧
Φ((let x3=t11 in [x1 Z⇒ x3]t12), (let x3=t21 in [x2 Z⇒ x3]t22)) =⇒ Φ((let x1 = t11 in t12), (let x2 = t21 in t22)).

Proposition 18 (Principles of Inversion for (· ∼a ·), distinguishing t1 in t1 ∼a t2.).

1. ∀n ∈ N, t2 ∈ CONCRETETERM. n ∼a t2 =⇒ t2 = n;

2. ∀t11, t12, t2 ∈ CONCRETETERM. t11 + t12 ∼a t2 =⇒ ∃t21, t22 ∈ CONCRETETERM. t2 = t21 + t22;

3. ∀x ∈ VAR, t2 ∈ CONCRETETERM. x ∼a t2 =⇒ t2 = x;

4.

∀x1 ∈ VAR, t11, t2 ∈ CONCRETETERM. (λx1.t11) ∼a t2 =⇒
∃x2 ∈ VAR, t22 ∈ CONCRETETERM. t2 = (λx2.t22) ∧

((x2 = x1 ∧ t11 ∼a t22)∨
(x2 6= x1 ∧ ∃x3 ∈ VAR. x3 /∈ FV (λx1.t11) ∪ FV (λx2.t22) ∧

(λx3.[x1 Z⇒ x3]t11) ∼a (λx3.[x2 Z⇒ x3]t22)));

5. ∀t11, t12, t2 ∈ CONCRETETERM. t11 t12 ∼a t2 =⇒ ∃t21, t22 ∈ CONCRETETERM. t2 = t21 t22;

Proposition 19 (Refined inversion for (λx1.t1) ∼a (λx2.t2)).

∀x1, x2 ∈ VAR, t1, t2 ∈ CONCRETETERM. (λx1.t1) ∼a (λx2.t2) =⇒
∀x3 ∈ VAR. x3 /∈ (Vars(t1) \ {x1 }) ∪ (Vars(t2) \ {x2 }) =⇒

(λx3.[x1 Z⇒ x3]t11) ∼a (λx3.[x2 Z⇒ x3]t22).

Proof. [RG: Fill Me In] I bet this is a pain in the ass, but it tells a useful story about the difference (and
similarity) between shallow backward reasoning principles and other bespoke reasoning principles.

Strategy: when does naive renaming preserve alpha? Exploit that.

Proposition 1 ((· ∼a ·) is an Equivalence Relation).

1. ∀t ∈ CONCRETETERM. t ∼a t. In words, ∼a is reflexive;

2. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ t2 ∼a t1. In words, ∼a is symmetric;

3. ∀t1, t2, t3 ∈ CONCRETETERM. t1 ∼a t2 ∧ t2 ∼a t3 =⇒ t1 ∼a t3. In words, ∼a is transitive.

Proof of 1. Proof by structural induction on t ∈ CONCRETETERM. Φ(t) ≡ t ∼a t.

Page 19

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Lemma 3 (num). ∀n ∈ N.Φ(n).

Proof. Suppose n ∈ N. Then by (αnum) n ∼a n.

Lemma 4 (plus). ∀t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(t1 + t2).

Proof. Suppose t1, t2 ∈ CONCRETETERM, t1 ∼a t1, and t2 ∼a t2. Then apply (αplus) to the latter two to
yield t1 + t2 ∼a t1 + t2.

Lemma 5 (var). ∀x ∈ VAR.Φ(x).

Proof. Suppose x ∈ VAR. Then by (αvar) x ∼a x.

Lemma 6 (lam). ∀x ∈ VAR, t ∈ CONCRETETERM.Φ(t) =⇒ Φ(λx.t).

Proof. Suppose x ∈ VAR, t ∈ CONCRETETERM and t ∼a t. Then apply (αlam) to the latter to yield
(λx.t) ∼a (λx.t).

Lemma 7 (app). ∀t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(t1 t2).

Proof. Suppose t1, t2 ∈ CONCRETETERM, t1 ∼a t1, and t2 ∼a t2. Then apply (αapp) to the latter two to yield
t1 t2 ∼a t1 t2.

Lemma 8 (let). ∀x ∈ VAR, t1, t2 ∈ CONCRETETERM.Φ(t1) ∧ Φ(t2) =⇒ Φ(let x = t1 in t2).

Proof. Suppose x ∈ VAR, t1, t2 ∈ CONCRETETERM, t1 ∼a t1, and t2 ∼a t2. Then apply (αlet) to the latter
two to yield let x = t1 in t2 ∼a let x = t1 in t2.

Proof of 2. Proof by rule induction on (· ∼a ·).

Φ(t1 ∼a t2) ≡ t1 ∼a t2 =⇒ t2 ∼a t2.

Left as an exercise for the reader

Proof of 3. Proof by size induction on t2. Φ(t2) ≡ ∀t1, t3 ∈ CONCRETETERM. t1 ∼a t2 ∧ t2 ∼a t3 =⇒ t1 ∼a
t3. Suppose t2 ∈ CONCRETETERM and(

∀t ∈ CONCRETETERM. size(t) < size(t2) =⇒ Φ(t)
)

=⇒ Φ(t2)

)
.

Then it suffices to show Φ(t2). So suppose t1, t3 ∈ CONCRETETERM, t1 ∼a t2, land t2 ∼a t3. Then it suffices
to show that t1 ∼a t3.

We proceed by cases on the structure of t2 ∈ CONCRETETERM.
Case (t2 = n). [RG: Fill Me In]
Case (∃t21, t22 ∈ CONCRETETERM. t2 = t21 + t22). [RG: Fill Me In]
Case (t2 = x). [RG: Fill Me In]
Case (∃x ∈ VAR, t20 ∈ CONCRETETERM. t2 = λx.t20). [RG: Fill Me In]
Case (∃t21, t22 ∈ CONCRETETERM. t2 = t21 t22). [RG: Fill Me In]
Case (∃x ∈ VAR, t21, t22 ∈ CONCRETETERM. t2 = let x = t21 in t22). [RG: Fill Me In]

Proposition 2 ([·/·]· is well-defined). The equations in Defn. 7 describe a unique function.

F ∈ CONCRETETERM × VAR × CONCRETETERM → CONCRETETERM.

Page 20

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proof. [RG: FILL ME IN!]

Proposition 3 (Representation).

1. ∀t ∈ CONCRETETERM. t ∈ A[[t]]. In words, each representative is an element of the class it represents;

2. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 ⇐⇒ A[[t1]] = A[[t2]].
In words, A[[·]] exactly conveys the alpha-equivalence classes;

3. ∀tα ∈ TERM.∀t ∈ tα. tα = A[[t]]. In words, any element of tα can represent it;

4. ∀tα ∈ TERM.∃t ∈ CONCRETETERM. tα = A[[t]]. In words, A[[·]] is surjective: every TERM can be repre-
sented by a CONCRETETERM.

Proof.

1. Follows from Prop. 1(1).

2. Let t1, t2 ∈ CONCRETETERM. We proceed by cases.

(=⇒) Suppose t1 ∼a t2. Then t ∈ A[[t1]]
Def. 9⇐⇒ t ∼a t1

Prop. 1(2,3)⇐⇒ t ∼a t2
Def. 9⇐⇒ t ∈ A[[t2]].

(⇐=) Suppose A[[t1]] = A[[t2]]. Then by part (1) t1 ∈ A[[t1]], t2 ∈ A[[t2]], and by extensionality,

∀t ∈ CONCRETETERM. t ∈ A[[t2]] ⇐⇒ t ∈ A[[t1]]. Therefore t1 ∈ A[[t2]]
Def. 9
=⇒ t1 ∼a t2.

3. Let tα ∈ TERM, and suppose t ∈ tα. Then for t0 ∈ CONCRETETERM,

t0 ∈ tα
Def. 8⇐⇒ t0 ∼a t

Def. 9⇐⇒ t0 ∈ A[[t]].

4. Suppose tα ∈ TERM. Then ∃t ∈ CONCRETETERM. t ∈ tα. Then t0 ∈ tα
Def. 8⇐⇒ t0 ∼a t

Def. 9⇐⇒ t0 ∈ A[[t]].

Proposition 4 (Liftings).

1. ∀t1, t2 ∈ CONCRETETERM.A[[t1]] @α A[[t2]] = A[[t1 t2]];

2. ∀t1, t2 ∈ CONCRETETERM.A[[t1]] +α A[[t2]] = A[[t1 + t2]];

3. ∀x ∈ VAR, t ∈ TERM. λα[x]A[[t]] = A[[λx.t]].

Proof. [RG: Fill Me In]

Lemma 9 (Alpha-equivalence preserves size). If t1 ∼a t2 then size(t1) = size(t2).

Proof. Induction on t1 ∼a t2. [RG: Fill Me In]

Lemma 2 (Representational Inversion). Let tα ∈ TERM. Then exactly one of the following is true:

1. ∃!n ∈ Z. tα = A[[n]];

2. ∃!t1, t2 ∈ CONCRETETERM. tα = A[[t1 + t2]];

3. ∃!x ∈ VAR. tα = A[[x]];

4. ∃x ∈ VAR, t ∈ CONCRETETERM. tα = A[[λx.t]];

5. ∃!t1, t2 ∈ CONCRETETERM. tα = A[[t1 t2]];

6. ∃x ∈ VAR, t1, t2 ∈ CONCRETETERM. tα = A[[let x = t1 in t2]].

Proof. [RG: Fill Me In]

Page 21

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proposition 5 (Structural Inversion). Let tα ∈ TERM. Then exactly one of the following is true:

1. ∃!n ∈ Z. tα = nα;

2. ∃!tα1 , tα2 ∈ TERM. tα = tα1 +α tα2 ;

3. ∃!x ∈ VAR. tα = xα;

4. ∃x ∈ VAR, tα ∈ TERM. tα = λα[x]tα;

5. ∃!tα1 , tα2 ∈ TERM. tα = tα1 @α tα2 ;

6. ∃x ∈ VAR, tα1 , t
α
2 ∈ TERM. tα = letα(x, tα1 , t

α
2).

Proof. [RG: Fill Me In]

Definition 20.

sizeα : TERM → N
sizeα(A[[t]]) = size(t)

The definiteness of above definition depends on Prop. 3(4) and Lm. 9.

Lemma 10 (Structural Size Equations).

1. sizeα(nα) = 1;

2. sizeα(tα1 +α tα2) = 1 + sizeα(tα1) + sizeα(tα2);

3. sizeα(xα) = 1;

4. sizeα(λα[x]tα) = 1 + sizeα(tα);

5. sizeα(tα1 @α tα2) = 1 + sizeα(tα1) + sizeα(tα2);

6. sizeα(letα(x, tα1 , t
α
2)) = 1 + sizeα(tα1) + sizeα(tα2);

Proof. [RG: Fill Me In]

Proposition 7 (Redefinition). TERM ⊆ ST.

Proof. Suppose tα ∈ TERM. We proceed by induction on sizeα(tα). By Lm. 2, exactly one of the following
holds: [RG: Fix to use structural inversion, Prop. ??]

1. ∃n ∈ Z. tα = A[[n]]. Then by (STn), tα ∈ ST.

2. ∃t1, t2 ∈ CONCRETETERM. tα = A[[t1 + t2]]. Then by Prop. 4, tα = A[[t1]] +α A[[t2]], and by Def. 9,
A[[t1]],A[[t2]] ∈ TERM. By the induction hypothesis, A[[t1]],A[[t2]] ∈ ST and by (ST+), ta ∈ ST.

3. ∃x ∈ VAR. tα = A[[x]]. Then by (STx), tα ∈ ST.

4. ∃x ∈ VAR, t ∈ CONCRETETERM. tα = A[[λx.t]];

5. ∃t1, t2 ∈ CONCRETETERM. tα = A[[t1 t2]];

6. ∃x ∈ VAR, t1, t2 ∈ CONCRETETERM. tα = A[[let x = t1 in t2]].

Corollary 1. TERM = ST.

Proof. Immediate consequence of Def. 11 (of ST) and Prop. 7.

Page 22

Alpha-Equivalence Classes Time Stamp: 14:52, Saturday 26th March, 2022

Proposition 8 (Principle of Rule Induction on the structure of TERM). Let Φ be a predicate on TERMs tα. Then
Φ(tα) holds for all tα ∈ TERM if:

1. ∀n ∈ N.Φ(nα);

2. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 +α tα2);

3. ∀x ∈ VAR.Φ(xα);

4. ∀x ∈ VAR, tα ∈ TERM.Φ(tα) =⇒ Φ(λα[x]tα);

5. ∀tα1 , tα2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(tα1 @α tα2);

6. ∀x ∈ VAR, tα1 , t
α
2 ∈ TERM.Φ(tα1) ∧ Φ(tα2) =⇒ Φ(letα(x, tα1 , t

α
2)).

Proof. [RG: Fill Me In]

Proposition 10 (Lifting). Let S be some set, and F : CONCRETETERM → S. Then if
∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ F (t1) = F (t2), then there is a unique function Fα : TERM → S such
that ∀t ∈ CONCRETETERM. Fα (A[[t]]) = F (t).

Proof. [RG: Fill Me In]

Proposition 11. ∀t1, t2 ∈ CONCRETETERM. t1 ∼a t2 =⇒ FV (t1) = FV (t2).

Proof. [RG: Fill Me In]

Proposition 12. ∀x ∈ VAR, tα ∈ TERM. FV α (λα[x]tα) = FV α(tα) \ {x } .

Proof. [RG: Fill Me In]

Proposition 13 (Capture-Avoiding Substitution Preserves Alpha-equivalence).

∀x ∈ VAR, t11, t12, t21, t22 ∈ CONCRETETERM. t11 ∼a t21 ∧ t12 ∼a t22 =⇒ [t11/x]t12 ∼a [t21/x]t22.

Proof. [RG: Fill Me In]

Corollary 2 (Capture-Avoiding Substitution Lifts).
Let F : CONCRETETERM × VAR × CONCRETETERM → TERM be defined by F = A[[·]] ◦ [·/·]·. Then
∀x ∈ VAR, t11, t12, t21, t22 ∈ CONCRETETERM. t11 ∼a t21 ∧ t12 ∼a t22 =⇒ F (t11, x, t12) = F (t21, x, t22).

Proof. [RG: Fill Me In]

Page 23

	Introduction
	Syntax
	Abstract Syntax
	Beyond Barendregt: Alpha-equivalent Syntax
	Induction On Alpha-Equivalence Classes
	Lifting Functions
	Lifting Capture-Avoiding Substitution
	Pay no attention to the sets behind the curtain!

	Semantics
	Redux

	Proofs

