
Proper Tail Calls

CPSC 509: Programming Language Principles

Ronald Garcia*

7 November 2015

A peculiar phenomenon

Consider the following program written in the C language:

int doh(int x) {
return doh(0);

}

int main() {
return doh(0);

}

It defines a procedure doh that calls itself. Well that’s not very interesting: it looks like it will just call
itself forever.1 What happens if we compile and run it? Let’s see:

> cc doh.c
> ./a.out
Segmentation fault: 11

Well, that failed miserably! Even more peculiar though, is what happens if we compile it with optimizations
turned on and run it again.2

> cc -O3 doh.c
> ./a.out
>

Now that’s interesting: the program finished immediately! So let me get this straight: without optimiza-
tions the program crashes in an epic ball of flames: with optimizations turned on an infinite loop finishes
instantly. Now that’s what I call a powerful optimization!

For comparison, though, consider the corresponding Racket code:

(define (doh x)
(doh 0))

(doh 0)

If you run this program in Racket (or any other decent Scheme implementation), it will run forever.3

What gives! Well, the first lesson of the day is that turning on optimization in a typical C compiler (I
used clang-500.2.75) can actually change the observable behaviour of a program: C is a peculiar language
that way. But neither of those programs ran forever as we might have guessed.

We get a bit more insight if we play the same game in Java:

*© Ronald Garcia.
1Those of you who know C can probably guess what’s going to really happen!
2C programmers may not see this one coming!
3The longest I’ve run it before forcing it to stop is a couple of days, but I saw no reason for it to stop.

1

Proper Tail Calls Time Stamp: 12:22, Tuesday 29th March, 2022

public class Doh {

public Doh() { }
public static void main(String args[]) {

doh(0);
}

public static int doh(int x) {
return doh(0);

}
}

Compiling and running this program tells us something useful, albeit not very satisfying:

> javac Doh.java
> java Doh
Exception in thread "main" java.lang.StackOverflowError

at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
at Doh.doh(Doh.java:11)
...
...

Sadly it still doesn’t run forever, but at least you get a stack trace (a long one)! We see that Java fails with a
stack overflow.

You might be scratching your head now: why doesn’t Java run forever? Why doesn’t Racket fail with a
stack overflow? Below we explain what’s going on here using semantics as our guide.

1 Procedures, Recursion, and “call stacks”

For this study, we consider a small variant of TFL with procedures and recursion.

x ∈ VAR, n ∈ Z, t ∈ TERM, v ∈ VALUE, E ∈ ECTXT,

l ∈ LOC, SO = VALUE, σ ∈ STORE = LOC
fin
⇀ SO, PGM = { t ∈ TERM | FV (t) = ∅ }

t ::= x | n | t t | λx.t | rec x.t
v ::= n | λx.t | l
E ::= � | E[� t] | E[v t]

−→ ⊆ (PGM × STORE)× (PGM × STORE)

E[(λx.t) v], σ −→ E[[l/x]t], σ[l 7→ v] l /∈ dom(σ)

E[let x = v in t], σ −→ E[[l/x]t], σ[l 7→ v] l /∈ dom(σ)

E[rec x.t], σ E[[(rec x.t)/x]t], σ

The semantics above is a reduction semantics with state. We don’t bother wrapping the program and
store in angle-brackets. That’s just a stylistic thing.

This semantics has a twist. Just like the language of mutable variables, we have a store and we allocate a
new store location for each variable, but we do not support mutation of locations. Why in the world would

Page 2

Proper Tail Calls Time Stamp: 12:22, Tuesday 29th March, 2022

we do that? Well, in a certain sense, this is a more realistic language implementation model when we think
about comparing to a language like Java, and it will help us talk about important relevant issues.

First let me explain the realism aspect. A language like Java typically has complex values like objects.
But objects are not typically allocated directly on the stack: they exist in a part of memory called the heap,
which we model using a store. This way, the language doesn’t have to literally copy all of the contents
of an object every time you want to share it with other code.4 Typically simple machine integers are not
store-allocated, but we’ll store-allocate them anyway just to get across the ideas in this section as simply as
possible. Imagine that we’re using Java Integer objects.

The language above gives us enough machinery to model the example program from the last section.

(rec doh.λx.doh x) 0

We use rec to define a recursive function in-place (we could bind the whole thing to a variable and then use
it, but that’s just cosmetics) and immediately apply it to 0.

Let’s examine how this reduces, with annotations for the evaluation context:

t σ

(rec doh.λx.doh x) 0 , ∅
−→ (λx.(rec doh.λy.doh y) x) 0 , ∅
−→ (rec doh.λx.doh x) l0 , [l0 7→ 0]

−→ (λx.(rec doh.λy.doh y) x) l0 , [l0 7→ 0]

−→ (λx.(rec doh.λy.doh y) x) 0 , [l0 7→ 0]

−→ (rec doh.λy.doh y) l1 , [l0 7→ 0, l1 7→ 0]

−→ (λy.(rec doh.λz.doh z) y) l1 , [l0 7→ 0, l1 7→ 0]

−→ (λy.(rec doh.λz.doh z) y) 0 , [l0 7→ 0, l1 7→ 0]

−→
...

...

For clarity, I am alpha-renaming some bound variables so that you can tell more easily which variable
reference matches which binding. The redex in each case is underlined, meaning that anything not under-
lined is part of the evaluation context.

Now looking at this reduction sequence, we can make a few observations. First, if you ignore the
difference in location that appears in the code, the sequence is going to keep repeating over and over again.
Along the way, we see only three kinds of evaluation context surrounding a redex: the empty context �,
application with a location in argument position �[� ln], and application with our big lambda in operator
position �[(λ. . . .) �]. The context doesn’t grow past a single frame, and really the context corresponds
exactly to that concept that no one who teaches programming can seem to avoid: the stack. The stack is a
representation of all the work left to do in your program.

One thing to observe, though, is that our store σ grows by one entry with each function call, so it
sure looks like it will grow without bound. Could this be the source of our stack overflow in Java? Well,
no. Java is a garbage-collected language, which means that occasionally it checks to see if there are any
unreachable store locations, meaning that the location doesn’t appear in the program nor in the binding of a
store location. If we assume a very aggressive garbage collector that runs on each program step, then our

4For simplicity, we’re not modeling cloning semantics at all here.

Page 3

Proper Tail Calls Time Stamp: 12:22, Tuesday 29th March, 2022

reduction sequence turns into the following:

t σ

(rec doh.λx.doh x) 0 , ∅
−→ (λx.(rec doh.λy.doh y) x) 0 , ∅
−→ (rec doh.λx.doh x) l0 , [l0 7→ 0]

−→ (λx.(rec doh.λy.doh y) x) l0 , [l0 7→ 0]

−→ (λx.(rec doh.λy.doh y) x) 0 , [l0 7→ 0]

−→ (rec doh.λy.doh y) l1 , [l1 7→ 0]

−→ (λy.(rec doh.λz.doh z) y) l1 , [l1 7→ 0]

−→ (λy.(rec doh.λz.doh z) y) 0 , [l1 7→ 0]

−→
...

...

The moment that the program dereferences l0, it becomes inaccessible and so is collected. Thus the store
ends up having only one binding at a time for the duration of the computation.

So what’s up?

2 Java is broken!

Essentially, The answer is that Java is using more space than is strictly necessary, as is C. The semantics
we defined above essentially corresponds to what Racket does (including the store allocated variable bind-
ings!). One of the key steps is the reduction rule for function application, which simply substitutes a location
for a variable in the body of the function. That action is sure to not increase the size of the stack. In fact,
looking at the evaluation contexts, the only time the stack is extended is when evaluating an operator or
evaluating an operand. Function calls have nothing to do with it!

On the other hand, Java and C extend the call stack on every function call. We can model this behaviour
by modifying our language as follows:

t ::= . . . | λ.return t | return t
E ::= . . . | E[return �]
E[return v], σ −→ E[v], σ

Now a new feature, return, has been added that does nothing but return its value. Furthermore, function
definitions have return baked right into their syntax. As a result, every function call introduces a return that
must be dealt with. Notice that evaluating inside the body of return introduces a context (i.e., stack) frame!
With these changes, keeping aggressive garbage collection, we get a new reduction sequence:

t σ

(rec doh.λx.return (doh x)) 0 , ∅
−→ (λx.return ((rec doh.λy.return (doh y)) x)) 0 , ∅
−→ return ((rec doh.λx.return (doh x)) l0) , [l0 7→ 0]

−→ return ((λx.return (rec doh.λy.return (doh y)) x) l0) , [l0 7→ 0]

−→ return ((λx.return (rec doh.λy.return (doh y)) x) 0) , [l0 7→ 0]

−→ return (return ((rec doh.λy.return (doh y)) l1)) , [l1 7→ 0]

−→ return (return ((λy.return ((rec doh.λz.return (doh z)) y)) l1)) , [l1 7→ 0]

−→ return (return ((λy.return ((rec doh.λz.return (doh z)) y)) 0)) , [l1 7→ 0]

−→
...

...

Page 4

Proper Tail Calls Time Stamp: 12:22, Tuesday 29th March, 2022

As you can see, this program is accumulating returns, so it is bound to use up more and more space as it
evaluates. As such it’s inevitable that the Java and C programs will crash.

The fact that Racket supports procedure calls that do not accumulate any space is called proper imple-
mentation of tail calls. Some places in the literature call this tail call optimization, but that name is just patently
broken, for a few reasons. First off, as per our semantic model, function calls never cause the stack to grow: it’s
other expressions like complex expressions in operator or operand position that cause the stack to grow.
Functions are viewed as the cuplrit because recursive (or mutually recursive) function calls are the only
way that we can witness the growing stack in response to expressions that have evaluation contexts like let
or application.

Second, proper tail calls are not an optimization. To put it bluntly, it’s just strange to call the absence of
stupid behaviour an “optimization.” 5

3 C has crazy semantics

But what about this thing with the optimized C program ending immediately? Well, this is an artifact of
how C was designed, to support optimizations that might make a program run faster, but don’t guarantee
that behaviour will stay the same. Support for these behaviour-changing optimizations is part of why C
can be optimized to go so fast: some assumptions are made about how programs work, and they can lead
to very unexpected and hard to find bugs! In particular, any “looping” code that performs no visible effects
in C is deemed by the standard to be equivalent to a no-op. If you’d like to see a semanticists perspective
on the trash fire that is C, I highly recommend Robbert Krebbers’ PhD. Thesis Krebbers [2015].

4 Why do languages do this?!?

Now, let’s set aside the polemics and talk about why programming languages work this way. One of the
main reasons is because the most popular programming languages over time have had this behaviour. Back
in the dark ages, getting recursion to work at all was a miraculous thing. FORTRAN originally couldn’t han-
dle recursion, but LISP did, but without proper tail calls. Furthermore, machine architectures implemented
procedure calls as single instructions that would push a return address and jump to a new location: even
assembly language did not implement proper tail calls! So it was natural to use these features to implement
languages like C and friends. It was only with the development of Scheme in the 1970s that the notion of
proper tail calls was discovered [Steele, 1977]. So later languages inherited the same procedure call seman-
tics as earlier languages.

Another reason is related to how programmers are used to debuggers working. In general, we assume
that a debugger can give us a call trace whenever an error occurs, but in order to do that, the runtime system
must record what function calls were made. This has led dynamic languages like Python to build this into
the language runtime semantics.

Finally, since many imperative languages have built-in looping constructs, which do not accumulate
stack space, programmers are expected to use those instead of function calls to implement loops. Have you
ever noticed that the typical debugger doesn’t record how many iterations through a loop you have gone
through before an error occurs? This is a situation where debuggers compromise on what error information
they capture, deciding that function calls are more important than loop iterations. More recently, folks have
been developing omniscient debuggers, notably Mozilla’s rr debugger,6 uses record-and-replay technology
to capture execution and support backwards winding. Naturally, the seed behind this idea was planted by
Bil Lewis’s, a long-time Schemer, who understood that the call stack is a useful but insufficient abstraction
for debugging.7

On the other hand, Racket programmers are quite used to using recursion to implement loops, and
languages like Racket provide loop macros that are implemented under the hood in terms of function calls.

5e.g., “Mac OSX implements the ’running-Safari-doesn’t-erase-my-hard-drive’ optimization.”
6https://rr-project.org/
7https://www.youtube.com/watch?v=7VE93LLYw54

Page 5

Proper Tail Calls Time Stamp: 12:22, Tuesday 29th March, 2022

The steppers that we have written in this class are implemented that way (using the named let notation for
defining and calling recursive functions).

Finally, some languages forego proper tail calls in order to support memory safety without requiring
garbage collection. For example, the Rust programming language, initiated and primarily developed by
folks at Mozilla, automatically manages your program memory in a stack-like fashion, even if values were
allocated on the heap. This lets Rust run on embedded devices without requiring a lot of memory or a
complex runtime system that demands a garbage collector. The cost of this, though, is that every program
variable is tied to a marker on the function call stack called a region [Grossman et al., 2002]. Regions are
collected in a stack-like fashion, tied to function calls. In the case of Rust, sacrificing proper tail calls was a
conscious decision in the interest of developing a low-level programming language. C, on the other hand,
isn’t memory safe anyway, so accumulating stack space at every function calls doesn’t buy it much.

References

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management
in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi:
10.1145/512529.512563. URL http://doi.acm.org/10.1145/512529.512563.

R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen, December 2015.
URL https://robbertkrebbers.nl/thesis.html.

G. L. Steele. Debunking the “expensive procedure call”” myth or, procedure call implementations consid-
ered harmful or, lamdba: The ultimate goto. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1977. URL http://dspace.mit.edu/handle/1721.1/5753.

Page 6

http://doi.acm.org/10.1145/512529.512563
https://robbertkrebbers.nl/thesis.html
http://dspace.mit.edu/handle/1721.1/5753

	Procedures, Recursion, and ``call stacks''
	Java is broken!
	C has crazy semantics
	Why do languages do this?!?

