
Variables and Variable Binding

CPSC 509: Programming Language Principles

Ronald Garcia*

2 November 2015

In this set of notes, we learn about variables and variable bindings in programming languages. Along the
way, we learn a bunch more about the nature of recursive function definitions.

So far the programs that we have been writing essentially boil down to basic arithmetic. We can write
down values and computations on those values, but we have no forms of abstraction at all. For example,
you may find yourself writing the same expression over and over again, and realize that it’s always going
to be the same. It would be nice if we only had to write that expression down once and then had a way to
reuse it. This is exactly what variables (a.k.a. identifiers) are for! They let us rewrite an expression like
(if (zero? (- (+ 3 2) 1))

(+ 3 2)
(- (+ 3 2) 1))

in a form that makes it explicit that we’re repeating ourselves. Rather than write the expression (+ 3 2)

repeatedly, we say once that the variable x stands for the expression, and refer to that variable wherever we
mean to repeat the same notion:
(let ([x (+ 3 2)])
(if (zero? (- x 1))

x
(- x 1)))

Here we bind the value of (+ 3 2) to the variable x and refer to that variable wherever we want the value.
So we can use name binding to avoid unnecessary duplication in two senses. In the first sense, we

can abbreviate our program and say things once and only once. In the second sense, some language im-
plementations can take advantage of this form of expression abstraction to improve runtime performance.
Depending on the particular language design (as we discuss later), the implementation may be able to1

evaluate the expression only once, cache the result somewhere, and then look up the cached value when-
ever it is needed. This can substantially improve the performance of programs (but not always!).

Notice that I am distinguishing between the semantics of this language feature (i.e., the conceptual mean-
ing of variable binding as abstracting expressions), and the pragmatics of the feature (i.e., how this concep-
tion of variable binding can facilitate a nice implementation strategy). In practice, language design choices
can be driven in either direction. Sometimes the desired semantics for a language feature suggest a particu-
lar implementation strategy. Other times the current state of the art of implementation (or experience with
implementing prior languages)—or intrinsic limitations imposed by computability or complexity theory—
may drive decisions about the semantics of language features. Here we focus on the (often less appreciated)
direction from semantics to pragmatics.

1 Naı̈ve Substitution

Before we add name binding to the language, let’s consider what it means to have variable references in
the body of such a binding. Consider our last example above. Intuitively, we want to use the meaning

*© 2015 Ronald Garcia.
1or have to!

1

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

of (+ 3 2) everywhere that the expression refers to x. Taking 5 as the meaning of (+ 3 2),2 we want to
substitute 5 for x in the body of the let expression.

Let’s formalize just this concept of substitution in the context of our language of Boolean expressions.

t ∈ TERM, x ∈ VAR
t ::= true | false | if t then t else t
| x

The set VAR is some infinite set of identifiers, where the only thing we care about is that we can tell one
variable apart from another. The TERM x is a variable reference, which indicates where an argument will
be eventually substituted. A useful way to think about variable references is that, rather than treating
variables as TERMs, to think of variables as indices on terms. So whenever you see the term x, we really
see it as standing for the TREE var[x](), where var is an ATOM but it is paired with a variable x ∈ VAR.3

This distinction may seem a bit strange now, and it is indeed not technically necessary, but when we get to
describing variable binding using the let form (a.k.a. let-binding), it will hopefully make a bit more sense
why we are setting things up this way.

Now here, it’s worth taking an aside to talk about metavariables and object variables. Throughout the
course, we have talked about metavariables like t and n, which stand for TERMs and numbers in the object
language respectively. Now we have our first object language where the language itself has a notion of
“variables.” We have to be clear that these are not the same things as metavariables, and the implications
are important. When talking about specific object language variables, we’ll use blue sans-serif font variable
names like x and y. We don’t really care about the syntactic nuances of a particular programming language,
like whether you can have a numeral as the first character of a variable name, or whether you can have
Unicode characters in your variable names, etc. But we need SOME way of writing examples, hence our
blue object variables. Metavariables like x1 and x2 refer to metalanguage variables that represent object
language variables like x and y. Probably the most important thing to keep in mind, which leads to no end
of mistakes, is that in a given context, an individual metavariable always refers to the same thing. So x = x
is going to always be true. That’s the funny thing about variables, they don’t really vary (at least not the
way those thingies in C that we, perhaps more justifably, call variables do). On the other hand, given two
different metavariables, x1 and x2, we don’t know a priori whether they refer to the same metavariable or
not. If we want them to definitely be different, we must explicitly say x1 6= x2. Sometimes texts leave that
side condition out under the assumption that it’s obvious from the context.4 In those circumstances it’s
really important to make sure that you notice that this may be what’s going on, and if so to make a note of
it to yourself as you try to understand what you are reading. Below, we’ll see this come up.

We model substitution using functions from TERMs to TERMs. The strategy that we take, though, is to
define a different substitution function for each instance of substitution. The idea is that once you’ve seen
one version of this function, you can see exactly how you would define any other (so you then know that
each such function exists, is unique, and satisfies the equations used to describe it). We take this approach
because it lets us use the tools that we currently have available to prove that these functions exist.

For instance, let’s define a function [x Z⇒ 0] : TERM → TERM that substitutes 0 for every instance of x in
a term.Note that [x Z⇒ 0] is just an evocative name for this functon, just like eval or dom . The 0 and x don’t
actually do anything here. We could replace the name with F and it would still be the same function. For
instance, we expect the following equation to hold:

[x Z⇒ 0](if false then x else (x + 1)) = if false then 0 else (0 + 1).

We define this function recursively, first in long-hand style. Here is the principle of definition by recur-
sion for the language augmented with variables:

Proposition 1 (Principle of Definition by Recursion on terms t ∈ TERM). Let S be a set and st, sf ∈ S be two
elements,

Hif : S × S × S → S

2Stay tuned! We revisit this assumption below when we discuss by-name evaluation.
3In this context, When we refer to TREE, we are really referring to TREE[ATOM∪ ({ var }×VAR)], representing the VAR-indexed var

as a pair.
4I’ve been guilty of doing this, I’ll admit it! Sorry...

Page 2

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

be a function on S, and
Hvar : VAR → S.

Then there exists a unique function
F : TERM → S

such that

1. F (true) = st;

2. F (false) = sf ;

3. F (if t1 then t2 else t3) = Hif (F (t1), F (t2), F (t3));

4. F (x) = Hvar (x) .

The new components of the principle are marked in grey above. The Hvar function on variables VAR
is responsible for handling all possible variable references. Essentially this function is analogous to the st
and sf constants, which handle the two individual constants. Recall that earlier I mentioned that we treat
variable references as VAR-indexed trees var(x). Here is where we see how this point of view is played out.
Mind you this approach is just a way of thinking about the idea of variables all being the same kind of term.
We could do the same thing with numbers n if the language had them.

So now let’s define [x Z⇒ 0]. We define the function by applying the principle of definition by recursion
to the following components:

1. S = TERM;

2. st = true;

3. sf = false;

4. Hif (t1, t2, t3) = if t1 then t2 else t3;

5. Hvar (x) = 0

Hvar (x0) = x0 if x0 6= x.

Be careful not to be confused by the fact that we chose S = TERM, which is necessary to define a function
from TERMs to TERMs.

Substituting these components into the principle itself (and breaking the cases into separate equations
as is standard practice), we get the following shorthand definition:5

[x Z⇒ 0] : TERM → TERM

[x Z⇒ 0]x = 0

[x Z⇒ 0]x0 = x0 if x0 6= x

[x Z⇒ 0]true = true

[x Z⇒ 0]false = false

[x Z⇒ 0](if t1 then t2 else t3) = if ([x Z⇒ 0]t1) then ([x Z⇒ 0]t2) else ([x Z⇒ 0]t3).

If we extend our language to include arithmetic expressions, and follow the same recipe, then we can show
that the example above exactly fits this model.

Now to generalize: one thing that we can immediately see is that given any TERM t and any VAR x, we
can define a function [x Z⇒ t] : TERM → TERM by choosing a different Hvar (x) function for the principle of
recursion. This fact justifies a corresponding generic function definition.

[· Z⇒ ·]· : VAR × TERM → TERM → TERM

[x Z⇒ t]t0 = [x Z⇒ t]t0

5It is a common notational style to not wrap the substitution argument in parentheses.

Page 3

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

For this definition, we’re using slightly different notation (no underlines!) just to make it clear that we
are defining a separate general substitution function using the hard-wired individual functions. We call
this function naı̈ve substitution as a hint that we are working toward a fully satisfactory notion of capture-
avoiding substitution, which comes later. Now our approach to defining naı̈ve substitution here may seem
contrived: defining individual substitution functions first and then defining the big mother of functions
later. Well to be honest, it is! It’s possible to define naı̈ve substitution outright as a group of recursive
equations without a side step through individual substitution functions, and as you’ll see the definition
looks pretty familiar. However, we have not yet learned the tools that we would need to claim the propriety
of this equational definition without also providing a proof that the equations indeed define a function (i.e.,
a proof along the lines of the proof of the principle of definition by recursion). Later in the course we’ll
learn more tools so that we can justify such a definition without writing down a separate proof. However,
we know enough to be able to define substitution this way, and externally we could prove some equational
theorems about it that make it easier to use directly.

Proposition 2. Naı̈ve substitution is satisfies the following equations.

[x Z⇒ t]x = t

[x Z⇒ t]x0 = x0 if x0 6= x

[x Z⇒ t]true = true
[x Z⇒ t]false = false

[x Z⇒ t](if t1 then t2 else t3) = if ([x Z⇒ t]t1) then ([x Z⇒ t]t2) else ([x Z⇒ t]t3).

Funny, this proposition look almost exactly like our definition of the [x Z⇒ 0] function. Furthermore, we
can prove that there is exactly one function in VAR × TERM → TERM → TERM that satisfies these equations,
so this could in fact be our definition, but we have to prove that this is true before we can assert that this
is a definition. Remember: the principle of definition by recursion once-and-for-all proves this uniqueness
property for a certain class of function definitions. Unfortunately, this set of equations cannot be recast
in a way that fits the schema put forth by that definition (you should ask yourself and answer: what goes
wrong?). So for now we settle for our indirect way of defining the function and separately proving that the
above proposition holds. Later, though, we’ll be able to easily justify these equations as our definition of
substitution.

2 Let Bindings

Now that we have a mathematical model for what it means to substitute a language term for a variable
reference, our next step is to add let bindings to our language!

First, let’s introduce our notation for let bindings.

t ::= . . . | let x = t in t

The idea behind this expression is that let x = t1 in t2 means that within the expression t2 we are to take the
variable x to stand for the result of the expression t1. Referring back to tree notation, we can think of this
as let[x](t, t), where again the variable x is just a VAR, not a TERM. Another way to think about it is that the
name of the expression constructor is (let x = · in ·): it is indexed on some variable x. This corresponds to
the Racket notation (let ([x1 t1])t), where the extra set of parentheses around the bindings is to allow
for multiple simultaneous bindings, i.e., (let ([x1 t1][x2 t2]...)t2). As a notational convention, we
will sometimes use indentation to mark off the entirety of a let expression’s body (the part after in).

Let’s write down the rest of the formal semantics of our new language of Boolean and Let expressions
(BL). The syntax is as follows:

n ∈ Z, t ∈ TERM, x ∈ VAR
t ::= true | false | if t then t else t
| x | let x = t in t

Page 4

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

To specify our operational semantics, we’ll use reduction semantics, which keeps things succinct. You
should make sure that you could rephrase these semantics using structural-operational or big-step seman-
tics as well.

We start with the necessary additional syntactic notions: values, redexes, and evaluation contexts:

v ∈ VALUE, r ∈ REDEX, E ∈ ECTXT,
v ::= b

E ::= � | E[if � then t else t] | E[let x =� in t]

r ::= if v then t else t | let x = v in t

You can see from the evaluation context E[let x = � in t] that the semantics will evaluate the bound
expression before it processes the body of the let expression. This is consistent with let x = v in t as a REDEX.
Notice that this language introduces no new VALUEs to the language, just a form of named abstraction.

The notions of reduction for the language follow.

 ⊆ REDEX × TERM
if true then t2 else t3 t2

if false then t2 else t3 t3

let x = v in t [x Z⇒ v]t

The only new notion of reduction is for, yup you guessed it, let! Once you have a value in the binding
position, the semantics substitutes it into the body of the expression. A side-warning: we’re not quite
done yet, because we haven’t said anything about how to naively substitute into a let expression, i.e.
[x Z⇒ v]let x1 = t1 in t2. We’ll cover that in the next section.

Forging ahead, let’s define our evaluator. In the past, we allowed any TERM to count as a program, but
here we are going to make a restriction. In particular, we will not allow a program to have any references
to variables that have not been bound in the surrounding expression. So an expression like: let x = true in y
doesn’t count as a program, because our operational semantics will step this to y, and then we’re stuck:
there is no notion of reduction for variable references. Instead, the variable should have been replaced by
some VALUE by the time we get to its position in the program. If we don’t have a value for our variable
when we reference it, then how can we sensibly proceed?!?6 To capture this, we must introduce a notion
of free variables. The free variables of an expression are the variables that are referenced in a spot where no
surrounding let binding provides their value. We express this idea in precise form as a function:

FV : TERM → P(VAR)
FV (true) = ∅
FV (false) = ∅

FV (if t1 then t2 else t3) = FV (t1) ∪ FV (t2) ∪ FV (t3)

FV (x) = {x }
FV (let x = t1 in t2) = FV (t1) ∪ (FV (t2) \ {x })

As you can see, a let binding handles all free references to the bound variable within it’s body. Now we can
explicitly define our programs as the set of closed terms: terms that have no free variables:

CLOSEDTERM = { t ∈ TERM | FV (t) = ∅ }

PGM = CLOSEDTERM, OBS = VALUE
eval : PGM → OBS
eval(t) = b if t −→∗ b

Our language definition is almost complete. We just have to extend substitution to handle let bindings.
For our immediate purposes, this will be straightforward, but we’ll find that extending it to the general case
raises some issues.

6Emphasis here is on sensibly. I’m looking at you C and JavaScript programming languages! The Python programming language
allows an unbound variable reference as part of a program, and only fails if that reference is evaluated, producing a “NameError”.

Page 5

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

3 Naı̈ve Substitution into Let Bindings

Since our language allows us to put let expressions anywhere, we need to be able to handle them in the
bodies of one another. A couple of examples follow:

(1) let x = 7 in let y = 6 in x

(2) let x = 7 in let x = 6 in x

If we apply the reduction semantics to the first example above, then we expect to get:

let x = 7 in let y = 6 in x

−→ [x Z⇒ 7]let y = 6 in x

= [x Z⇒ 7]let y = 6 in x

Similarly for the second example we get:

let x = 7 in let x = 6 in x

−→ [x Z⇒ 7]let x = 6 in x

= [x Z⇒ 7]let x = 6 in x

So what should [x Z⇒ 7]let y = 6 in x be? Well, y doesn’t really have anything to do with x, so the obvious
thing to do is substitute for x in the body of the let. In the case of [x Z⇒ 7]let x = 6 in x though, it sure looks
like x should become 6 once the inner let expression is evaluated, so the proper behaviour seems to be to let
it alone.7

More generally, we expect naı̈ve substitution to satisfy the following equations:

[x Z⇒ 7]let x = t1 in t2 = let x = [x Z⇒ 7]t1 in t2
[x Z⇒ 7]let x0 = t1 in t2 = let x0 = [x Z⇒ 7]t1 in [x Z⇒ 7]t2 x0 6= x

In short, it should not mess with inner bindings of the same variable. In both cases we substitute into
the expression that is to be bound to the variable though.

At this point, we might feel satisfied with our equations, but they introduce a bit of gum into the works.
If we were to extend our Principle of Definition by Recursion following our pattern to date, we would
simply add an extra function:

Hlet : VAR × S × S → S

And the unique function F would satisfy the equation:

F (let x0 = t1 in t2) = Hlet(x0, F (t1), F (t2)).

This raises a problem: there is no way to define Hlet to satisfy our equations! By the time we know that
x0 = x, the body of the expression has already been substituted into. Shucks!

Never fear though: it turns out that our principle of definition by recursion can be generalized. The
simple one that we used, which proceeds by structural recursion, discards the original terms. But that was
never strictly necessary: it just happens to be a special case that fits the bill in the grand majority of cases.
We introduced that version so as to not make things too complex from the start.

To handle our notion of naı̈ve substitution, we need a stronger principle of recursion.

Proposition 3 (Principle of Definition by Primitive Recursion on t ∈ TERM). Let S be a set and st, sf ∈ S be
two elements,

Hif : TERM × TERM × TERM × S × S × S → S

Hlet : VAR × TERM × TERM × S × S → S

Hvar : VAR → S

7Pun not intended, seriously!

Page 6

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

be functions.
Then there exists a unique function

F : TERM → S

such that

1. F (true) = st;

2. F (false) = sf ;

3. F (x) = Hvar (x).

4. F (if t1 then t2 else t3) = Hif (t1, t2, t3, F (t1), F (t2), F (t3));

5. F (let x = t1 in t2) = Hlet(x, t1, t2, F (t1), F (t2)).

Proof. Exercise for the reader.

The principle of definition by primitive recursion provides enough additional structure to enable our
component H functions to consider the original terms.

Armed with the principle of definition by primitive recursion, we can easily provide a case for let that
lets us define the [x Z⇒ 7] function we want:

Hlet(x, t1, t2, t
′
1, t
′
2) = let x = t′1 in t2

Hlet(x0, t1, t2, t
′
1, t
′
2) = let x0 = t′1 in t′2 x0 6= x.

The main lesson here is that we should be careful with function definitions, and the full-stack semanticist
should really know which recursion principle can be used to justify them. Before too long we’ll learn the
recursion principle to rule all recursion principles (it’s called well-founded recursion). With that one, we’ll
even be able to directly define the general substitution function [· Z⇒ ·]·. Sit tight!

4 By-Name Let Binding

At this point we have a perfectly fine language definition. But let’s consider a slightly different point in the
design space. When we defined our language above, we made a design decision without much fanfare: that
the expression bound to a let is evaluated to a value before it is substituted. Most popular programming
languages operate this way, but it’s not the only option. Another option is to substitute the entire expression
and evaluate it at every variable reference. This is sometimes called call-by-name, which is a little odd here
because we have no functions to call. The “by-name” part goes back to the design of the Algol 60 language,
and the idea was that the “name” was the entire expression. Our original design is called “by-value” since
variables are bound only to the values of expressions. Let’s consider what changes we would need to make
to our semantics to support by-name let bindings. The main changes happen in the syntax for our extra
forms:

E ::= � | E[if � then t else t]
r ::= if v then t else t | let x = t in t

First, we remove the evaluation context for let because we will no longer evaluate the bound expression.
Then the redexes change in that any arbitrary let expression counts as a redex. Thus, our notion of reduction
for let is updated.

let x = t1 in t2 [x Z⇒ t1]t2

The significance of this style of application is that it may yield worse performance lead you to perform
more work if you refer to the same variable many times, as in

let x = BIGEXPRESSION in if x then x else x

Here BIGEXPRESSION gets recomputed 3 times. Under by-value it would only be computed once.

Page 7

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

On the other hand, by-name can be more efficient if it avoids unnecessary work., for example:

let x = BIGEXPRESSION in if true then false else true

Under the by-name model, BIGEXPRESSION never gets run at all, while it gets run in by-name once.
Later we will be introduced to a computation model called “by-need” that tries to blend both by-value

and by-name to get the best of both worlds (though it still costs you some things). In practice, production
languages8 always use “by-need” to mimic by-name behaviour, but understanding by-name semantics is
typically sufficient to reason about such languages, because they avoid features that would let you tell the
difference.

5 Capture-Avoiding Substitution

In the semanticses above, both by-value and by-name, we take advantage of a significant property of pro-
grams: that we only substitute closed expressions into the bodies of let expressions. To see this, consider
that we only consider closed expressions to be programs, and that furthermore, evaluation contexts do
now allow us to evaluate under variable bindings, which are the only places where free variables could be
found.

So evaluation can be defined using naı̈ve substitution without any trouble, but what happens if we try
to substitute a term with free variables into the body of a let. Well, things can go badly.

Consider the following expression:
let z = 3
in let y = z

in let z = 2
in y

and suppose that we can perform the reductions in any order. If we start with the outermost and work
our way in, then everything goes fine, since it corresponds to our by-value evaluation which yields 3. But
suppose we reduce the middle binding first.

let z = 3
in let y = z

in let z = 2
in y

−→ let z = 3
in let z = 2

in z

Then no matter the order of the last two steps, we end up with 2 as our result. What gives? Well, the z
that is bound to y is meant to refer to the binding of z on the outside, but by willy-nilly substituting z under
another binding of the same variable, we inadvertently capture z. How can we avoid this? Well, one way is
to rename the inner z binding to some other innocuous name, say g.

let z = 3
in let y = z

in let g = 2
in y

−→ let z = 3
in let g = 2

in z

Now that we have renamed the inner z to g, we have nothing to worry about. So the lesson here is that
substituting open terms into the body of a let must be careful to avoid inadvertent capture.

We can develop a richer notion of substitution that exactly addresses this issue. This new operation is
called capture-avoiding substitution, and it is the standard notion of substitution.

First off, why would we want to do this rewrite out of order? The most important answer is that we
would like to understand what kinds of changes we can make to a program that will preserve the result
of eval . These are called correctness-preserving program transformations. It turns out that applying notions of
reduction out of order are often correctness-preserving, and doing so can often improve the performance
of a program. I bet that as a programmer you have essentially made these kinds of rewrites to your code

8The Haskell programming language is the most well-known of this sort.

Page 8

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

before, based on the intuition that the program will still “do the same thing”. We would like to be able to
formalize this kind of thing, and being able to perform substitutions under variable binders is a common
example.9

So, we can see that naı̈ve substitution doesn’t cut it in this case. That means that we need to develop a
new kind of substitution that supports substituting terms with free variables into other terms. We pursue
this now.

5.1 α-equivalence, or, Bound Variable Names Don’t Matter

One of the key observations above that helped us fix our errant instance of substitution is that the choice of
bound variable names shouldn’t really matter in a program. For instance, the following two expressions:

let x = 7 in x

let y = 7 in y

Are for all intents and purposes the same. While useful variable names are helpful to humans when they
want to understand programmer intent, the language semantics just doesn’t care which variable names you
choose, so long as the variable references line up with the variable bindings in the same way.

The alternative is a programming language where you have to worry all the time about what local vari-
able names are used within each function. That makes it hard to build correct program modules indepen-
dently: every piece of code has to watch out for colliding with variable names from other modules...that’s
almost as bad as using global variable names everywhere!

In the language of we have described so far this property that bound variable names don’t matter holds,
and we can formalize it as an equivalence relation, using naı̈ve substitution to help us.

Definition 1 (Alpha Equivalence). Let ∼a: TERM × TERM be defined by the following rules:

x ∼a x b ∼a b

t11 ∼a t21 t12 ∼a t22 t13 ∼a t23
if t11 then t12 else t13 ∼a if t21 then t22 else t23

t11 ∼a t21 t12 ∼a t22
let x = t11 in t12 ∼a let x = t21 in t22

let x3 = t11 in [x1 Z⇒ x3]t12 ∼a let x3 = t21 in [x2 Z⇒ x3]t22

let x1 = t11 in t12 ∼a let x2 = t21 in t22
x1 6= x2,
x3 /∈ FV (t12) ∪ FV (t22)

Alpha-equivalence, written ∼a, is a binary relation on terms. The “alpha” bit is a painfully cute reference
to “alphabet”, implying that the programs are equivalent up to the choice of names for bound variables.
Almost all of the cases that define this relation look exactly like equality: If we throw out the last rule,
then the definition is exactly equality. This makes it clear that identical terms are alpha-convertible. The
last rule, though, is the only interesting one. Essentially it says that two let bindings with different bound
variable names (i.e., x1 6= x2) are alpha-convertible if renaming their bound variables to a common name that
does not capture any previously-free variables (i.e., x3 /∈ FV (t12) ∪ FV (t22)), suffices to make the terms
alpha-equivalent. Later you may see alternative definitions of the same notion of alpha-equivalence.

Now, when you look at the definition of ∼a, it “relates” terms by reconciling the variable names bound
by let expressions, but we are technically on the hook to confirm that this induces some notion of equiva-
lence, i.e. that two terms are “equal enough for our purposes.” In particular, we should prove that ∼a is in
fact an equivalence relation.

Proposition 4 (∼a is an equivalence relation). Given t1, t2, t3 ∈ TERM, the following are true:

1. t1 ∼a t1;

2. If t1 ∼a t2 then t2 ∼a t1;

9A refactoring tool can break your code if it is not sufficiently careful with performing program rewrites underneath variable
bindings!

Page 9

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

3. If t1 ∼a t2 and t2 ∼a t3 then t1 ∼a t3.

Equivalence relations arise all the time in mathematics. They are a mathematical way of characterizing
groups of stuff that are “like one another” (i.e. are equivalent) so long as you ignore some uninteresting
differences. Equality (or identity) = is also an equivalence relation, but it is the one that ignores nothing:
two entities are only equal if they are truly identical: one and the same. In our case here, two TERMs are
alpha-equivalent if they are the same except for the choice of variables bound by let. Our hope is that our
choices for bound variable names should not “matter,” in the sense that it should not affect the meaning of
a program, though it can affect whether some programmer understands what you are doing. As it turns
out, we can prove that names don’t matter (at least not to evaluation).

Proposition 5. If t1 ∼a t2 then eval(t1) = eval(t2).

Proof. An exercise.

Thus, α-equivalence is an example of a correctness-preserving transformation on programs, or what the
kids might call “a legal refactoring”.

6 Generalizing Substitution

We just saw that evaluation, whose definition depends under the hood on naı̈ve substitution, is invariant
with respect to alpha equivalence. However, naı̈ve substitution itself does not respect alpha equivalence. We
can see this by considering the underlying problem with one of our earlier examples:

z ∼a z

and
let z = 2
in y

∼a
let g = 2
in y

but

[y Z⇒ z]

(
let z = 2
in y

)
=

let z = 2
in z

6∼a
let g = 2
in z

= [y Z⇒ z]

(
let g = 2
in y

)
So as far as naive substitution work, bound variable names matter! We didn’t run into problems earlier
because our operational semantics only substitutes closed terms, a special case that causes no problems.

Proposition 6. If t11 is closed, t11 ∼a t21, and t12 ∼a t22, then [x Z⇒ t11]t12 ∼a [x Z⇒ t21]t22.

However, naı̈vely substituting open terms—terms that have free variables—can cause problems, as above.
The key to making substitution work for arbitrary terms, with or without free variables, rests with alpha-

equivalence. We’ve seen already that we can substitute open terms without incident if we carefully rename
bound variables along the way. We can bake this technique directly into an enhanced version of substitu-
tion, and the resulting operation will respect alpha equivalence, as we desire.

In essence, these propositions say that if two programs differ only in their choice of bound variables,
then their results also only differ in their bound variable names. Let’s formalize this with a new function
definiton:

[t/x] : TERM → TERM

[t/x]true = true

[t/x]false = false

[t/x](if t1 then t2 else t3) = if [t/x]t1 then [t/x]t2 else [t/x]t3

[t/x]x = t

[t/x]x0 = x0 if x 6= x0

[t/x](let x0 = t1 in t2) = [t/x](let x1 = t1 in [x0 Z⇒ x1]t2) x0 ∈ {x } ∪ FV (t)

[t/x](let x0 = t1 in t2) = let x0 = [t/x]t1 in [t/x]t2 x0 /∈ {x } ∪ FV (t)

where x1 is the least variable such that x1 /∈ {x } ∪ FV (t) ∪ FV (let x0 = t1 in t2)

Page 10

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

The key equations here are the last two. Notice how the second-to-last uses naı̈ve substitution to rename
the bound variable of the let expression to a new variable that does not already appear free. Mind you, we
could be more conservative about renaming, only doing so where strictly necessary, so as to keep the origi-
nal variable names wherever possible. Doing so would be very helpful for a human-facing implementation,
but here we are primarily interested in the mathematics: bound variable names don’t matter!

Given this definition,we can produce our final function [·/·]· : TERM × VAR × TERM → TERM.
We call this capture-avoiding substitution because it never accidentally captures a bound variable.
There are a few things worth mentioning about this particular definition. In the literature, a number

of subtle points are typically glossed over because you can get pretty far with approximately the right
definition, but it’s good to know the finer details so that they don’t come back to bite you.

Notice at the end the side condition about least variables. This function assumes that variables have
some ordering x0, x1, x2, . . . to make sure that the resulting function is indeed a function, that is, always
maps its input term to a unique output. Yes, this is super-contrived, but to be honest there are some pro-
gramming language implementations that essentially do something like this to deterministically choose
new variable names. We may talk about that later in the course as we implement language features.

Confirming that the equations above, as written, take a little work. In short, we can fuse the last two
equations (by properly coalescing their side-conditions), and then appeal to the principle of definition by
primitive recursion to justify this function definition. Then we can define our general ternary substitution
function. We still cannot define capture-avoiding substitution in general from the start, since it’s technically
not defined by recursion over the structure of the last term.10.

Capture-avoiding substitution satisfies the properties that we care about:

Proposition 7. If t is closed then [x Z⇒ t]t1 ∼a [t/x]t1.

Thus, capture-avoiding substitution agrees enough with naı̈ve substitution for closed terms, so the latter
can be used to define an evaluator function without breaking anything.

Proposition 8. If t11 ∼a t21 and t12 ∼a t22 then [t11/x]t12 ∼a [t21/x]t22.

Proof. By induction over t11 ∼a t22.11

This proposition tells us that unlike naı̈ve substitution, capture-avoiding substitution plays well with
alpha-equivalence. So now renaming bound variables doesn’t really matter (as long as you continue not to
care about variable names...it matters a lot to programmers if you’re trying to implement a debugger for
instance)!

In the next section we take another approach to dealing with changing variable names.

6.1 Equivalence Classes and the Variable Convention

What makes equivalence relations special is that each one partitions a set into a collection of non-overlapping
subsets: the sets of all items that are equivalent to one another. This is one way of interpreting a group of
things as though they were conceptually one (big) thing: collect them all. In our particular case, alpha
equivalence ∼a partitions the set TERM into the set:

TERM/∼a = {T ∈ P(TERM) | ∃t1 ∈ TERM.t1 ∈ T ∧ ∀t2 ∈ TERM. t2 ∈ T ⇐⇒ t1 ∼a t2 }

of all α-equivalence classes. We’ll refer to these classes by first defining a function that maps a term to it’s
alpha-equivalence class:

[·]∼a
: TERM → TERM/∼a

[t]∼a
= { t0 ∈ TERM | t ∼a t0 }

10...despite what a number of textbooks say (sigh).
11I recommend working through this.

Page 11

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

Then any equivalence class can be denoted by mapping one of the members of the class, by “bracketing” it.
For example,

[let x3 = 7 in x3]∼a = { let x0 = 7 in x0, let x1 = 7 in x1, let x2 = 7 in x2, . . . }
[let x3 = 7 in x1 x3]∼a = { let x0 = 7 in x1 x0, let x2 = 7 in x1 x2, let x3 = 7 in x1 x3, . . . }

These notations can be generalized: Given some set A and some equivalence relation ≈, the name A/≈
refers to the set of equivalence classes, and for each element a ∈ A, the name [a]≈ refers to the set of all
elements equivalent to a. Note that if a1 ≈ a2, then [a1]≈ = [a2]≈: they end up being two different names
for the same equivalence class. Often if the equivalence class is obvious, then the subscript is dropped for
succinctness, i.e., [a1] = [a2]

Equivalence classes give us a relatively clean way of brushing all this variable-renaming nonsense under
the rug. The strategy essentially boils down to this: Rather than take the set TERM as the abstract syntax of
our language, take the alpha equivalence classes TERM/∼a to be the abstract syntax.

Above, Prop. 8 showed that substitution respects alpha-equivalence classes. One consequence of this
fact is that we can define a substitution function over equivalence classes [t]∼a

!12

{·/·}· : (TERM/∼a)× VAR × (TERM/∼a)→ (TERM/∼a)

{[t]∼a
/x}[t0]∼a

= [[t/x]t0]∼a
.

Substitution on alpha-equivalence classes is defined in terms of substitution on plain ole’ terms. Can you
see why Prop. 8 makes this a well-defined function? At this point, we can redefine the big-step semantics
to operate on equivalence classes of terms rather than particular Terms.

Well, this seems like a big mess. How did it help us at all? The actual answer is that it hasn’t yet. Our
goal is to sweep some details under the carpet, but so far we’ve been dwelling on the details themselves.
It’s now time to do some sweeping.

In the literature, you will typically not see this level of detailed explanation. Instead, what happens
is this: The BNF for TERM is given, followed by a statement of the form “we consider terms up to alpha-
equivalence” or “we consider terms modulo alpha-equivalence.” These magic words evoke much of the
incantation above. From this point, any reference to TERM is really talking about TERM/∼a. Furthermore,
any reference to a metavariable like t is really a reference to the alpha-equivalence class [t]∼a .

Here’s where all this work shines through. First, a textual convention is established regarding metavari-
ables. Remember that t really stands for [t]∼a

, and that there are many possible t’s that one can consider as a
name for the class (any TERM that is alpha-equivalent). The following convention is taken: “If t1, t2, . . . , tn
appear in a certain mathematical context, then in these terms all bound variables are chosen to be differ-
ent from the free variables.” Since we are operating on alpha-equivalence classes, it’s possible to make
this assumption because we can always find equivalence class representatives ti that together satisfy this
convention.

This approach, when treated informally, is called Barendregt’s Variable Convention, after the logician
Henk Barendregt who introduced it (or just “The Variable Convention.”). In fact, most texts don’t bother
mentioning that they assume the variable convention: instead they just note that they treat terms up to
alpha-equivalence, and assume the variable convention without comment.

In practice, the variable convention means that whenever you write down terms or expressions that
contain metavariables that stand for terms, you can safely assume that the bound variables of any subterm
are distinct from the free variables of any subterm (because if they did not, then you could always alpha-

12We use curly braces for substitution here just so the definition looks clear. In practice, one would really use square brackets to talk
about this substitution function.

Page 12

Variables and Binding Time Stamp: 18:09, Sunday 27th March, 2022

convert to make that so). Under this convention, the definition of substitution becomes very short:

[t/x] : TERM → TERM

[t/x]true = true

[t/x]false = false

[t/x](if t1 then t2 else t3) = if [t/x]t1 then [t/x]t2 else [t/x]t3

[t/x]x = t

[t/x]x0 = x0 if x 6= x0

[t/x](let x0 = t1 in t2) = let x0 = [t/x]t1 in [t/x] t2

The variable convention only comes into play in the last rule, where you silently assume that x0 /∈ {x } ∪
FV (t). Thus the renaming from our previous definition is implicitly applied if needed, and the relevant
rule from substitution over actual TERMs applies.

This convention then carries over to definition of the big-step semantics for the language, as well as any
other function or relation definitions. The result is a very concise definition on paper, but it’s important to
know what underlying hidden details are implied, especially that you are not operating on TERMs anymore.
When exploiting this approach, it is extremely important that you prove that every step of evaluation respects
α-equivalence. Once you show that that is true, you can abstract away.

An interesting side-effect of lifting to α-equivalence classes is that in an actual implementation of the
language, you no longer care which specific strategy you use in practice to choose names. This may sound a
little weird, because we went through the trouble of creating a specific strategy, where we ordered variables,
etc. But the whole reason for doing that is just to show that there is at least one strategy for picking names
that “works.” Then, by abstracting to equivalence classes, we are more or less saying “we don’t really care
which concrete strategy you use, so long as it respects alpha equivalence, oh and by the way here is one
specific one, just to show you that it’s possible to pull it off. Do whatever you like! KThxBye!”

This is a common theme in building mathematical models as they get more sophisticated. We set down
some properties that we want to be true of a system. Then we build one proof-of-concept variant to show
that it’s even possible (most language implementations could be viewed as such proofs-of-concept). Then
we say that we only care about some class of properties of this system, and ignore others, so you can build a
different implementation that works differently (so long as the differences fall in the category of “things-we-
don’t-care-about”) but does the right thing as far as the specification is concerned. This is very analogous to
Standards Documents and committees, where many implementations of a protocol, language, or piece of
software (ostensibly) meet the criteria that are required, while otherwise doing whatever crazy town thing
they like.

Page 13

	Naïve Substitution
	Let Bindings
	Naïve Substitution into Let Bindings
	By-Name Let Binding
	Capture-Avoiding Substitution
	-equivalence, or, Bound Variable Names Don't Matter

	Generalizing Substitution
	Equivalence Classes and the Variable Convention

