
Structural Operational Semantics

CPSC 509: Programming Language Principles

Ronald Garcia*

4 February 2013

So far we have been defining the semantics of our programming languages using big-step semantics.
This approach has some very nice properties:

1. Compared to using recursive functions, we have more flexibility for modelling languages with pro-
grams whose semantics cannot be simply described by induction over the structure of the programs,
or which produce nondeterministic results.

2. The inversion lemmas on the inductive rules set up the skeleton of an interpreter for the language.
If you are already comfortable with writing interpreters, you can just about read the big-step rules
(bottom-up) as though they were the interpreter written in a compact and stylized notation. Techni-
cally the interpreter embodies the derivation search process, but many big-step semantics immediately
suggest a proof search strategy.

3. Compared to an actual implementation, we can use big-step derivations to reason about particular
programs (e.g. what does this program evaluate to), and also about classes of programs (e.g. does a
certain program transformation always produce equivalent programs?).

However, big-step semantics have some shortcomings. In particular, if you consider the big-step rela-
tion ⇓, it’s really just a set of program/result pairs, and tells us nothing about the process of computation.
Although the derivations allude to a process, they have no intrinsic notion of the sequence in which steps of
computation might happen.

In this lecture we introduce a particular kind of small-step semantics called structural operational semantics
as our way of explicitly modelling steps of computation [Plotkin, 2004b].

1 The big picture

Let’s consider again the Boolean Language.

t ∈ TERM, v ∈ VALUE
t ::= true | false | if t then t else t
v ::= true | false

To define its semantics, we introduced a big-step relation ⇓ ⊆ TERM × VALUE, and then defined our
evaluator equationally as a total function in terms of it.

evalbs : TERM → VALUE
evalbs(t) = v iff t ⇓ v.

Our goal here is to define the same evaluator eval, but do it in a way that lets us reason about steps of
computation. We do this as follows:

*© Ronald Garcia.

1

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

1. Define a relation −→ ⊆ TERM × TERM that represents a single step of computation. It’s up to us to
determine what counts as a single step of computation, and our choice may vary depending on our
goals.

2. Use this relation to define a multi-step relation −→∗ ⊆ TERM × TERM, which represents taking 0 or
more steps of computation.

3. Observe that VALUE ⊆ TERM in this semantics, so we can consider programs evaluating to completion
as instances of t −→∗ v, that is, TERMs that multi-step all the way to a VALUE. This gives us a new
definition of our evaluator.

evalss : TERM → VALUE
evalss(t) = v iff t −→∗ v.

Now one of our criteria for success here is to be sure that we have indeed defined the same semantics
(i.e., evaluator) for our language, which we are obligated to establish.

Proposition 1. evalbs = evalss .

To understand the meaning of the above statement, remember that a function is just a kind of binary
relation, and a binary relation in turn is just a set of pairs. So we have to prove that both sets have exactly
the same pairs in them, i.e.

∀ 〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ evalbs iff 〈t, v〉 ∈ evalss .

2 Small-step Semantics of BA

So to develop our small-step semantics, we need to establish a notion of what counts as a “small-step”. We
can look to our big-step semantics for some guidance.

First, consider the following big-step derivation:

true ⇓ true

Shall we count that as a step of computation? Maybe not: it doesn’t seem like this big-step did anything
interesting. Nothing happened. On the other hand, in the derivation:

true ⇓ true false ⇓ false
if true then false else true ⇓ false

Something interesting happens: the if operator examines it’s predicate and decides that it is indeed true,
and yields the consequent false in response. Again, the evaluation of true is not very interesting, and neither
is the evaluation of false, because they are both values so eValuate to themselves.

Taking these ideas together, we will claim that the above computation counts as a single step, i.e.

if true then false else true −→ false.

Let’s generalize this step to account for arbitrary consequent and alternative expressions and codify it
as a rule.

if true then t2 else t3 −→ t2
(sif-t)

.

Now consider this more complicated evaluation

true ⇓ true false ⇓ false
if true then false else true ⇓ false true ⇓ true

if (if true then false else true) then false else true ⇓ true

This computation includes the previous computation within the predicate position of the outer if expression,
but does more, so we would expect this evaluation to count as multiple steps of computation. If we consider

Page 2

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

if true then false else true to be computed in one step, then in considering the whole program, the outer if
expression is considered to have taken a step if its predicate position has taken a step. So we want it to be
true that

if (if true then false else true) then false else true −→ if false then false else true

We can generalize this to a rule about single-stepping a conditional expression where the predicate can
take a step:

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(sif)

After the first step, the resulting if itself can be resolved if its predicate is false:

if false then false else true −→ true

We generalize this as well to a new stepping rule:

if false then t2 else t3 −→ t3
(sif-f)

Since the Boolean language is tiny, these three rules suffice for all programs in the language. Here are
the rules, collected, for the single-step relation:
−→ ⊆ TERM × TERM

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(sif)

if true then t2 else t3 −→ t2
(sif-t)

if false then t2 else t3 −→ t3
(sif-f)

And here are the two derivation trees corresponding to the two steps of single-step reduction:

if true then false else true −→ false
(sif-t)

if (if true then false else true) then false else true −→ if false then false else true
(sif)

if false then false else true −→ true
(sif-f)

When simply describing the single-step evaluation of a program, we may write the terms in sequence
without proofs:

if (if true then false else true) then false else true
−→ if false then false else true
−→ true

That is to say: our program evaluates in two steps according to our model.
Now that we have our notion of “single steps of computation”, we need to tie them together into “zero

or more steps”. We define the −→∗ multi-step relation, also using inductive rules: −→∗ ⊆ TERM × TERM

t1 −→ t2
t1 −→∗ t2

(incl)
t −→∗ t (refl)

t1 −→∗ t2 t2 −→∗ t3
t1 −→∗ t3

(trans)

The (incl) rule, short for “include single-steps” just says that a single step of computation counts as a multi-
step. Note that the premise is really a side-condition on the rule, so we could rewrite it as follows to
emphasize that:

t1 −→∗ t2
(incl) t1 −→ t2.

This distinction between side-conditions and premises is significant when it’s time to explicitly spell out
the principle of induction that you can derive from these rules.

Page 3

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

The (refl) rule, short for “reflexive” says that a vacuous computation, which produces the same output
as its input, also counts as a multi-step. This case is used to account for programs that are themselves
values, and so require no further computation: they evaluate to themselves.

Finally, the (trans) rule, short for “transitive”, simply says that you can paste together two multi-steps
that meet at some common term t2 to produce one aggregate multi-step.

Generally speaking, a binary relation R ⊆ A×A is reflexive if a R a for all a ∈ A. The forward reasoning
principle induced by the (refl) rule explicitly asserts that multi-step is reflexive. A binary relation is transitive
if a1Ra2 and a2Ra3 implies a1Ra3. The forward reasoning principle induced by the (trans) rule explicitly
asserts that multi-step is transitive.

These three rules together imply that −→∗ is what is called the reflexive-transitive closure of −→: the
“smallest” binary relation on TERMs that contains −→ and is also reflexive and transitive (this could be
stated more formally and proven).

A typically paper presentation of a structural operational semantics does not bother to explicitly present
the definition of −→∗, because it is always essentially the same relation: the reflexive-transitive closure of
whatever single-step relation −→ is presented. However the principles used for reasoning about structural
operational semantics can vary.

3 Many multi-step derivations

As we’ve seen a number of times so far, we can use derivations to prove that certain pairs of terms are in
the multi-step relation. But this relation has a somewhat different property from others we have seen. To
see this, consider the following derivation that true −→∗ true:

true −→∗ true
(refl)

For most relations we have defined before, there was only one derivation of any given judgment, but not
so with multi-step. Here’s another derivation of true −→∗ true.

true −→∗ true
(refl)

true −→∗ true
(refl)

true −→∗ true
(trans)

and another one:

true −→∗ true
(refl)

true −→∗ true
(refl)

true −→∗ true
(trans)

true −→∗ true
(refl)

true −→∗ true
(trans)

You might see where this is going. There are an infinite number of derivations of true −→∗ true! As
you imagine, by playing a similar game, we can tell that there are an infinite number of derivations of
any member of the multi-step relation. This may seem disconcerting, especially since most of them are
annoying. But it’s useful to get used to the idea that in general an inductive definition can provide many
different ways of deducing the same fact.

However, inductive definitions like the ones we have seen so far have a special place.

Definition 1 (Deterministic Inductive Definition). Let R be some set of rule instances. Then R describes a
deterministic inductive definition if each rule instance inR has a distinct conclusion.

If some set has a deterministic inductive definition, then there will be exactly one derivation for each
element of the defined set. If you go back and look at our previous inductive definitions, for terms, big-
stepping, and single-stepping, you will find that up until now, each has been deterministic. Each determin-
istic inductive definition leads to a Principle of Function Definition by Recursion for that particular set. So
far we have only given such principles for abstract syntax like TERM, but that is because they are the only
sets for which it was convenient to use this principle to define functions.

Since our definition of multi-step is non-deterministic, we could not as easily describe a principle of
recursion for it. However we can provide a different deterministic definition for multi-step:

Page 4

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

−→ ⊆ TERM × TERM

t −→∗ t (zero) t2 −→∗ t3
t1 −→∗ t3

(plus-one) t1 −→ t2.

The (zero) rule, as in “zero steps” is exactly the same as the (refl) rule from the earlier definition. The
(plus-one) rule, as in “plus one step”, is a hybrid between (incl) and (trans).

This definition is equivalent to the earlier one. Proving that it is reflexive (i.e. satisfies the (refl) forward
reasoning principle) amounts to just proving the (zero) forward reasoning principle. Proving that it is
transitive, on the other hand, requires a substantive proof by induction, whereas it was a simple forward
reasoning principle for (trans) in the other definition. This means that our earlier definition makes it easy to
splice together two compatible multi-steps. In the other direction, it takes only two forward reasoning steps
to prove that the original definition satisfies the forward reasoning principle for (plus-one). Ultimately we
could use these admissibility propositions to prove that these two definitions in fact define the same set.

On the other hand, proving the proposition ∀v ∈ VALUE. true −→∗ v ⇒ v = true involves only back-
ward reasoning for −→∗ and −→, especially that true does not single-step: ∀t ∈ TERM. true 6−→ t. To prove
the same for the first definition, we must resort to proof by induction, because there are infinitely many
derivations of true −→∗ v for that definition, and we must consider all infinity of them.

The original definition of multi-step easily demonstrates that the relation is both reflexive and transitive.
However the cost is that the definition is non-deterministic, which can affect other reasoning principles, and
makes it more involved to define functions over multi-steps. On the other hand, our new definition has
exactly one derivation of true −→∗ true, and since −→ is a deterministic relation, in the sense that t −→ t1
and t −→ t2 implies t1 = t2, it can be shown that every derivation of t1 −→∗ t2 has one derivation.1 Since
−→ is deterministic, there can only be at most one string of steps (i.e. “path”) that goes from any term t1 to
tn. Thus this definition of−→∗ is a deterministic inductive definition, so we can state a Principle of Definition
by Recursion for multi-stepping according to the new definition.

Proposition 2. Let S be a set, Hzero : TERM → S be a function and Hplus−one : TERM × TERM × S → S be a
function. Then there is a unique function F : (−→∗)→ S such that

1. F (t, t) = Hzero(t); and

2. F (t1, t3) = Hplus−one(t1, t2, F (t2, t3)) if t1 −→ t2.

This recursion principle looks a bit different than the one we defined for TERM, especially because the
structure of derivations does not match the syntactic structure of pairs of TERM that multi-step. In contrast,
our derivations of r ∈ Term mirror the structure of the terms that they define. So here we can see that the
structure of functions follows the structure of derivations, not necessarily the structure of the judgments
that the derivations justify.

The most natural first example of a function defined using this principle is one that counts the number
of steps involved in a multi-step relation.

steps : (−→∗)→ N
steps(t, t) = 0

steps(t1, t3) = 1 + steps(t2, t3) if t1 −→ t2

From this function we can show that

steps(if (if true then false else true) then false else true, true) = 2.

A second function defined over multi-step collects the terms that arise during multi-stepping.

collect : (−→∗)→ P(TERM)

collect(t, t) = { t }
collect(t1, t3) = { t1 } ∪ collect(t2, t3) if t1 −→ t2

1it’s inductive definition is also deterministic, but that’s a different property

Page 5

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

From this function we can show that

collect(if (if true then false else true) then false else true, true) = if (if true then false else true) then false else true,
if false then false else true,
true

 .

Exercise 1. What are the components S, Hzero , and Hplus−one that correspond to these definitions?

4 Frames: a simplifying abstraction

In our definition of the single-step relation, there seem to be two kinds of rules. Rules like (sif) don’t
really capture interesting computation: they just facilitate computation over some small term inside of
some larger terms. In particular, the (sif) in general serves just to find the spot in the program where an
interesting computation will happen:

(sif)
t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3

It basically says that if we can do interesting work in the predicate position of the if expression, then do so.
A larger programming language, with more features, would have more of these “structural” rules, which
describe those subexpressions of a term that can be stepped.

The really interesting computations happen in those rules that have no premises, namely (sif-t) and
(sif-f).

To make the definition of larger languages a bit more concise, we distinguish between the interesting
and uninteresting rules. In particular, we keep the rules that perform interesting computations, like (sif-t),
but we replace the myriad of structural rules that simply point to places in the program with a syntax for
representing “position in a program”. We call this representation a frame, which is a reference to the idea of
a “stack frame” that shows up in compilers literature.

Consider the (sif) rule again. For all practical purposes, it says “look at the predicate position of the if.”
We can capture that more explicitly with a bit of notation:

if � then t1 else t2

We’ve marked the predicate position with a hole, and what we have is not a program anymore, but a simple
expression with a hole in it, which we’ll call a context frame, because what it is doing is describing the context
around a place where an interesting computation might happen.

However, we want to be able to build up these contexts for every possible position in a program that
might be the next place where a step of computation happens. We can describe all of these places simply
by looking at the uninteresting rules in the structural operational semantics, which we’ll call the structural
rules, and figure out what the corresponding context frame is.

For instance, suppose we added a short-circuiting conjunction to the language

t ::= . . . | t and t

And gave it some evaluation rules:

t1 −→ t1
t1 and t2 −→ t′1 and t2

(sand)
false and t2 −→ false

(sand-f)
true and t2 −→ t2

(sand-t)

Then we could represent the (sand) rule using the frame � and t which says “you can evaluate the first
argument.” This leads us to the following correspondence between structural rules and frames.

rule context frame
(sif) if � then t1 else t2

(sand) � and t

Page 6

Small Step Semantics Time Stamp: 22:29, Wednesday 23rd March, 2022

This leads us to define the set of frames:

f ∈ FRAME

f ::= if � then t1 else t2 | � and t

Plugging Now that we have a representation of an expression with a hole in it, we need a way to plug that
hole. Intuitively, if I have a frame f , and I plug its hole with a term t, then the result should be a full-fledged
term. We formalize this by introducing a function for plugging, whose fancy notation is f [t], which stands
for plugging the term t into f ’s hole.

·[·] : FRAME × TERM → TERM

(if � then t1 else t2)[t] = if t then t1 else t2

(� and t2)[t] = t and t2

Armed with this function, we can replace all of the structural rules from our semantics with a single
rule:

t −→ t′

f [t] −→ f [t′]
(sf)

Note that this rule makes explicit use of the plug function as part of its definition. We often use functions
in the definition of rules, and they should be viewed as side conditions on their results. For example, a
desugared version of this rule is as follows:

(sf)
t′1 −→ t′2
t1 −→ t2

∃f ∈ FRAME. t1 = f [t′1] ∧ t2 = f [t′2]

So you see, the rule is constrained by a side condition that ensures that t′1 is a subpart of t1, t′2 is a subpart
of t2 and t1 and t2 are related by a common frame.

Typically a frame-style structural operational semantics does not bother to explicitly define the plug
function since it is trivial and always essentially the same. For this reason, this presentation can be quite
concise.

References

G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60-61:3–15, 2004a.
doi: 10.1016/j.jlap.2004.03.009. URL http://dx.doi.org/10.1016/j.jlap.2004.03.009.

G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139, 2004b.

Page 7

http://dx.doi.org/10.1016/j.jlap.2004.03.009

	The big picture
	Small-step Semantics of BA
	Many multi-step derivations
	Frames: a simplifying abstraction

