
Abstract Machine Semantics

CPSC 509: Programming Language Principles

Ronald Garcia*

12 November 2011

Introduction

In these notes we will be talking about control structures in programming languages. To do so, we’ll in-
troduce yet another style of operational semantics, one that makes program control more apparent. We have
already discussed big-step semantics, which take the form t ⇓ v, and we’ve discussed two kinds of small-step
semantics: structural operational semantics and reduction semantics. We’ll now talk about a third kind of small-
step semantics, called abstract machine semantics. Abstract machine semantics operationalize the intuition
that we discussed regarding how to think about running a reduction semantic: given a program, you have
to somehow find a way to decompose the program into an evaluation context and redex, then reduce the
redex, and then plug the result back into the context, and then repeat these steps until a final outcome re-
sults. Abstract machines typically inject more systematic method into this process. As such, this semantic
approach is a useful guide toward implementing compilers, which must translate your high-level language
into low-level instructions that run on some machine with a bunch of registers, some stack memory, and
some heap memory.1

A Simple Language

Our running example for this introduction is, as usual, a language of Boolean expressions. The language is
bare-bones, but has enough content to capture most of the concepts that concern us at this time. We’ll start
with the language reduction semantics, and then will return to present it as an abstract machine.

Syntax

t ∈ TERM, v ∈ VAL, r ∈ REDEX, E ∈ ECTXT
t ::= true | false | if t then t else t | t and t | t or t | t xor t | not t
v ::= true | false
r ::= if v then t else t | v and t | v or t | v xor v | not v
E ::= � | E[if � then t else t] | E[� and t] | E[� or t] | E[� xor t] | E[v xor �] | E[not �]

*© Ronald Garcia. Not to be copied, used, or revised without explicit written permission from the copyright owner.
1Nowadays, most computers have just plain ole’ memory, which you can use to implement your own stack and heap, but these

two concepts are so ingrained in the brains of programmers that it’s helpful to at least at first maintain the fiction that they are two
truly distinct components of a computer.

1

Abstract Machines Time Stamp: 22:09, Thursday 31st March, 2022

Notions of Reduction ⊆ REDEX × TERM:

if true then t2 else t3 t2

if false then t2 else t3 t3

true and t2 t2

false and t2 false
true or t2 true

false or t2 t2

v xor v false
false xor true true
true xor false true

not true false
not false true

One-Step Reduction
r t

E[r] −→ E[t]

As is common practice, We omit the definition of multi-step reduction. One-step reduction is often
omitted too, but it plays a role in our story about abstract machines.

Motivation for Abstract Machine Semantics

The reduction semantics style takes the structural rules ofstructural operational semantics, like the rule for
if :

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

and expresses them succinctly as a grammar of evaluation contexts.

E ::= . . . | E[if � then t else t] . . .

We can then view the process of evaluation as a succession of breaking a program down into an evaluation
context and redex and applying a notion of reduction:

t0 = E0[r0] −→ E0[t
′
0] = t1 = E1[r1] −→ E1[t

′
1] = t2 = E2[r2] −→ . . .

After each reduction step Ei[ri] −→ Ei[t
′
i] = ti+1, the next step begins with asserting the existence of some

different from-scratch decomposition of the program ti+1 = Ei+1[ri+1] to find the next redex to reduce. The
sufficiency of this multi-step evaluaiton process typically relies on the truth of a particular theorem.

Theorem 1 (Unique Decomposition). For any program t, either t is a value v, or there exists a unique context E
and unique redex r such that t = E[r].

Proving this theorem is somewhat involved: when set up appropriately, it’s tedious but routine. The
existence clause of the theorem guarantees that evaluation is either finished (when t is a value), can make
progress (t = E[r] for some context E and redex r that can be reduced according to some notion of reduction
(if the semantics is defined for all well-formed programs).

The uniqueness clause of this theorem guarantees that the programming language is deterministic, be-
cause if there is an E and r such that t = E[r], then both E and r are unique: there is only one possible step
at this point in the program.

Page 2

Abstract Machines Time Stamp: 22:09, Thursday 31st March, 2022

Reduction semantics are nice and abstract, but for some purposes, they can be seen as too abstract. Just
knowing that unique decomposition holds isn’t enough: to evaluate a program, we want not only to know
that a decomposition exists: we want to find that unique decomposition.

A language implementation modeled after reduction semantics would have to do the work of decom-
posing and then making a reduction step. Naturally a sufficient proof of unique decomposition contains
within it an algorithm to find unique context-redex pairs, but the most straightforward proof technique
implies a rather inefficient (but informative) algorithm. In fact, simply solving the decomposition problem
is not quite satisfactory. Both reduction semantics and structural operational semantics are woefully ineffi-
cient in that each step of program reduction rebuilds the entire program via plugging, and then decomposes
it again (which manifests in the reduction example above as E0[t

′
1] = t1 = E1[r1]). Most of the time E0 and

E1 share a great deal of the same structure. A real language implementation need not be so inefficient: it
can work directly with E0 and t′1 to find E1 and r1.

Abstract Machine Semantics

We now show how a reduction semantics can be elaborated into a more realistic model of program ex-
ecution, one that does not keep decomposing and rebuilding a program after each reduction step. An
abstract machine semantics presents a high-level model of how a computer might actually go about run-
ning a program. Historically, abstract machines were the first kind of operational semantics, introduced
by Peter Landin in the highly influential 1964 paper The Mechanical Evaluation of Expressions [Landin, 1964].
However, abstract machines were considered too low-level by many researchers, and this led to the devel-
opment of structural operational semantics (by Plotkin) and reduction semantics (by Felleisen). However,
it was observed that a reduction semantics is just an abstract representation of an abstract machine.

In this section we expand the reduction semantics above to form an abstract machine. This machine
implements the deterministic search for a context-redex pair that can be reduced. Then, after a reduction,
the machine proceeds directly from the current decomposition En[t

′
n] to find the next redex, without com-

pletely plugging the term and starting over from scratch. This approach is much more efficient in practice.
The abstract machine is defined by a set of configurations, which for our simple language are comprised

of evaluation context-term pairs. The machine operates in four different modes, which are reflected in a
grammar of configurations:

C ∈ CFG
C ::= 〈E, t〉focus | 〈E, r〉reduce | 〈E, v〉return | v

The focus mode represents when the abstract machine is searching downward into a term for a redex.
The reduce mode represents when the abstract machine has found a redex and is ready to reduce it. The
return mode represents when the machine has found or produced a value, and is returning that value to the
current context in order to find the next piece of work to do. The final mode, a standalone value v, denotes
that reduction has concluded with a final value.

The heart of the abstract machine semantics is the single step relation

−→ ⊆ CFG × CFG

which captures how the machine configurations evolve over time. Since our language happens to be de-
terministic, we can consider −→ to be a partial function, but in general that is not the case, so we simply
consider it to be a binary relation.

We break the step relation down based on which mode it is in. The focus steps determine how to transi-
tion by analyzing the top-level structure of the machine’s term position.

〈E, if t1 then t2 else t3〉focus −→ 〈E[if � then t2 else t3], t1〉focus
〈E, t1 and t2〉focus −→ 〈E[� and t2], t1〉focus
〈E, t1 or t2〉focus −→ 〈E[� or t2], t1〉focus
〈E, t1 xor t2〉focus −→ 〈E[� xor t2], t1〉focus
〈E,not t〉focus −→ 〈E[not t], t〉focus
〈E, v〉focus −→ 〈E, v〉return

Page 3

Abstract Machines Time Stamp: 22:09, Thursday 31st March, 2022

In essence, focus steps facilitate the search for a redex by analyzing the structure of a term t step-by-step,
leaving a trail of breadcrumbs behind it as extensions to the evaluation context E. Upon discovering a
value, it transitions to a return configuration that has the same context and term, which we now know to be
a value.

The return steps determine how to transition by analyzing the top-level structure of the machine’s con-
text, which corresponds to the innermost frame, if any.

〈�, v〉return −→ v
〈E[if � then t else t], v〉return −→ 〈E, if v then t else t〉reduce

〈E[� and t], v〉return −→ 〈E, v and t〉reduce
〈E[� or t], v〉return −→ 〈E, v and t〉reduce
〈E[� xor t], v〉return −→ 〈E[v xor �], t〉focus
〈E[v1 xor �], v〉return −→ 〈E, v1 xor v2〉reduce
〈E[not �], v〉return −→ 〈E,not v〉reduce

Here is where using inside-out contexts helps us: they are naturally suited for easily examining or updating
the innermost frame of the evaluation context. If reduction has arrived at a value, and the evaluation context
is exhausted, then there is no more work to do: reduction concludes by producing that value. In the case
of and , or , and not , a value in the first (or only) position justifies a reduction step, thanks to short-
circuit evaluation, so the machine transitions to a reduce configuration with the relevant redex in place.
In the case of xor , both arguments must be values in order to reduce it, but if the evaluation context
is E[� xor t], then the machine cannot yet be sure that the second argument is a value. As a result, the
machine replaces the innermost frame with a new frame that records the discovered knowledge that the first
argument is a value, and proceeds to explore the second argument using a focus configuration. However,
if the return configuration’s evaluation context is E[v xor �], then both arguments to xor are values and
reduction can now proceed. The two return steps for xor demonstrate how an evaluation context records
information about the current program as the machine traverses it in search of a redex. It’s worth observing
that the return configuration itself records, albeit temporarily, the discovery of a value v, and preserves that
information as it inspects the context.

The reduce steps determine how to transition by analyzing the relevant structure of the redex. They
proceed by performing the appropriate notion of reduction from the reduction semantics.

〈E, if true then t1 else t2〉reduce −→ 〈E, t1〉focus
〈E, if false then t1 else t2〉reduce −→ 〈E, t2〉focus

〈E, true and t2〉reduce −→ 〈E, t2〉focus
〈E, false and t2〉reduce −→ 〈E, false〉focus
〈E, true or t2〉reduce −→ 〈E, true〉focus
〈E, false or t2〉reduce −→ 〈E, t2〉focus
〈E, v xor v〉reduce −→ 〈E, false〉focus

〈E, false xor true〉reduce −→ 〈E, true〉focus
〈E, true xor false〉reduce −→ 〈E, true〉focus

〈E,not false〉reduce −→ 〈E, true〉focus
〈E,not true〉reduce −→ 〈E, false〉focus

Every focus and return machine transition has simply contributed to the search for a redex: plugging the
context into the term of a configuration yields the same total program at the beginning and end of any focus
and return transition. Not so for reduce, this is where the “real work” gets done.

Each reduce configuration transitions to a focus transition containing the same evaluation context and
the outcome of the notion of reduction in term position. The rationale for this design is that the only new
information in the outcome transition is the output of reduction, so focusing on that term suffices to find the
next relevant redex. This design is precisely what avoids the behaviour of reduction semantics that causes
it to discard all of the information about the evaluation context and begin decomposition anew.

We can still do a little better, however. Some of our reduction steps tell us enough about reduction such
that we can retain even more information. For instance, consider again the transition:

〈E, true or t2〉reduce −→ 〈E, true〉focus

Page 4

Abstract Machines Time Stamp: 22:09, Thursday 31st March, 2022

Just looking at this transition, we can tell that the next step will be to transition to 〈E, true〉return, because we
know that the term position holds a value. As such, we can do better than transitioning to focus by fast-
forwarding to the next inevitable step. Olivier Danvy calls these inevitable steps corridor transitions because
the transitions are forced down a single possible path to some known configuration after some number of
steps (here 1). As such, we are wise to update the currently “lossy” transitions to immediately transition to
return configurations:

〈E, if true then t1 else t2〉reduce −→ 〈E, t1〉focus
〈E, if false then t1 else t2〉reduce −→ 〈E, t2〉focus

〈E, true and t2〉reduce −→ 〈E, t2〉focus
〈E, false and t2〉reduce −→ 〈E, false〉return
〈E, true or t2〉reduce −→ 〈E, true〉return
〈E, false or t2〉reduce −→ 〈E, t2〉focus
〈E, v xor v〉reduce −→ 〈E, false〉return

〈E, false xor true〉reduce −→ 〈E, true〉return
〈E, true xor false〉reduce −→ 〈E, true〉return

〈E,not false〉reduce −→ 〈E, true〉return
〈E,not true〉reduce −→ 〈E, false〉return

In some other languages, corridor transitions will lead the machine to immediately extend the evaluation
context, or transition immediately back to reduction. The outcome depends on the properties of the lan-
guage and its reduction semantics. The natural default, though, is to focus on the outcome of the notion of
reduction.

Now, given the definition of −→, we can specify the corresponding evaluator for this language. The
initial state of the machine has an empty context, because we have not yet analyzed the program, and the
entire program is in focus position, (〈�, t〉focus). The end state of the machine is represented by a final value
v, which must have arisen from the machine is returning a final value to an empty evaluation context (i.e.,
〈�, v〉return). Given these, the definition of the evaluator follows:

eval(t) = v iff 〈�, t〉focus −→
∗ v.

Other programming languages may have additional possible outcomes (e.g. error states), and the evaluator
would account for them.

Notice how the evaluation context literally plays the role of the runtime stack that you probably learned
about in an early programming class. The basic structure of any computation is that when the machine is
in state 〈E, t〉focus, it is about to analyze t all the way to some value v, which will be returned to the current
stack as 〈E, v〉return. In big-step semantics, we can see the part of the same phenomenon by following the
big-step reduction tree upwards. An arithmetic summation rule of the form

t1 ⇓ n1 t2 ⇓ n2

t1 + t2 ⇓ n3
where n3 = n1 + n2

first evaluates t1 all the way down to n1, “remembering” that the next thing to do is evaluate t2, before
summing the results. This is made much more explicit in the abstract machine semantics, since the evalua-
tion context is explicitly carrying this memory. And this is why abstract machine semantics are a clear way
of expressing programming language control-constructs. Language features that implement nontraditional
control patterns can be expressed by manipulating the evaluation context. We’ll see examples of this in the
near future.

References

P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964. doi: 10.1093/comjnl/
6.4.308. URL https://doi.org/10.1093/comjnl/6.4.308.

Page 5

https://doi.org/10.1093/comjnl/6.4.308

