
A Bunch of Set Theory and a Bit of Logic

CPSC 509: Programming Language Principles

Ronald Garcia*

14 January 2014
(Time Stamp: 12:57, Friday 25th March, 2022)

1 Representing the world using sets

Set theory is the “machine language” of mathematics. If you think about it, every program that you have
ever run on a computer has ultimately produced instructions that get sent to a CPU and the CPU just
churns through them. Those CPU instructions are really really low-level: add this 32 bit number to that 32
bit number, grab these bits from memory and move them somewhere else, check this number to see if it’s
zero, and grab these other set of bits from memory and interpret them like a machine instruction. Somehow,
these little primitive instructions make it possible to write programs that download pictures of kittens from
the Internet and thereby make your life more fulfilling. At the end of the day, though, it’s all bits: 1’s and
0’s. Your kittens are represented by a bunch of bits that your graphics hardware knows how to translate
into a vision of furry joy. Your tragic poetry is written in ASCII, which is really a bunch of characters, each
of which is represented by a number, which in turn is represented by bits. So your computer consistently
operates on representations of the things that you really care about.

Set theory is like that. It’s painfully low-level, and it doesn’t understand high-level concepts like pro-
gramming languages, or numbers for that matter, but it’s very very powerful! Many mathematicians and
logicians take set theory as the foundational tool for building representations of things. If you can’t repre-
sent your object using the machinery of set theory, then those mathematicians would likely deem them not
so mathematical. This viewpoint is not universal, but it’s safe to say that as I write this it is dominant, and
the thesis guiding this class is that, regardless of its supremacy and despite its warts, it’s useful.

2 Abstractions make this tractable

On computers and in mathematics, we keep this low-level stuff from exploding our brains by building up
layers of abstraction. Much of the time we just ignore what’s going on at the low-levels, but instead think
in terms of higher-level concepts that we really care about. As long as your abstractions are well-designed
and clearly explained, you can ignore the details. If your abstractions are “leaky”, then you might write
down things that make no sense to you but say something meaningful at the lower levels [Spolsky, 2002].
For example, I’m willing to believe that the letter ’a’ comes before ’b’, so in a sense: ’a’ < ’b’, and the
C programming language tells me this, but why would I think that ’)’ < ’+’??? The C language tells me
that this is true too, and if I didn’t know anything about the ASCII encoding of characters as numbers, then I
wouldn’t understand what’s going on. In short, C’s abstraction of characters is leaky. If the language didn’t
let you compare characters in terms of their underlying machine representations, this weird stuff wouldn’t
happen.1 Later, we’ll see some examples of leaky abstractions in set theory.

*© 2014 Ronald Garcia.
1In fact, some errors in C code arise from assuming that ASCII is always the relevant character encoding! See for example

https://stackoverflow.com/questions/16400009/why-the-char-comparison-ifc-a-c-z-is-not-portable

1

https://stackoverflow.com/questions/16400009/why-the-char-comparison-ifc-a-c-z-is-not-portable

Sets Time Stamp: 12:57, Friday 25th March, 2022

Now don’t get me wrong, sometimes it’s useful to know what’s going on under the hood, if only so
you can debug problems or implement abstractions of your own. This is true on both computers and in
mathematics. In essence, the ideal is to be a full stack mathematician who can work efficiently at a high level,
but understand the underpinnings that ensure that this high-level work makes sense.

Finally, bear in mind that we sometimes use low-level concepts in our high-level reasoning. In program-
ming, sometimes all you want is a set of bits. So bits appear in our upper-level abstraction. But be warned:
just because you are talking about bits in your high-level, it doesn’t mean that they are being represented
exactly as bits at the low level! Perhaps each of your high-level bits is being represented by an entire 32-bit
machine word, for convenience of implementation. If you don’t care about the space usage, then maybe
that’s not a big deal. Similarly, we still use sets in our higher-level reasoning too: sometimes you just need
a set of kittens to make your day. But your high-level notion of “set of kittens” is going to be interpreted
somehow in set theory, and that interpretation may not be readily recognizable after you compile it down.
It will surely be a set, because sets are all there is at the bottom, but a set of what? That is to say, we can
really think about everything we’re doing in mathematics as operations on sets.2

Now, to keep the navel gazing to a reasonable minimum, we are not going to build all of the mathe-
matical concepts we need from the ground up. In practice, we are going to choose a few primitive notions
in addition to sets and work with them. In this document, however, we will do a bit of wallowing in
the set-theoretic muck, partly so you have some experience looking under the hood at the low-level parts,
partly so you can appreciate the high-level abstractions we use, and partly so that you can do your own
trouble-shooting and discern whether your high-level reasoning makes sense. It’s good to set some ground-
rules for creating and manipulating sets. You may have seen some of these concepts before, but maybe not
explained in this painful of detail. Enjoy!

3 Sets and Logic

Set theory, as we will use it in class, is really an embedding of notation and axioms that are meant to codify
what sets we can describe and manipulate, into a logical language called first-order logic, which gives us
the tools that we need to actually say stuff about sets and prove that the things we say “make sense”. The
two combine to create what we technically call a first-order set theory. So they are necessarily intertwined.
Ultimately we want to get comfortable with being relatively informal about our discussions of sets, just
like mathematicians tend to be, but we want to make sure that if we really had to, we could get super-
pedantic and formal about it, literally using first-order logic all the way down. This is quite analogous
to programming practice. Experienced programmers are capable of writing precise code that a computer
can execute, but they may still communicate with one another using pseudocode, knowing full well that
when push comes to shove they can sit down and implement it: pseudocode is sometimes a more efficient
and insightful way to communicate the essence of a program than concrete code. The same is true in
mathematics, except that not all mathematicians are equipped to fill in all the low-level details, but they
somehow learn to stay within (or close to) the ball park, so that their proof sketches are enough guidance
to a well-trained expert to fill in the dots (and correct any typos) Avigad [2020].

For this reason, I will intersperse the casual informal set notation with the super-pedantic statements
within logic, so you can tell precisely what we mean when we write some informal stuff down: so you can
fill in the dots when you need to.

4 Sets are about Stuff

At heart, set theory is a way of talking about containers of stuff. Everything in set theory boils down to the
“element of” relation ∈. If one set A is an element of another set B, then we write A ∈ B. That’s really all
there is to set theory, but we will build up a lot of stuff on top of that single concept (see, we don’t even
have 1’s and 0’s just ∈). First, we need to know how this ∈ relationship works...what are the rules that

2One can argue about whether this is a good idea, just as one can argue whether the X86 instruction set is a good idea. Philosophers
and logicians have proposed other foundations for mathematics, and with good reason! But from the early 20th century until now, set
theory rules the day, much like the X86 ISA.

Page 2

Sets Time Stamp: 12:57, Friday 25th March, 2022

constrain it? These are captured by the axioms of a set theory. I’m not going to give all of the axioms of set
theory, just the ones that we will use regularly. In fact, there are lots of set theories out there, but many have
a pretty common core. We’ll be using a set of axioms for what is called Zermelo-Frankel Set Theory or ZF for
short. Technically we’ll be using a variant called “Intuitistic ZF” a.k.a. IZF. Now let’s talk about some of the
axioms, which tell us how sets work as well as what kinds of sets are out there, i.e. what sets exist.

5 When are two sets really the same set?

We start with a basic property of sets:

A set’s identity is entirely determined by its elements.

Think of a set as an invisible bag of stuff...all we identify are the stuff, not the material that the bag is made
of. This conception of sets is captured formally by the Axiom of Extensionality.3:

∀S1.∀S2.S1 = S2 ⇔ ∀S.S ∈ S1 ⇔ S ∈ S2.

In words, this reads: “for any sets S1 and S2, they are the same set, i.e. identical, if and only if they
contain the same elements.” Remember: the only elements that arise in set theory are sets, so we’re just
worried about what sets are elements of some other set. For our purposes, this axiom defines equality of
sets S1 = S2. First-order logics typically provide rules about equality that codify some “bare minimum”
properties that must be true of any notion of equality. We’ll discuss those later when we learn about how
to reason in our logic. The remaining fundamentals of set equality/identity can be ascribed to this axiom.

Lets briefly discuss some of the logic notation that arises in the formal statement of the axiom. The
symbol ∀means “for all”, and⇔which means “if and only if”. ⇔ is really an abbreviation:

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A).

Here the wedge ∧ is the symbol for “and”. The arrow A ⇒ B is just “if A then B” or “A implies B” or “A
only if B” or “B if A”: all of these statements are different ways of saying the exact same thing in words. To
me the stranges ones are the last two, which take getting used to. But they help explain how “A if and only
if B” textually breaks down into the two distinct implications “A only if B” and “A if B”.

The ≡ symbol is used to introduce notational definitions. A ≡ B can be read as “Whenever you see the
syntax A, you can immediately rewrite it as B in any context.” Think of it as analogous to a macro, like
what you would write in the C Pre-processor. We use notational definitions to encode familiar concepts in
terms of simpler ones (thereby keeping our logical language small and precise), often resulting in a more
concise or traditional notation, but backed by a rigorous (possibly longer) logical presentation. For now
don’t worry too much about how precisely to read the above logical formula, we’ll get into the details of
how to understand logical propositions later.

But unpacking the axiom above a little more, we now get: “for any sets S1 and S2, we know that: 1) if
they are equal, then any element of S1 is an element of S2 and any element of S2 is an element of S1; and
2) if any element of S1 is an element of S2 and vice versa, then S1 and S2 are equal/identical, i.e. the same
set.”

Now we know how to judge that “two” sets are the same set, or more precisely that two set expressions
describe the same set. Since equality/identity is a pretty key idea in logical systems, it’s important that we
lay this out good and early. Without a notion of equality/identity, we wouldn’t be able to justify referring
to a specific set, e.g., “the set that has no elements” as we will do next.

6 The Empty Set

So we now know how to determine if two set expressions describe the same set, but we still don’t know if
there are any sets!

3Roughly speaking, a set’s extension is “the stuff that it is made up of.”

Page 3

Sets Time Stamp: 12:57, Friday 25th March, 2022

Don’t let the axiom of extensionality’s “for all sets...” claim fool you: logic allows us to make statements
like “All flying pigs prefer to drive Teslas.” which might be a true statement, not because flying pigs don’t
like bicycles, but rather because we can establish that there are no flying pigs in the first place!4 This is one
of the powers and challenges of logic: it empowers us to make deductions based on premises that might
not be true, or might be true but we do not yet know.5 In short, we could still talk about “all sets” even if
there were none, so we are on the hook to ensure that there’s at least one set. Let’s do that.

One set that’s very important to us is the set with nothing in it: the empty set. This leads us to state the
Axiom of the Empty Set.:

There is an empty set, i.e. there exists a set with nothing in it.

Using formal notation, this statement looks like the following:

∃S1.∀S2.S2 ∈ S1 ⇒ ⊥.

Here, the logical symbol ⊥ represents falsehood. In our logic, A⇒ ⊥ is our way of writing “not A.”
You can read it as “Well if A then pigs fly!” as in, there is no way that A holds: its truth implies the
impossible (proposition). If you have experience with logic, then this may look a bit odd compared to other
presentations of negation, but there is some actual sense to this. In fact, we often abbreviate this kind of
negation using another common notation:

¬A ≡ A⇒ ⊥.

Many presentations of logic use the notation ¬A for negation, but take it as primitive. We will find it very
useful to treat “not A” as a non-primitive logical form, just like we treat “if and only if”. Reasoning about
negation reduces to reasoning about implication and reasoning about falsehood (yup, it’s a thing!), which
can make proofs that involve negation more mechanical and less mysterious, and can also clarify the dis-
tinction between reasoning about falsehood (which we must do) and proof by contradiction (which we will
never have need for). These two distinct practices are often confused for one another unfortunately Bauer
[2010].

Also, we often abbreviate the idea that some relation doesn’t hold by crossing it out. For example,

A /∈ B ≡ A ∈ B ⇒ ⊥

and

X 6= Y ≡ X = Y ⇒ ⊥.

Keep these notational definitions in mind: they will help you prove theorems about non-containment and
inequality later.

Now, we can combine the axiom of the empty set with the axiom of extensionality to prove that the
empty set is unique, i.e., there is at least one and at most one set that is empty.

Proposition 1 (The Empty Set is Unique).

(∃S1.∀S2.S2 ∈ S1 ⇒ ⊥) ∧
(
∀S1, S2. (∀S.S ∈ S1 ⇒ ⊥) ∧ (∀S.S ∈ S2 ⇒ ⊥)⇒ S1 = S2

)
.

Reading the above formula literally, it reads “there exists a set that has nothing in it; and furthermore
should you find yourself with two sets that have nothing in them, then they are actually the same set.” In
other words, there’s at least one empty set and at most one empty set, i.e. there’s exactly one! This is why
we get to call it the empty set, rather than an empty set, by the way. Thus the concept of emptiness suffices
to definitely describe a particular set. Definite description—the presentation of sufficient conditions to identify
a particular set—will be one of the central activities in this course, and much of the machinery we study
will provide more and more sophisticated means to definitely describe certain sets. One motto of the course

4Barring recent advances in biotechnoogy of which I am unaware.
5For example, many results in algorithmic complexity theory are premised on assumptions like P 6= NP , even though we don’t

know, and may never know, if that is true.

Page 4

Sets Time Stamp: 12:57, Friday 25th March, 2022

is: “the word define is short for definitely describe and definition is short for definite description.” We introduce
a formal notation for definite descriptions shortly.

Let’s use notational definitions to clarify the formal statement of the Axiom of The Empty Set: the textual
statement is simple but the primitive formal statement is a hot mess! We can simplify the logical formula
using a couple of abbreviations. First, as described above we use /∈ to mean “not an element of” Second,
we codify the concept of unique existence, a.k.a. uniqueness, using a notational definition. Let Φ be some
property of sets. Then we define the ∃! quantifier to express uniqueness:

∃!S.Φ(S) ≡ ∃S.Φ(S) ∧
(
∀S1, S2.Φ(S1) ∧ Φ(S2)⇒ S1 = S2

)
.

In the above notation, Φ(S) means that the logical formula Φ(S) may contain unquantified references to
the set variable S. Then Φ(S1) denotes the same formula as Φ(S) except replacing some unquantified
references to S with S1. This notation is often intends to replace all references to S in Φ(S), but in some
contexts that is not necessary. Since total replacement is the default, we’ll point out those cases where only
some—including none!—references might be replaced.

This notational definition emphasizes the two distinct reasoning powers that uniqueness gives you:
first that something with the property Φ(S) is out there (in case you need it), and second that any two set
expressions that satisfy this property must actually describe the same set, so you can use logical equality
rules to reason about that sameness. Reasoning with equality is an important and powerful tool.

Using these two notational definitions, we can succinctly rewrite Prop. 1 as:

∃!S1.∀S2.S2 /∈ S1

In short: “There’s a unique set that has no elements.” This says exactly the same thing as the original proposi-
tion, since this “macro-expands” to it. Bear in mind that we have not proven this proposition yet, but we’ll
see that it follows from the axiom of extensionality and the axiom of the empty set.

Now that we know that there is only one empty set, we can use a definite description to name it.
ιS1.∀S2.S2 /∈ S1

This form of expression, ιS.Φ(S), where Φ is some proposition that (probably) refers to S is what we call a
definite description Stenlund [1975]. This particular expression can be read “the unique set S1 such that no
set S2 is an element of it.”

A definite description is a way of...well...describing a set by stating some property Φ(S) of a set S that
uniquely characterizes the set. As such, a definite description is a way of “naming” a set, kind of like
“that guy who sits in the back of class every day snapping his gum.” Ideally such a description suffices to
uniquely identify the set in question, in which case the description is called proper. If there are three guys
snapping gum, then this description is indefinite, and if no guys snap gum then the description is empty. We
should strive for proper definite descriptions, and avoid the latter two.

One nice thing about definite descriptions is that they not only identify a set, but do so by enunciating
a property that the set in question (uniquely) satisfies. One built-in rule of our logic is that for any proper
definite description S ≡ ιS1.Φ(S1), we can immediately deduce that Φ(S) holds, i.e. Φ(ιS1.Φ(S1)) is true.
As you would expect, the unique set S that satisfies Φ...satisfies Φ! But don’t forget that sooner or later we
must prove that Φ describes a unique set to establish that the definite description is proper.

For conciseness and tradition, we introduce a common name for the empty set using a notational defi-
nition:

∅ ≡ ιS1.∀S2.S2 /∈ S1

It’s no coincidence that the definite description of the empty set looks exactly like the statement of unique-
ness, but replaces ∃! with ι. We’ve transitioned from establishing that “there exists a unique set S such that
...” to referring directly to “the unique set S such that...”.

Definite descriptions are not strictly necessary for logic: we can “compile” propositions that use definite
descriptions to equivalent propositions that don’t. But definite descriptions more directly and precisely
capture how we casually talk about mathematical objects. We are prone to make statements that directly
refer to “the empty set”, and reason just based on that name. Definite descriptions, and the reasoning

Page 5

Sets Time Stamp: 12:57, Friday 25th March, 2022

principles they embody, mirror our informal speech. In addition to improving the mapping from prose
to formality, definite descriptions clarify the relationship between definitions and reasoning principles:
the definitions directly imply some principles, which we can immediately read from the structure of the
description embedded in their formal name. For example, the fundamental reasoning principle of the
empty set can be deduced directly from its definite description:

∀S.S /∈ ∅.

We’ll find that the concepts underlying definite descriptions, and the reasoning principles that they en-
tail, scale from our lowest-levels of set theory to our high-level strategies for defining components of a
programming language semantics. One could also imagine teaching a computer to recognize and manipu-
late them on our behalf since they are so systematic.

6.1 Uniqueness, Shmuniqueness!

You may be annoyed that we are still on the hook to prove that the empty set is unique. Why don’t our
axioms just make the uniqueness of the empty set part of the axiom of the empty set and be done with it?
We could have done that, but we didn’t. Our axiom of the empty set does not establish uniqueness because
it does not need to: the axiom of extensionality could be used to readily establish uniqueness, so why add
more complexity and redundancy to one of your axioms?

Furthermore, by relegating all reasoning about set equality/identity to the axiom of extensionality, we
are left with a clear and unambiguous understanding of what constitutes set equality. If we assert unique-
ness in some other axiom, then expanding the notational definition for ∃! shows that such an axiom also
makes claims about equality, and might accidentally introduce unintended additional properties to set
equality.

These principles reflect how mathematicians tend to think in my experience: keep the number of axioms
you assert small, keep the strength of each axiom as weak as possible, and try to make each axiom as
independent from one another as possible, such that each is necessary and none implies the others. Building
up a foundational theory this way keeps axioms manageable and ensures that you can get your work done
with as small of a trusted base as possible. Mathematicians have argued for yeeeeears about various axioms:
which ones are self-evident, which ones are questionable, which ones are necessary for a theory to be useful,
and which ones imply really strange things but we can’s seem to do without them. This is not dissimilar to
an aesthetic that drives some programming language designs: the desire to provide as few mechanisms as
possible (e.g. “everything’s an object” or “everything’s a function”) and to provide only “one way to do it”
whatever “it” may be.

Now this approach to choosing axioms (and constructing programming languages) does not make your
working set of properties particularly ergonomic, but if the language provides some mechanism for build-
ing your own abstractions, then you can build up higher-level human-scale tools (i.e. propositions) on top
of them with confidence and then use those in your day-to-day work. By having a firm, clear foundation,
you need not worry that your mathematical castles rest on sand, or that unnecessary inconsistencies may
arise accidentally. But it goes to show that these systems were built to reason about set theory, not to do real
work in it!

7 Beggars Can Be Choosers

Some axioms of our set theory allow us to identify bigger sets in terms of smaller sets. However, much of
the time we desire to identify smaller sets by selecting desirable elements from some previously-determined
bigger set. The tool that we use for this selection process is called the Axiom Schema of Specification (also
known as the Axiom Schema of Separation)

Let Φ(X) be some logical predicate on sets X and let A be some set. Then there is a set S of all
and only the elements B ∈ A such that Φ(B) holds.

i.e. for every predicate Φ(X) we have the axiom:

∀A.∃S.∀B.B ∈ S ⇔ B ∈ A ∧ Φ(B).

Page 6

Sets Time Stamp: 12:57, Friday 25th March, 2022

This one is usually called an axiom schema because it is taken to stand for an infinite number of axioms:
one for every Φ that you can come up with.

Notice how this axiom schema is phrased as an if-and-only if, so we can pick out a set whose contents
exactly match the result of filtering, unlike earlier axioms like the axiom of pairing. This axiom is the one
that we can use to winnow things down to exact sets.

We can prove that for any A and Φ that specification describes a unique set, at which point we are
justified in associating a traditional variation of set-builder notation for it:

{B ∈ A | Φ(B) } ≡ ιS.∀B.B ∈ S ⇔ B ∈ A ∧ Φ(B).

This particular notation is often called a set comprehension.6 The notation {B ∈ A | Φ(B) } describes the
unique set characterized by being all and only the B’s in A for which Φ(B) holds. Its underlying definite
description immediately provide the following reasoning principle:

C ∈ {B ∈ A | Φ(B) } ⇔ C ∈ A ∧ Φ(C).

Anti-Patterns in Notation Many texts that introduce set theory introduce a quite similar notation to the
above: similar but different in a frought way:

{B | Φ(B) }

We will steer clear of this notation! The main reason for doing so is that every set description notation that
we will introduce here can be justified by a unique existence proof based on the axioms of set theory. This
one cannot. It corresponds to a proposition that was once proposed as an axiom of set theory but turns out
to destroy the theory, called unrestricted comprehension:

∃S.∀B.B ∈ S ⇔ Φ(B).

This proposition essentially says “every proposition determines a set.” Unfortunately, we can use it to
prove ⊥—falsehood!—without any extra premises, which renders the theory useless. A logic that can
prove falsehood is called inconsistent, and in most situations this is a death sentence. In this particular case,
The logician Bertrand Russell (among others, even before him) demonstrated how to prove ⊥, a technique
now named Russell’s paradox. It involves setting Φ(B) ≡ B /∈ B, yielding the set S of all sets B which are
not elements of themselves. Existence of this set can be used to prove ⊥.

With careful choice of Φ, the unrestricted notation can be used to properly define sets, but a more rig-
orously motivated notation can obviate the need for such care. It’s far less error-prone to appeal to robust
description mechanisms that are aligned with the axioms of the theory. As it happens, definitions guided
by the axiom schema of separation do not suffice for all uses of set theory, but this is because the axiom
schema of separation alone does not suffice. IZF includes another related axiom that fills the gap, and we
can introduce another definition form to go with it.

To quote Yaron Minsky, a proponent of statically-typed functional programming:7 “Make illegal states
unrepresentable.”

8 Sets in Sets in Sets

Okay: so far we know what it means for two sets to be equal, we know that there’s an empty set, and
we know how to use predicates to curate an artisinal subset of bespoke sundries. Is that enough for us to
introduce more friends for the empty set? Not so far! Why not?!? Well, all we have right now are the empty
set and set comprehensions, and applying the latter to filter the former gives us back the empty set again.
We’re still stuck with just one set.

Our next axiom gets us some more sets, in a somewhat simple way. The Axiom of Pairing:

For any sets A and B, there is a set C that contains exactly A and B as elements.

6Set comprehensions inspired a language feature called list comprehensions that appears in Python, Haskell, and other languages.
7https://blog.janestreet.com/effective-ml-revisited/

Page 7

https://blog.janestreet.com/effective-ml-revisited/

Sets Time Stamp: 12:57, Friday 25th March, 2022

Formally,
∀A.∀B. ∃C. ∀D.D ∈ C ⇔ A = C ∨B = C.

The ∨ symbol represents inclusive “or”: a formula A ∨ B is true if and only if A is true, B is true, or both A
and B are true. This use of inclusive-or, common in logic, can be confusing since in informal speech we often
say “or” when we mean “either A or B but not both”.

This axiom is just a bit obnoxious because it tells us that there’s a set with A and B as members, but it
does not outright say that the set is unique. There may be tons of other sets with this property! However,
just like we dealt with the axiom of the empty set, we can use the axiom of extensionality to prove that any
two sets with this property are identical. Thus, this set not only exists, but is unique. Uniqueness justifies
our introduction of some possibly familiar notation:

{A,B } ≡ ιS. ∀Q.Q ∈ S ⇔ Q = A ∨Q = B.

8.1 From Two Elements to One Element to Many Elements

Now that we have the empty set and justification to describe sets {A,B } given any pre-existing sets A and
B, we can apply the axiom of pairing, with ∅ for A and ∅ again for B to prove that there exists a set S such
that Q ∈ S if and only if Q = ∅ ... or Q = ∅? If that sounds redundant to you, that’s because it is. Formally,
we can prove that Q = ∅ ∨ Q = ∅ ⇔ Q = ∅. So it’s safe to say that the set { ∅, ∅ } has only one element:
Q ∈ { ∅, ∅ } ⇔ Q = ∅ This kind of reasoning can be applied schematically to any pre-existing set A, and
it’s a little odd to use the notation {A,A } to describe such singleton sets, so we introduce better suggestive
notation:

{A } ≡ ιS. ∀Q.Q ∈ S ⇔ Q = A.

Our reasoning above implies that {A,A } = {A }: both expressions describe the same set!
At this point we we can construct a set with zero elements, sets with one element, sets with two elements.

What about three, four, five, and the rest? Not yet: we need more axioms! However, we can repeat our
singleton and coupleton constructions to form deeply nested sets of couples of singletons of couples, like
{ { ∅ } }, { { { ∅ } } , ∅ } and so on.

9 Come Together, Right Now, Over Me

Another useful and well-known approach to construct a set that combines other sets is to take the union of
a collection of sets, i.e., a set of sets. The Axiom of Union supports this:

For every set S there is a setG that contains as elements the contents of every set that S contains.

i.e.,
∀S.∃G.∀A.A ∈ G⇔ ∃B.(A ∈ B ∧B ∈ S).

To make sense of the formal notation, let’s consider an example. Let S = { { 1, 2 } , { 3, 4 } }. Then from
the axiom, we know that there is some set G such that each of the given numbers is an element of G, i.e.,
1 ∈ G, 2 ∈ G, and so on.

Using the axiom of extensionality, we can prove that sets justified by the axiom of union are unique.
Uniqueness ushers in the traditional notation for set union:⋃

S ≡ ιG.∀A.A ∈ G⇔ ∃B.A ∈ B ∧B ∈ S

We can use general union and pairing to define the common notation for binary union:

A ∪B ≡
⋃
{A,B }

Why define the binary union in terms of the big one, and not the other way around? Well, because we can’t
form the union of an infinite number of sets by doing it two at a time: we’ll get bored eventually. However,

Page 8

Sets Time Stamp: 12:57, Friday 25th March, 2022

if we have a set with an infinite number of things (see below!), then we can form an infinite union whiz
bang!

As usual, the definite description immediately induces a reasoning principle for sets formed using
union.

∀S.∀A.A ∈
⋃
S ⇔ ∃G.A ∈ G ∧G ∈ S.

Thus we’ve turned the axiom of union into a reasoning principle about the union of a family of sets.

10 Extensional Set Definitions

With the introduction of the Axiom of Union, we finally have enough principles to justify the construction
of sets with an arbitrary finite number of elements, not just zero, one, and two! The name of the axiom of
extensionality leads us to the idea of an extensional definition of a set. In informal practice with sets, when
you want to describe a set with a finite number of elements, you can just enumerate list of elements as a
way to refer to the set. For example, any recent text that introduces some set theory or sets will introduce
set builder notation, in particular expressions like:

{ cheese, crackers,vegemite }

to describe the unique set that contains exactly three food products: cheese, crackers, and vegemite. The
notation above, in which we describe a set by enumerating a list of descriptions of elements, is so common
that if you’ve seen it before, you were probably told to consider it a primitive syntactic construct. We are
not going to take it as primitive. Instead we’ll introduce it in two steps. First, we introduce the notation
using a notational definition:

{A,B, . . . , C } ≡ ιS1.∀S2. S2 ∈ S1 ⇔ S2 = A ∨ S2 = B ∨ . . . ∨ S2 = C.

This means that we expand the above expression describing food items into the complex logical expression:

ιS1.∀S2. S2 ∈ S1 ⇔ S2 = cheese ∨ S2 = crackers ∨ S2 = vegemite.

This particular description can be read as “the (unique) set S1 that can be described by the property that
any set S2 is an element of S1 if and only if S1 is identical to the set described by cheese, the set described
by crackers, or the set described by vegemite.”

Regarding our new notation for extensional set definitions, and the underlying definite descriptions
that (notationally) define them, we’re still on the hook to prove that such definitions are proper. To do so,
we must prove a theorem of the form:

Proposition 2 (Extensional Descriptions are Unique). Let S1, S2, . . . , Sn be sets. Then there is a unique set Q
such that for all sets R, R ∈ Q if and only if R = S1, R = S2, . . . , or R = Sn.8

Once we’ve proven that extensional set definitions in general are proper descriptions, then we can justi-
fiably apply the defining property. Here is the property induced immediately by our description of the set
of food products.

∀S.S ∈ { cheese, crackers,vegemite } ⇔ S = cheese ∨ S = crackers ∨ S = vegemite.

Typical presentations of sets take this kind of element-hood property for granted. For us, this property
is derived from expanding the set notation into a definite description that is written in terms of logical
operations and elementhood. The longer form makes evident that we are working with a description of a
set, not the set itself.

8Formally ∃!Q.∀R.R ∈ Q⇔ R = S1 ∨R = S2 ∨ · · · ∨R = Sn. We’ll explain the notation ∃! soon.

Page 9

Sets Time Stamp: 12:57, Friday 25th March, 2022

10.1 Extensional set definitions from the ground up

So now we have enough machinery to justify extensional set definitions. Given sets a,b, and c, do how we
know that the set { a, b, c } exists? In pedantic form the statement is:

∃A.∀S.S ∈ A⇔ S = a ∨ S = b ∨ S = c,

One way to justify its existence is as follows:

1. use the axiom of pairing to form { a, b };

2. use the axiom of pairing to form { c };

3. use the axiom of pairing to form { { a, b } , { c } };

4. use the axiom of union to form { a, b, c }.

Well that was exhausting! But we could further extend this set by constructing { d }, pairing it with our
present set, and applying union again. Singleton, pair, union; singleton, pairing, union: wash, rinse, and
repeat as needed.

We will never bother performing this construction again. But note, that we have a reasoning principle
for our set based simply on its description:

∀S.S ∈ { a, b, c } ⇔ S = a ∨ S = b ∨ S = c,

Recall that such reasoning lso makes sense for a set name like { a, a }, though it’s mighty redundant: we
like the name { a } better. But this observation is a cause for care particularly when making an abstract
argument. For instance, if we assume some sets a and b, and then mention “the set { a, b }”, we can’t be
sure that the set { a, b } has two elements: what if a = 5 and b = 5? On the other hand, if we know a priori
that a 6= b, then the set { a, b } definitely has two elements. Notice, though, that in both cases it’s true that
a ∈ { a, b } and b ∈ { a, b }.

10.2 Tool Building: A General Principle of Cases

The definitional property of extensional sets is quite useful, but would likely lead to proofs that are wordier
than necessary. Instead of settling for this property, we can instead construct a quite similar property
that takes a little work to establish, but will streamline later proofs. In particular, we can use the definite
description of extensional sets to state and prove the following principle.

Proposition 3 (Principle of Cases on {S1, S2, . . . , Sn }). Let Φ be a property of sets and S1, S2, . . . , Sn be sets.
Then Φ(S) holds for all S ∈ {S1, S2, . . . , Sn } if Φ(S1), Φ(S2), . . . , and Φ(Sn).9

We will be equipped to prove this proposition once we study the proof techniques that apply to our
logical operations. This property is pretty obvious intuitively, so one may be surprised how much work it
takes to prove this rigorously. But think about it: how many easy-to-understand procedures do you know
of where what you want seems straightforward, and it’s obvious that it can be implemented, but the finicky
details you had to go through to get it done right inspire you to search the internet for the code or (gasp!)
use the standard library implementation? Our proof of this is like that. For now let’s take it as given.

This is our first example of using our tools to build better tools, much like one can use the primitives of a
programming language to design powerful and productive libraries of routines.

Right from the start, we see an incident of of a formal definition (extensional sets) affecting our reasoning
principles: an extensional definition of a set licenses you to reason about its elements by cases on its (finite)
members, and lets us build a general principle for proving properties of a sets elements. When we get to
defining sets that contain an infinitude of elements, we’ll need new tools. Luckily our definitions of those
sets will help with that.

9Formally, Φ(S1)∧Φ(S2)∧ · · ·∧Φ(Sn)⇒ ∀S ∈ {S1, S2, . . . , Sn } .Φ(S). One seeming mismatch of textual vs. formal statements
of propositions is that in text the ”for all” statement often comes after the proposition to which it applies, I suspect to draw the reader’s
attention to the heart of the statement rather than the quantifiers.

Page 10

Sets Time Stamp: 12:57, Friday 25th March, 2022

[RG: replace the below with a fresh example of an equality of set expressions]
A point that is worth re-emphasizing: our set-builder notation is just a description of a set, sometimes

called a name of a set, not the set itself. For instance, consider the set expressions

{ cheese } = ιS.∀S1.S1 ∈ S ⇔ S1 = cheese

and
{ cheese, cheese } = ιS. ∀S1.S1 ∈ S ⇔ S1 = cheese ∨ S1 = cheese.

Despite the repeated appearance of cheese in the expression, each describes exactly the same set: the one
containing cheese and nothing else. Do not assume that the number of elements in a finite set is always
one more than the number of commas in a set expression! Also, notice that despite describing the same
set, each description leads to a subtly different reasoning principle. Later in the course we will discover
that having multiple different definitions of the same set can give us usefully different reasoning principles,
derived from different definite descriptions of the same set.

Exercise 1. Write down the reasoning principles for the two cheesy set descriptions. How do they differ?
Which one do you think we’ll prefer and why?

11 Infinite stuff!

Given the tools we have so far, we can only build finite sets! That’s because all of our logical arguments
have to have a finite number of steps, which can really be a pain sometimes, but that’s how logicians roll.
This is also how computer programmers roll: ever seen an infinite-length program?

So how do we get infinite stuff? Well, like we did with the empty set, we assume it, via the Axiom of
Infinity:

There’s a set that (1) contains the empty set and (2) contains the set a∪{ a }whenever it contains
a.

i.e.,
∃S.(∅ ∈ S) ∧ (∀A.A ∈ S ⇒ A ∪ {A } ∈ S).

Notice how I used A ∪ {A } in the above formula, rather than spelling the whole thing out in terms of ∈, ∃,
uniqueness, etc. That would be way too painful! Luckily we can already exploit our paucity of abstractions
to make life more pleasant. You may as an exercise try to boil this all the way down to just statements about
elementhood.

Set theorists like to call the set that has only the elements above ω, and they use it to represent the set of
natural numbers:10

0 ≡ ∅
1 ≡ { 0 } ∪ 0 = { ∅ }
2 ≡ { 1 } ∪ 1 = { { ∅ } , ∅ }
...

First, notice the leaky abstraction: when was the last time you took the union of a set with a number???
Let’s not do that any more! instead, we will just consider the nice abstract set of natural numbers as the set,

N = { 0, 1, 2, . . . } ,

and say that questions like 1 ∈ 2 are off limits...that would be exploiting the representation of numbers as
sets, rather than the properties of numbers as an abstraction that we care about. Notice that 0 is a natural
number. All right-thinking computer scientists will use this definition.11

10This encoding is due to the great logician and computer scientist John von Neumann.
11I once went to a wedding of two computer scientists, and during dinner they sat at “Table 0” because, as the table manifest said:

“computer scientists start counting from zero.”

Page 11

Sets Time Stamp: 12:57, Friday 25th March, 2022

12 All the Subsets

Now we add yet another axiom that lets us build bigger sets: the Axiom of Power Set:

Given any set A, there exists a set that contains all subsets of A.

i.e.,
∀A.∃S.∀B.B ∈ S ⇔ (∀C.C ∈ B ⇒ C ∈ A).

Good grapes, just looking at that makes my eyes bleed! In the above formalism, B is a subset of A because
every element C ofB is also an element ofA. Because we use subsets so often, there’s a convenient notation
for them:

X ⊆ Y ≡ ∀C.C ∈ X ⇒ C ∈ Y.

With this we could have written:

∀A.∃S.B ∈ S ⇔ ∀B.B ⊆ A.

Once again, this axiom doesn’t say that the set with this property is unique, but we can whack it with
the axiom of extensionality to establish uniqueness. We call this set the powerset of A, and give it a notation:

P(A) ≡ ιS.B ∈ S ⇔ ∀B.B ⊆ A.

Some books use the notation 2A, which sort of explains the name “powerset” (2 to the power of A): the
reason for that notation is that if some set A has n elements, then P(A) has 2n elements.

The uniqueness and description of the powerset give us another reasoning principle:

X ∈ P(A)⇔ X ⊆ A.

13 Bait and Switch

With the axioms and principles introduced so far, we can get very far, using powerset and union to build up
sets, and specification to hone them down. But sometimes, surprisingly rarely, we need to describe a set by
relating it directly to the properties of another set. If was only after some years of working with Zermelo’s
axioms that logicians realized that the axioms outlined above were not sufficient for this task. As a result,
Abraham Frankael introduced a new defining principle, which Thoralf Skolem refined into a new formal
axiom schema. This contribution is the reason that our set theory is referred to as Zermelo-Frankael.12 It is
called the Axiom Schema of Replacement:

If Φ(A,B) is a proposition, S is some set, and for every A ∈ S, there is a unique set B such that Φ(A,B).
Then there is a set Q whose elements are exactly those B such that Φ(A,B) for some A ∈ S. i.e.,

∀S. (∀A ∈ S. ∃!B.Φ(A,B))⇒ ∃Q.∀B.B ∈ Q⇔ ∃A ∈ S.Φ(A,B).

Let’s unpack this a bit. The set S is one that we constructed previously...somehow. The goal is to describe
a new set Q by relating each element A of S to exactly one element B of Q, allowing for the possibility that
multiple elements of S may correspond to the same element of Q. The proposition Φ(A,B) captures the
relationship between elements, and the axiom allows any proposition Φ that yields the appropriate kind of
relationship.

With a little more reasoning, incorporating the axiom of extensionality, we can prove that S and Φ induce
a unique Q, which gives us license to introduce a new notation and corresponding definite description.

{B ← Φ(A,B) forA ∈ S } ≡ ιQ.∀B.B ∈ Q⇔ ∃A ∈ S.Φ(A,B).

An example from arithmetic might be the set of all multiples of 7:

{m← m = 7 ∗ n for n ∈ Z }
12Poor Skolem!

Page 12

Sets Time Stamp: 12:57, Friday 25th March, 2022

Here, S is the set of integers, Z, and Φ(n,m) is m = 7 ∗ n. This particular case, where the proposition
Φ(A,B) says that B is equal to some expression involving A, is sufficiently common that we introduce a
more compact and direct notation for it:

{F (A) forA ∈ S } ≡ {B ← B = F (A) forA ∈ S } ,

So the multiples of 7 can be written
{ 7 ∗ n for n ∈ Z } .

The general replacement notation is then reserved for those descriptions that benefit from its full expressive
power. In contrast to our previous set description notations, this one is only proper if the prerequisite
∀A ∈ S. ∃!B.Φ(A,B) holds.

Since replacement notation requires some pre-existing set S and some “function-like” proposition Φ, it
does not allow us to express Russell’s paradox.

14 Sets May Not Eat Themselves!

Based on our reasoning principles, we may find ourselves constructing some set Q, and then subsequently
constructing a set R such that Q ∈ R. Can we ever construct such a set like this where R ∈ Q also holds?
Nothing we have said so far precludes this possibility. However, our set theory does have an axiom, called
the Axiom of∈-Induction whose express purpose is to forbid sets from containing themselves.13 So ultimately
Q and R cannot be the same set. Since we do not need to explicitly use the axiom of foundation, we discuss
it no further in this class. But recognizing that we have to explicitly disallow cyclic sets if we do not want
them can give some more insight about logic.14

14.1 Coda

This concludes the axioms of set theory that we will focus on. IZF has more axioms, but they are mostly
geared toward details we will barely touch on, if at all, so we can ignore them.

You may want to mess around with the axioms that we’ve covered so far to try and build various sets
and see what a pain it is to hack in machine code.

Note that each mechanism that we have for defining/naming sets comes with its own reasoning princi-
ple. This is a recurring theme in mathematics and in this course in particular: the structure of my definitions
determines the structure of my reasoning. Often we can describe reasoning principles directly in terms of some
definition for picking out a set of interest.

Next, we’ll consider some of the pragmatics of using set theory.

15 The Practice of Working with Sets

In this section, I’ll describe how we will actually informally work with sets. Some of this rehashes concepts
that we covered above, but ideally this version is written in a more high-level, actionable way, correspond-
ing to how we will use set theory in real practice.

15.1 Assumed Sets

[RG: introduce the cofinite property explicitly as a means of extracting fresh atoms]
From time to time we will simply assume the existence of a set.
It will look like:

Suppose a ∈ ATOM...

13In Zermelo’s original set theory, this property is introduced using the Axiom of Foundation. The Axiom of ∈-Induction yields the
same effect without compromising constructivity [Crosilla, 2020]. In a non-constructive set theory, the two are equivalent.

14This design is a decision! There exist set theories that replace the axiom of foundation with an axiom of anti-foundation for the
express purpose of allowing sets to contain themselves. Wild!

Page 13

Sets Time Stamp: 12:57, Friday 25th March, 2022

What we mean by this is that there must be some set with an infinite number of things in it that we can
tell apart, and distinguish from the elements of other sets. So I can always pull out some ai and then grab
some other aj 6= ai. When we want to talk about specific members, we will usually use the same letter as
the metavariable but typeset it in blue, as in a1. In the case of program variables, like x ∈ VAR, we may be
more creative with our choice of elements.

We can justify this because we already know that there is a set with an infinite number of things, and
one of the nice/crazy things about such a set is that you can take an infinite number of things out of that
set and still have another infinite amount of things left over. For example, if I take the odd numbers out of
the set of natural numbers, how many numbers are left over? An infinite amount: the even numbers! My
head explodes when I think about this kind of thing.15

16 Set formations

Aside from naming a set by explicitly saying which elements are in it, we assume a number of ways of
building sets. We’re not trying to be super-primitive, or make sure that there’s only one way to build a set.
Rather, we just want to establish a set of primitive rules that we can always use for building new sets.

16.1 Union

We can always combine sets to form new sets, forming the union of two or any number of sets. If A is a set,
and B is a set, then there is a set that we call A∪B with the properties that c ∈ A∪B if and only if c ∈ A or
c ∈ B.

Example 1. IfA = {meat, cheese } andB = { vegetables, fruits } thenA∪B = {meat, cheese, vegetables, fruits } .

We can extend this to collections of sets. If F is a set of sets, then we can form the set
⋃
F , which is the

union of all the sets in F : c ∈
⋃
F if and only if c ∈ C for some set C ∈ F .

Example 2. If F = { { cow, bull, buffalo } , { sheep, elpaca, horse } , { frog, toad, turtle } } then⋃
F = { cow, bull, buffalo, sheep, elpaca, horse, frog, toad, turtle } .

Notice that
⋃
∅ = ∅, since we are taking the union of no sets, and A ∪B =

⋃
{A,B }.

16.2 Intersection

In addition to forming a set by grabbing element that appear in any of a given set of sets, we can also
consider the set of elements that appear in every set in a given set. That’s the intersection. If A and B are
sets, then there is a set we call A ∩B with the property that c ∈ A ∩B if and only if c ∈ A and c ∈ B.

Example 3. If A = { paper, cut } and B = { news, paper } then A ∩B = { paper } .

Generalizing this idea, if F is a non-empty set of sets, then we can form the set
⋂
F , which is the inter-

section of all the sets in F : c ∈
⋂
F if and only if C ∈ F , and c ∈ C for every set C ∈ F . Analogous to

unions, A ∩ B =
⋂
{A,B }, but in stark contrast, there is no such set

⋂
∅! This means that when you are

reasoning about sets, you must establish that F is not empty before you take its intersection. In the case
of both intersection and union, you must establish that F contains only sets before you take their union,
otherwise it’s an “abstraction error”.16

15In the 19th century, the mathematician Richard Dedekind proposed roughly the above property as the defining characteristic of
an infinite set.

16By “abstraction error” I mean that technically it’s fine to take the union, because at the lowest level all we have are sets, but you
would surely be violating an abstraction principle. For example,

⋃
1 is nonsensical for numbers, but not for their von Neumann

representation where
⋃

1 ≡
⋃
{ ∅ } = ∅ ≡ 0. Yuk!

Page 14

Sets Time Stamp: 12:57, Friday 25th March, 2022

16.3 Powerset

Given some set C, you can form it’s powerset, which we call P(C), which is the set of all subsets of C:
A ∈ P(C) if and only if A ⊆ C.

Example 4. P({ tic, tac, toe }) = { ∅, { tic } , { tac } , { toe } , { tic, tac } , { tic, toe } , { tac, toe } , { tic, tac, toe } } .

Notice that theC has 3 elements, whileP(C) has 23 = 8 elements. Some texts will wrote 2C as a different
notation for P(C).

As a side note, we can characterize subset completely in terms of containment: If A and C are sets, then
A ⊆ C if and only if whenever a ∈ A, it follows that a ∈ C. We differentiate between subset ⊆ and strict
subset ⊂, meaning that if A ⊂ C, then it cannot be the case that A = C.

16.4 Sequences and Products

In addition to sets, unordered collections of unique elements, we will often want to consider sequences of
elements that have a specific order and are not necessarily unique. Some examples of this are pairs like 〈1, 2〉
and 〈1, 1〉, triples like 〈4, 5, 3〉, and more generally tuples, meaning some ordered sequence of n elements.
Note that for our purpose, sequences are not sets, so we don’t talk about 1 ∈ 〈1, 2〉: that’s an “abstraction
error.”17

Now that we have a notion of sequences/tuples, we can form sets of them. If A is a set, and B is a set,
then we can refer to the product of A and B, which we name A× B, and it has the property that c ∈ A× B
if and only if c = 〈a, b〉 for some a ∈ A and b ∈ B.

Example 5. If A = { eat, throw } and B = { chicken, darts } then
A×B = { 〈eat, chicken〉 , 〈eat, darts〉 , 〈throw, chicken〉 , 〈throw, darts〉 } .

There are several generalizations of products. You can write A× B × C for the set of triples from these
three sets: if you really want to write the product of A×B with C, you should parenthesize as (A×B)×C.
This is just a convention since we are far more likely to want triples than pairs that include pairs in the first
position.

Also, in analogy to arithmetic, the set A2 = A×A and A3 = A×A×A and so on. Note that A0 = { 〈〉 },
the set containing only the empty sequence (since it’s the only “0-long” tuple).

Given a set A, we use A∗ to refer to the set of all finite sequences of elements of A. We sometimes use
the name ε to denote the empty sequence 〈〉.

A∗ =
⋃
n∈N

An = A0 ∪A1 ∪A2 ∪

Technically, I haven’t told you how to construct this set (we need one more axiom of set theory (Replace-
ment) to do it, but we’re not going to use it often, so I’m eliding it)

16.5 Total Functions, Partial Functions, and Relations

From your days taking math classes you have a rough idea of what a function is: a mapping that takes one
value to another. We can formalize that idea in set theory: if A is a set, and B is a set, then we have a set
A→ B of total functions from A to B. It is characterized as follows: f ∈ A→ B if and only if

1. f ⊆ A×B.

2. If 〈a, b1〉 ∈ f and 〈a, b2〉 ∈ f then b1 = b2. This says that f maps elements of A uniquely to elements of
b. Notice that what this is saying is that 〈a, b1〉 = 〈a, b2〉, so more informally, there is at most one pair
in f with a in its first position.

17Bear in mind that since all we really have to work with are sets, we end up encoding pairs and other sequences using, well, sets.
See https://en.wikipedia.org/wiki/Ordered_pair#Defining_the_ordered_pair_using_set_theory for a variety
of pair encodings in set theory that have been developed by a variety of mathematicians and logicians.

Page 15

https://en.wikipedia.org/wiki/Ordered_pair#Defining_the_ordered_pair_using_set_theory

Sets Time Stamp: 12:57, Friday 25th March, 2022

3. If a ∈ A then 〈a, b〉 ∈ f for some b ∈ B. This means informally that there is at least one pair in f with a
in its first position.

We can relax the notion of total functions to get the notion of partial functions. Intuitively, a partial
function is a mapping that doesn’t necessarily map every element. From A and B, we can form the set of
partial functions A ⇀ B, where elements f ∈ A ⇀ B need only satisfy the first two properties of total
functions: they don’t have to map every element of A to some element in B, but any element that they
do map, they map uniquely. It should be clear from this description that every total function is a partial
function. Note as well, when we just say “function”, we mean “total function.”

A little bit of terminology about functions. Given a partial function f : A ⇀ B, where this is just a
common notation for f ∈ A ⇀ B, we call A the function’s domain; we call B the function’s codomain (others
call it the function’s range). Sometimes when we need to talk about it, we may write dom(f) and cod(f) for
the function’s domain and codomain respectively.

Even more general than partial functions is the idea of relations. A relation captures many-to-many
correspondences between elements of sets. The most direct analogue to a partial function is a binary relation,
which is technically any set of pairs: a binary relation R on A and B is some subset R ⊆ A × B. Relations
need not be only binary: you can have a relation between three sets, i.e. R ⊆ A×B × C, and even a unary
relation R ⊆ A, which is basically a way of representing some property of A′s by simply giving the subset
of A that satisfies that property.

Notation We treat functions, partial functions, and relations with special notation sometimes. In particu-
lar, we introduce function application notation:

F (A) ≡ ιS.(∃D.∃C.F ∈ D ⇀ C) ∧ 〈A,S〉 ∈ F.

In words, F (A) denotes the unique set S such that F is a partial function from some set D to C and F maps
A to S. The two existential quantifications constitute a sanity check. F (A) is only a proper description if F
is a partial function and F is defined for A. This in turn implies that A is in the F ’s domain.

Thus, in the case of a partial function f , we write f(a) = b to mean that 〈a, b〉 ∈ f . We also write f(a)
to refer to the element b such that 〈a, b〉 ∈ f . In the case of total functions, the expression f(a) always
makes sense, because there must be some b that fits the bill, but for partial functions, that may be nonsense,
because the partial function is undefined at a. If a partial function f is undefined at a, we write (f(a)↑which
literally means ∀b ∈ cod(f). 〈a, b〉 /∈ f . The opposite, that f is defined at a is written f(a)↓.

We often write binary relations using infix notation: we write a R b to mean that 〈a, b〉 ∈ R. For a familiar
example, 1 ≤ 2 just means 〈1, 2〉 ∈ ≤ where ≤ ⊆ N × N. For relations among more than two sets, we will
often write them in “mixed-fix” notation. For example, when we discuss type systems, we will write the
typing judgment Γ ` t : T to mean that 〈Γ, t, T 〉 ∈ · ` · : · where · ` · : · ⊆ TENV × TERM × TYPE. As with
this example, we often use dots · in the names of functions and relations to indicate the positions where
arguments go. So we will refer to the typing judgment either by a usage, Γ ` t : T , or by the dotted name
· ` · : ·. The nice thing about the usage version is that you can deduce the sets that make up the relation
from its metavariables. The dot notation, though, is clearer about which elements are really parameters.

Mathematical Functions Don’t Run! One thing that it might take time to get used to in Set Theory is
that functions are not like functions in programming languages...they don’t take an input, churn on it, and
then spit out a result after a bunch of computation. They’re NOT procedures! Rather, they are (possibly
infinite) lookup tables. Often when we write down a function definition, using a bunch of equations, it
looks almost exactly like a program in a functional programming language like Haskell,18 but really that is
just a way of naming a particular function, just like we treat { a, b, c } as the name of a set. Such names, or
descriptions, give us certain reasoning principles, and it’s that process of reasoning that corresponds to the
kind of computation that a function definition in a computer does. So two mottos that arise are:

• Functions are like database tables or spreadsheets, not like procedures.

• Computation arises from deduction, not from definition.
18That’s no coincidence: they purposely stole the notation!

Page 16

Sets Time Stamp: 12:57, Friday 25th March, 2022

We’ll return to this discussion later because it’s a common sticking point for programmers when it comes
to math. At least it was a sticking point for this programmer!

16.6 Set Comprehensions

Most of the set constructions that we have been describing so far make “bigger” sets from smaller sets. We
are very careful about the ways that we can build sets so that we don’t write down a description of a set
that can’t possibly exist.19

However, once you have a set, you can always build a smaller set by choosing some of the elements of
the set. We call this set comprehension: Given some set A, and some predicate P (a) that describes properties
of elements a of A, we can form the set { a ∈ A | P (a) } which is the set of elements of A for which the
predicate P holds.

One of the constructions we already developed, the intersection of two sets, can be described this way:

A ∩B = { a ∈ A | a ∈ B } .

In this case, the predicate P (a) ≡ a ∈ B. Notice that you can’t use set comprehension to describe the union
of two sets without already having something that contains the union. That’s why we have an axiom for
union, but not one for comprehension.

Another example, which we are introducing for the first time here, is the notion of set difference:

A \ B = { a ∈ A | a /∈ B } .

Notice that set difference is always well defined for any two sets A and B.
At first you may not be clear on what counts as a legal predicate. In general, a predicate must be

a formula in first-order logic about sets and their elements. Here I’ll give some more examples of set
descriptions using comprehensions. I recommend that you work your way through the logical statements
to make sure that you understand how they work.

Partial Functions

A ⇀ B = { f ∈ P(A×B) | ∀a ∈ A. ∀b1, b2 ∈ B. 〈a, b1〉 ∈ f ∧ 〈a, b2〉 ∈ f ⇒ b1 = b2 }

Total Functions

A→ B = { f ∈ A ⇀ B | ∀a ∈ A. ∃b ∈ B. 〈a, b〉 ∈ f }

=

{
f ∈ P(A×B)

∣∣∣∣ (∀a ∈ A. ∃b ∈ B. 〈a, b〉 ∈ f) ∧
(∀a ∈ A.∀b1, b2 ∈ B. 〈a, b1〉 ∈ f ∧ 〈a, b2〉 ∈ f ⇒ b1 = b2)

}

16.7 Set Replacements

In addition to element-by-element set-builder notation, we also have replacement-based notation and its
expression-focused shorthand:

{B ← Φ(A,B) forA ∈ S }
{F (A)A ∈ S }

Each of which lets us describe a new set Q in terms of a pre-existing set S by relating elements A of S to
elements B (or F (A)) of Q.

19For more on this, look at the Wikipedia page on “Paradoxes of set theory.”

Page 17

Sets Time Stamp: 12:57, Friday 25th March, 2022

17 Where is this coming from?

So....what hole did I pull these rules out of? Well, technically, “set theory” is not just one thing. There are
lots of sets of rules that logicians and mathematicians over time have cobbled together, just like X86, Z80,
and Power architectures have different instruction sets. However they all tend to have a pretty common
core of things: you can build sets, take their union, intersection, yadayada.

The guiding principles behind these informal rules come from what is called Zermelo-Fraenkel set the-
ory, after two logicians who came up with the rules20.

18 The Syntax of First-Order Set Theory

So far we have been simply using logical notation without explanation, in the hope that seeing it in context
would provide some understanding, much like an immersive natural language course. However logical
notation is precise, and a precise understanding is necessary for mastery. Let me try for moment to be a bit
more precise about at least the low-level parts of first-order set theory. We will not be formal about all of it,
but let me introduce some of it.

A word of warning though. In the following I use formal notation like Backus-Naur Form (BNF) simply
to suggest the structure of the language, assuming that you have seen BNF notation before and can intu-
itively interpret it. Later I will give a very formal interpretation to BNF for programming languages. One
can apply the same analysis to the following development as well, but doing so would amount to “defining
set theory using set theory”, kind of like writing a Python interpreter in Python.21

Representing a language inside itself does not amount to a fully-formal definition, but thanks to our
human intuition and prior learning, we can still learn a lot from it. That’s the goal of this section.

The core of the syntax of logic can be described as follows:

Ξ ∈ PROPCONSTANT, Ψ ∈ ATOMICPROP, Φ ∈ PROP, S ∈ SETVAR, E ∈ SETEXP
Ψ ::= Ξ | E = E | E ∈ E
Φ ::= Ψ | > | ⊥ | Φ ∧ Φ | Φ ∨ Φ | Φ⇒ Φ | ∀S.Φ | ∃S.Φ
E ::= S | ιS.Φ

Here the metavariables S denotes a set variable, while E denotes a set expression. Both are means of
giving a name for a set. Some example names that we use are TERM, or { 1, 2, 3 }. The latter is not a set in and
of itself, but is a descriptive name: in the latter case we deduce properties of the set being named based on
the structure of that name (whereas TERM is not immediately telling without knowing that the name TERM
is equivalent to a more contentful set description). The propositional constants Ξ can be viewed as formal
placeholders for real propositions. We use them to help explain the propositional connectives of our logic
without having to worry about the particular content or meaning of an atomic proposition. This comes into
play especially when we discuss our rules for logical deduction.

Now for a few common abbreviations. First, since we are not set-theorists—exploring the properties of
arbitrary sets—but rather programming language theorists—exploiting set theory to study sets of programs
and related structures—we will mostly be considering elements of particular sets. This leads to a desire to
qualify our quantifiers. We do that by using the following notations that expand as described:

∀S1 ∈ S2.Φ ≡ ∀S1. S1 ∈ S2 ⇒ Φ;

∃S1 ∈ S2.Φ ≡ ∃S1. S1 ∈ S2 ∧ Φ.

Take a moment to convince yourself that the expansions will have the intended meaning. It’s indeed a bit
curious that the expansion is not the same for universal and existential quantification, but this is necessary
to induce the desired interpretation.

20Technically another logician named Skolem came up with the same part that Fraenkel did, but he got left out. Poor guy, that
happens a lot in science and other forms of knowledge production.

21Nothing wrong with that! The PyPy project (http://pypy.org) has amply demonstrated benefits to doing this, and the LISP
family of programming languages has a strong tradition of defining metacircular interpreters [McCarthy, 1960].

Page 18

http://pypy.org

Sets Time Stamp: 12:57, Friday 25th March, 2022

Also, since we often introduce many elements of the same set, we abbreviate this in terms of the above
abbreviations:

∀S1, S2, . . . , Sn ∈ S.Φ ≡ ∀S1 ∈ S. ∀S2 ∈ S. . . . ∀Sn ∈ S.Φ;

∃S1 ∈ S2.Φ. ≡ ∃S1 ∈ S. ∃S2 ∈ S. . . . ∃Sn ∈ S.Φ.

Furthermore, we can abbreviate using the same kind of quantifier for different kinds of elements:

∀S1, S2, . . . , Sn ∈ S, T1, T2, . . . , Tn ∈ T, .Φ ≡ ∀S1, S2, . . . , Sn ∈ S.∀T1, T2, . . . , Tn ∈ T, .Φ;

∃S1, S2, . . . , Sn ∈ S, T1, T2, . . . , Tn ∈ T, .Φ ≡ ∃S1, S2, . . . , Sn ∈ S.∃T1, T2, . . . , Tn ∈ T, .Φ;

Sometimes we wish to quantify elements of some n-ary relation. For example, Given some binary re-
lation � ⊆ S × T , we write write S1 � T1 ≡ 〈S1, T2〉 ∈ (· � ·) (occasionally using the · placeholders to
indicate that we use infix, or more generally mixed fix notation) to indicate membership. Given such a re-
lation, we use the following abbreviation to quantify elements of the relation in terms of elements of the
subcomponents:

∀(S1 � T2).Φ ≡ ∀S1 ∈ S, T2 ∈ T. S1 � T2 ⇒ Φ;

∃(S1 � T2).Φ ≡ ∃S1 ∈ S, T2 ∈ T. S1 � T2 ∧ Φ.

Finally, we introduce some richer logical forms that are interpreted using the basic ones above:

¬Φ ≡ Φ⇒ ⊥;

Φ1 ⇔ Φ2 ≡ (Φ1 ⇒ Φ2) ∧ (Φ2 ⇒ Φ1);

∃!S.Φ(S) ≡ (∃S.Φ(S)) ∧ (∀S1, S2.Φ(S1) ∧ Φ(S2)⇒ S1 = S2).

The first one represents “not Φ, the second represents “if and only if”; and the third represents “there exists
a unique set S such that Φ.” The notation Φ(S) Says that Φ is a formula that may refer to S freely in it. Once
this notation is introduced, then Φ(T) Refers to the same formula but with T substituted for S.

References

J. Avigad. Reliability of mathematical inference. Synthese, 2020. doi: 10.1007/s11229-019-02524-y. https:
//doi.org/10.1007/s11229-019-02524-y.

J. Bagaria. Set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. The Metaphysics Re-
search Lab, winter 2014 edition, 2014. URL http://plato.stanford.edu/archives/win2014/
entries/set-theory/.

A. Bauer. Proof of negation and proof by contradiction. Mathematics and
Computation Blog, March 2010. http://math.andrej.com/2010/03/29/
proof-of-negation-and-proof-by-contradiction/.

L. Crosilla. Set Theory: Constructive and Intuitionistic ZF. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2020 edition, 2020.

J. Ferreirós. The early development of set theory. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019. URL https://plato.
stanford.edu/archives/sum2019/entries/settheory-early/.

P. R. Halmos. Naive Set Theory. Springer-Verlag, first edition, Jan. 1960. ISBN 0387900926.
A classic introductory textbook on set theory.

P. Maddy. Believing the axioms. I. The Journal of Symbolic Logic, 53(02):481–511, 1988.
An interesting (though complicated) analysis of why set theorists believe in their axioms.

Page 19

https://doi.org/10.1007/s11229-019-02524-y
https://doi.org/10.1007/s11229-019-02524-y
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://plato.stanford.edu/archives/win2014/entries/set-theory/
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/
https://plato.stanford.edu/archives/sum2019/entries/settheory-early/

Sets Time Stamp: 12:57, Friday 25th March, 2022

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I. Com-
mun. ACM, 3(4):184–195, 1960.

J. Spolsky. The law of leaky abstractions. Joel on Software Blog, November 2002. https://www.
joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.

S. Stenlund. Descriptions in intuitionistic logic. In S. Kanger, editor, Proceedings of the Third Scandinavian
Logic Symposium, volume 82 of Studies in Logic and the Foundations of Mathematics, pages 197 – 212. Elsevier,
1975. URL http://www.sciencedirect.com/science/article/pii/S0049237X08707328.

M. Tiles. Book Review: Stephen Pollard. Philosophical Introduction to Set Theory. Notre Dame Journal of
Formal Logic, 32(1):161–166, 1990.
A brief introduction to the philosophical issues underlying set theory as a foundation for mathematics.

Page 20

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://www.sciencedirect.com/science/article/pii/S0049237X08707328

	Representing the world using sets
	Abstractions make this tractable
	Sets and Logic
	Sets are about Stuff
	When are two sets really the same set?
	The Empty Set
	Uniqueness, Shmuniqueness!

	Beggars Can Be Choosers
	Sets in Sets in Sets
	From Two Elements to One Element to Many Elements

	Come Together, Right Now, Over Me
	Extensional Set Definitions
	Extensional set definitions from the ground up
	Tool Building: A General Principle of Cases

	Infinite stuff!
	All the Subsets
	Bait and Switch
	Sets May Not Eat Themselves!
	Coda

	The Practice of Working with Sets
	Assumed Sets

	Set formations
	Union
	Intersection
	Powerset
	Sequences and Products
	Total Functions, Partial Functions, and Relations
	Set Comprehensions
	Set Replacements

	Where is this coming from?
	The Syntax of First-Order Set Theory

