
Inductive Definitions

CPSC 509: Programming Language Principles

Ronald Garcia*

8 January 2014
(Time Stamp: 13:15, Thursday 3rd February, 2022)

In the last set of notes, you got a taste of some of the kinds of models that we will build (of language
syntax and semantics) in the context of a very very simple language—featuring a finite number of programs
and results. In these notes we start to develop the machinery for building more complex languages, starting
with a language that at least features an infinite number of programs (still finite results though!). The tools
we introduce here, called inductive definitions will be critical throughout the course, and we’ll find later that
they connect directly to what you may have learned about proof by induction in prior courses.

1 Inductive Definitions

Now we are going to look at a somewhat more interesting language. The language will have an infinite
number of programs. This means that we can’t simply list all of the programs: we need a new strategy.

The way that we define our set of programs follows a pattern similar to what happens in a real language
implementation. Consider how a parser for the C programming language works. It takes as input any finite
strings (i.e., sequences) of bytes (of which there are 28 = 256), and filters out the strings that count as legal C
programs.1

CPGMS = { s ∈ BYTE∗ | s is a valid C program }

Here BYTE is the set of bytes, and in general, we say that S is some set, then S∗ is the set of all finite
sequences of elements of S (including the empty sequence, which for visibility’s sake we denote by ε). So
essentially, the set of C programs is defined by filtering all the valid C programs out of the set of all byte
strings.

The key idea here is that we start with some basic, easily defined pre-existing set and filter it down to
the subset that we want. Most mathematical definitions are based around this general idea.

We do not want to concern ourselves with as low level a representation as strings of bytes, so we start
more abstractly. First, we assume some set of atomic elements.

a ∈ ATOM

Our base assumption is that there are an infinite number of ATOMs in the set (not just 256), so we can always
find another one if we need one.2 Our only requirement of ATOMs is that we can tell them apart: we don’t
care what they really look like, just given two of them we can tell if they are the same or not. We can state
this formally as a (seemingly obvious) property:

Proposition 1. ∀a1, a2 ∈ ATOM.a1 = a2 ∨ a1 6= a2.

*© 2014 Ronald Garcia.
1You wouldn’t want your C compiler to segfault if you gave it a file of random noise, right? It should reject the program and exit

gracefully.
2To make this concrete, it’s as though we had a computer that could work with arbitrary natural numbers instead of bytes.

1

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

For our purposes, this should be interpreted as saying “given atoms a1 and a2, we can determine
whether they are equal or not.” That reading may be a bit different than you are used to: don’t worry
about that for now. These ATOMs will be used to represent the primitive constructs of our languages. If
you’ve ever studied parsing, this is analogous to your tokens. For purposes of reasoning, we’ll give each
atom an abstract name, written in blue, like car, or avocado-toast, and whenever we use two different ab-
stract names, we are referring to two different atoms, e.g. car 6= avocado-toast by convention. Note that
this is very different than referring to atoms using metavariables like a1 or a2. We cannot up-front assume
that a1 6= a2...only if we have that fact as an assumption (or can prove it in some context).

Then, building on top of the ATOMs, we assume a set of all possible trees of ATOMs.

r ∈ TREE[ATOM]

In set theory, we can create pairs of elements of sets, subsets of sets, and so forth. Using the basic tools
of set theory, we can design a representation for trees, just like we can build tree data structures in the
programming language of your choice. We’re not going to actually bother building up a particular set-
based representation of trees, but just keep in mind that you could come up with one, given some time and
patience. In this case TREE[ATOM] stands for the set of all trees that have atoms at their nodes. In general,
we write TREE[X] for “trees of elements of X .” For now, since we are only concerned with trees of atoms,
we will just write TREE as an abbreviation.

These TREEs have ATOMs for nodes. For convenience, we can write them in parenthesized notation,
e.g., a1(a2, a3) is the TREE with parent node a1 and two children a2 and a3.3 This corresponds to the TREE:

a1

a2 a3
Now, armed with a set of TREEs, we will define the abstract syntax of our language. The general defini-

tion strategy is to isolate a set of terms, which will be some subset of the set of all TREEs:

t ∈ TERM, where TERM = { r ∈ TREE | P (r) } (1)

and P is some property of TREEs that chooses the ones that we want to consider to be terms. It’s our job,
then, to specify that property.

First we give convenient names to some ATOMs that we’ll use in our language definition:

Assume { true, false, if } ⊆ ATOM.

Then we carve out our set of TERMs using what are called inductive rules.
TERM ⊆ TREE

true (rtrue) false
(rfalse)

r1 r2 r3
if(r1, r2, r3)

(rif)

What you see above are three rules which together will help us define the set of TERMs. Each rule has
zero or more premises above the horizontal bar, and one conclusion below it. Next to each rule is a name
in parentheses. In essence, each of these rules can be informally read as saying “if all of the premises are
members of the set, then the conclusion is as well.”

Technically, a rule stands for the set of all of its instances. For example:

(rif) =

{
r1 r2 r3
if(r1, r2, r3) ∈ RULE[TREE]

∣∣∣∣ r1 ∈ TREE, r2 ∈ TREE, r2 ∈ TREE

}
.

Really, pushing down even further, each rule instance is just a pair 〈X,x〉 ∈ P(TREE) × TREE of a set of
trees and a single tree: the premises (in no particular order) and the conclusion. So really the rule above is
interpreted as follows:

(rif) = { 〈{ r1, r2, r3 } , if(r1, r2, r3)〉 ∈ P(TREE)× TREE | r1 ∈ TREE, r2 ∈ TREE, r2 ∈ TREE } .
3A more precise notation for this tree would be a1(a2(), a3()) but we will elide empty parentheses for childless nodes.

Page 2

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

Each judgment (i.e. each premise and each conclusion) in a rule represents a TREE, and each rule stands
for a number of instances of rules. An instance of a rule is the result of replacing the black italic metavariables
(e.g., r1) with a concrete TREE. Here is an example of an unsurprising instance of the (rif) rule:

true false true
if(true, false, true)

(rif)

However, the rules also imply “nonsensical” rule instances, since any concrete TREE can be placed where
there is a metavariable r. For example, if we assume that there exist ATOMs named under, and while, then
the following is a perfectly fine instance of the (rif) rule:

under while while
if(under,while,while)

(rif)

Notice that even the nonsensical rule instance we wrote above makes sense under this intuitive interpreta-
tion: if under and while were TERMs, then the TREE in the conclusion would also be a term; but they are not,
so it is not.

We now introduce two forms of syntactic sugar that are common in books and papers that use this tech-
nique to define sets. Both of these notational devices will make our representation look a little prettier, but
otherwise add no real content. To make the syntax of our language look a bit more like a real programming
language, we will write the TERM

if(t1, t2, t3)

using the notation
if t1 then t2 else t3.

In general we will often introduce expressions where the ATOM “name” is split between the different argu-
ments. This is often called mixed-fix notation (as opposed to the prefix notation we were using above).

The second syntactic nicety we will add is that we’ll write the rules so that they refer to the name of the
set that we are defining. For example, we’ll rewrite the rules as follows:

true ∈ TERM
(rtrue)

false ∈ TERM
(rfalse)

r1 ∈ TERM r2 ∈ TERM r3 ∈ TERM

if r1 then r2 else r3 ∈ TERM
(rif)

Going forward, it helps to remember that the “∈ TERM” part is really just a decoration for our human pur-
poses. Think of it like a comment in a programming language (i.e., in C you would write /* in Term */).

With the syntactic sugar out of the way, we still have to discuss how these rules define our set of TERMs.
For some insight, consider the (rtrue) rule. According to our interpretation of rules, this rule says that with
no premises whatsoever, true is a TERM. The (rfalse) rule is similar. Generalizing this observation, we can
show in multiple steps that some TREE is a TERM under no premises by building up a derivation tree of rule
instances that as a whole has no premises, meaning that every rule instance at the top of the derivation tree
is closed with a horizontal bar that has nothing above it. Here is an example of a derivation tree D, built
from rule instances, that shows that if true then false else true ∈ TERM:

D =
true ∈ TERM

(rtrue)
false ∈ TERM

(rfalse)
true ∈ TERM

(rtrue)

if true then false else true ∈ TERM
(rif)

What we did was instantiate the (rif) rule such that r1 = true, r2 = false, and r3 = true, giving:

true ∈ TERM false ∈ TERM true ∈ TERM
if true then false else true ∈ TERM

(rif)
.

Since a derivation can’t have open premises, we had to consider each of the three premises in turn, but we
were able to find closed derivations for each of them using the (rtrue) and (rfalse) rules. As above, we’ll
use uppercase calligraphic letters like D, E ,F as metavariables that stand for derivation trees, and we write
both

D
t ∈ TERM

Page 3

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

and
D :: t ∈ TERM

to mean that D is a derivation of t ∈ TERM.
Technically, we collect all of the rule instances into a rule set R = (rtrue) ∪ (rfalse) ∪ (rif) and use it to

induce the set of derivations D ∈ DERIV[R] ⊆ TREE that can be constructed using the rulesR.
In this case we can refer the set of derivations of t ∈ TERM by the name DERIV[R], to mean the set of all

derivations that can be built using the rules listed in square brackets. That set name is quite a mouthful, so
for brevity, just like with TREEs, we’ll just say DERIV and infer from context which rule set R we have in
mind.

These derivations are the piece we’ve been building toward to define the set of TERMs. Notice that
no matter what TREEs ri we instantiate the (rif) rule with, the conclusion will be a TREE. Technically the
(rtrue) and (rfalse) rules each have only one instantiation (because they have no TREE metavariables), each
of which is a TREE. We can thus define the set of TERMs to be the subset of TREEs that have derivations
according to our rules, or in formal terms:

TERM = { r ∈ TREE | ∃D ∈ DERIV[R].D :: r ∈ TERM } .

i.e., P (r) ≡ ∃D ∈ DERIV.D :: r ∈ TERM in Equation (1) above.
In the particular case of defining the abstract syntax of a language, we have at our disposal the well-

known Backus-Naur Form (BNF), to succinctly capture inductive definitions of syntax.

t ∈ TERM,
t ::= true | false | if t then t else t

The grammar above is shorthand for the inductive rules that we gave above. In the future, we’ll use BNF
to specify our syntax, but we’ll end up using inductive rules to define other sets and relations. This kind of
set definition is in general called an inductive definition.

2 Example: Propositional Logic

To help affirm the ideas introduced above, we will introduce a couple of new definitions. The first is of an
abstract syntax, while the second is of a binary relation (which, recall, is a set of pairs).

What we’re going to do is introduce a definition of a logic. I emphasize the idea of a logic, because there
are many different logical systems in the world. In particular, we will define what is called constructive
propositional logic or intuitionistic propositional logic. We may talk about what makes it constructive later on.

This example serves two purposes for us. The first is to provide another example of an inductive defini-
tion. The second purpose is to introduce a formal model of a small piece of logic, including propositions and
proofs, that corresponds to the kind of more informal logical arguments that we will be using to state and
prove properties of programming languages. Our informal arguments will be a bit looser, but ultimately
we could fully formalize them with a substantial amount of effort. In fact, recent advances in mechanized
proof assistants allows you to do exactly that: write down propositions in a computer language, write proofs
of them, and have the computer verify that the proofs are correct. In some cases we can even automate the
generation of those proofs. For this class, though, we will focus on the more informal approach, but write
our proofs so that there is enough detail that we could in principle fully formalize them, and maybe even
mechanize them.

2.1 Syntax

First, we’ll start with the syntax of constructive propositional logic. Here’s the BNF first:

A ∈ ATOMICPROP, p ∈ PROP,
p ::= A | > | ⊥ | p ∧ p | p ∨ p | p⊃ p

The above corresponds exactly to the following:

Page 4

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

First, assume some set A ∈ ATOMICPROP.
Given this, we define the set p ∈ PROP using the following rules:

PROP ⊆ TREE

A ∈ PROP
(atm) > ∈ PROP

(top) ⊥ ∈ PROP
(bot)

r1 ∈ PROP r2 ∈ PROP

r1 ∧ r2 ∈ PROP
(and)

r1 ∈ PROP r2 ∈ PROP

r1 ∨ r2 ∈ PROP
(or)

r1 ∈ PROP r2 ∈ PROP

r1 ⇒ r2 ∈ PROP
(imp)

Notice that the BNF uses the metavariable p to define the set PROP, while the inductive rules use the
metavariable r to explicitly define the set of derivation trees as instances of the above rules. The BNF
version is just a convention, but the “real” thing to do is define it in terms of some pre-existing set: in our
case TREEs.

Now let me briefly explain the notation. Our language has arbitrary atomic propositional constants,
> and ⊥, which correspond to logical truth and falsity, ∧ and ∨, which correspond to logical conjunction
and disjunction (i.e., “and” and “or”), and ⊃ which is logical implication, (i.e., “if-then”). Notice that the
language does not define negation (i.e., “not”). We represent negation using implication and falsehood:
in particular “A is not true” is represented by “A implies falsehood,” in symbols A ⇒ ⊥. However, for
convenience we provide some syntactic sugar: ¬ p ≡ p⇒ ⊥.

Here is an example of a proposition. Let’s let the following atomic propositions have the given mean-
ings:

C ≡ Chocolate is delicious
A ≡ Apples are delicious
G ≡ Apples are good for you
S ≡ Chocolate is good for you

Then the proposition:
C ∧ A ∧ G⊃ S

is the (obviously correct) statement “If chocolate is delicious and apples are delicious and apples are
good for you, then chocolate is good for you.”

2.2 Entailment and a Discussion of Side-conditions

Now that we have defined the set of propositional formulas, we can establish what counts as proofs of
propositions. In actuality, what we will define is a relation called entailment, which establishes the following:
given the knowledge of certain truths, what other truths can we deduce (i.e., what truths are entailed by
other truths)?

We formalize this as a binary relation.
First let Γ ∈ P(PROP). Then we define the binary relation · ` · true ⊆ P(PROP) × PROP using the

following inductive rules:

Page 5

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

(· ` · true) ⊆ P(PROP)× PROP

Γ ` p true
(hyp) p ∈ Γ

Γ ` > true
(>I) Γ ` ⊥ true

Γ ` p true
(⊥E)

Γ ` p1 true Γ ` p2 true
Γ ` p1 ∧ p2 true

(∧I)
Γ ` p1 ∧ p2 true

Γ ` p1 true
(∧E1)

Γ ` p1 ∧ p2 true
Γ ` p2 true

(∧E2)

Γ ` p1 true
Γ ` p1 ∨ p2 true

(∨I1)
Γ ` p2 true

Γ ` p1 ∨ p2 true
(∨I2)

Γ ` p1 ∨ p2 true Γ ∪ { p1 } ` p3 true Γ ∪ { p2 } ` p3 true
Γ ` p3 true

(∨E)

Γ ∪ { p1 } ` p2 true
Γ ` p1 ⊃ p2 true

(⊃I)
Γ ` p1 ⊃ p2 true Γ ` p1 true

Γ ` p2 true
(⊃E)

The (hyp) rule captures the idea that if you have assumed a property is true, then you can immediately
deduce that property. This rule has a slightly different form than what we have seen before: there is a
constraint p ∈ Γ next to the rule itself. This is called a side-condition. Here’s how it works: the hyp rule
stands for a bunch of concrete instantiations of the rule

Γ ` p true
(hyp)

However, if we leave the rule as-is, then the following instance would be legal:

∅ ` A true
(hyp)

But we definitely don’t want instances like that! If we allowed it, then we could prove any proposition true
(under no assumptions) immediately. Instead, we use the side condition to restrict the instances of the rule
that we will allow. We only allow instances where the proposition appears in Γ, like:

{A,B } ` A true
(hyp)

Desugaring the original rule into set notation gives us

(hyp) =
{

Γ ` p true
∣∣∣ p ∈ Γ

}
Notice how the side condition plays the role of a predicate in a set comprehension. This is different from a
premise, which would appear to the left of the vertical bar in the set comprehension.

So side-conditions cut down the legal rule instances. As you can see, side-conditions are different from
rule premises. Premises serve to generate some initial set of rule instances, by substituting relevant set
elements for each metavariable. Then, the side condition acts as a filter on this large set of generated rule
instances. Nonetheless, many papers and books typeset side-conditions on top of the horizontal bar as if
they too were premises. For example:

p ∈ Γ

Γ ` p true
(hyp)

Here, p ∈ Γ is a side-condition. It is clearly not an expression that stands for a set of trees. Instead it ensures
that we will only consider rule instances where the logical proposition p ∈ Γ holds for the specific choice of
p and Γ.

Usually you can tell from the context whether such a thing is a premise or a side-condition. Informally,
you can read a side condition as just another precondition for the conclusion to be true, just like we do with

Page 6

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

the premises; formally, however, side-conditions have a different meaning than premises. Later, we’ll see
that our reasoning principles for inductive definitions treat side-conditions differently than premises.

For comparison, and as another example, observe that we can replace the rule above with a different
rule that represents exactly the same instances, but in this rule, the side-condition isn’t as obvious:

Γ ∪ { p } ` p true
(hyp)

Note how we’re using explicit set union notation to add the proposition p to whatever set Γ that we choose
to instantiate this rule with. So if we chose to instantiate that rule with p0 for p and ∅ for Γ, then we would
get

{ p0 } ` p0 true
(hyp)

We will often use a known function (like set-union) as part of the definition of an inductive rule. In that
case it really plays the role of a side-condition, so the above rule can be read to mean exactly:

Γ0 ` p true
(hyp) Γ0 = Γ ∪ { p }

It’s worth knowing that we can present any rule in a form that pushes all of the structural information about
premises and conclusions into side-conditions. For instance, here is an equivalent presentation of (rif) using
side-conditions:

r1 ∈ TERM r2 ∈ TERM r3 ∈ TERM

r4 ∈ TERM
(rif) r4 = if r1 then r2 else r3

This rule has exactly the same instances as the original. The only difference is that we’ve made explicit
that the structure of the conclusion is in essence a side-condition. It is useful to know that multiple equiv-
alent presentations of a rule are possible, both for designing inductive definitions to be clear, as well as
understanding an inductive definition found in the wild.

Finally, let me give another example of how side-conditions and structure can affect an inductive defi-
nition:

Suppose you’re looking at an inductive definition of some set G ⊆ N, which has the following rule:

n1 n2

(n1 ÷ n2)
(div)

where · ÷ · : R× R ⇀ R is division over the real numbers.
Then the (div) rule represents the set of instances{ n1 n2

n3

∣∣∣ n1, n2, n3 ∈ N ∧ n3 = n1 ÷ n2

}
.

Notice how using a mathematical function in the conclusion is essentially equivalent to having a side-
condition. In fact you can always rewrite ANY rule so that each premise and each conclusion is a distinct
metavariable from the set that you are refining (the set of ”judgments”) and all structure is relegated to
side conditions. This notation would translate to an equivalent set of rule instances. Anyway, there is no
instance in the set (div) with the premises n1 = 1 and n2 = 2 because there is no natural number n3 that
results from 1÷ 2 (the answer is a real number that happens to also be a rational number but not a natural
number). For similar but slightly different reasons, there is no instance in (div) with n2 = 0, also because
there is no natural number n3 that results from n1÷0 for any natural number n1 (because n1÷0 is undefined
for all such cases).

In both cases the conditions of the corresponding set comprehension are violated, making no rule in-
stances. So, as you can imagine, it’s possible to write an inductive rule with zero instances! In class we’ve
only gone down as far as one instance until now.

Hopefully this helps to demystify inductive rules and inductive definitions a bit more. Don’t worry,
you’ll get the hang of it!

Page 7

Modelling Languages Time Stamp: 13:15, Thursday 3rd February, 2022

As an example derivation of an entailment relation, here is a derivation of ∅ ` A ∨ ⊥⊃ A true, meaning
that it is a theorem of constructive propositional logic (it can be entailed with no assumptions):

{A ∨ ⊥} ` A ∨ ⊥ true {A ∨ ⊥,A } ` A true
(hyp)

{A ∨ ⊥,⊥} ` ⊥ true
(hyp)

{A ∨ ⊥,⊥} ` A true
(⊥E)

{A ∨ ⊥} ` A true
(∨E)

∅ ` A ∨ ⊥⊃ A true
(⇒I)

A Formal Model of Logic From the programming-language theory perspective, all we’ve done above is
get more practice defining the abstract syntax for a language, and then we defined a binary relation on it.
However, it’s worth noting that this particular language and relation is a small, formal model of the kind of
reasoning that we will be doing in this class when we state and prove theorems. Compare the above formal
derivation to the following informal proof, which basically proves the same thing.

Theorem 1. If 7 is odd or 1=0 then 7 is odd.

Proof. Suppose that 7 is odd or 1=0. Then we can proceed by cases.
Case (7 is odd). Then the conclusion follows immediately by assumption.
Case (1=0). Since that is clearly absurd, and absurdity implies anything, we immediately deduce that 7 is
odd.

In this informal proof, we replace A with “7 is odd”, and we replace ⊥ with 1 = 0, which is also clearly
false. If you look closely at the above informal proof, you can see that it actually has the same structure as
our derivation:

• The part where we say “Assume 7 is odd or 1=0” corresponds exactly to how we move A∨⊥ into the
set of assumptions Γ. Then we can reason assuming it is true.

• When we “proceed by cases”, we are doing the equivalent of the ∨E rule. In each case, we assume a
part of the disjunction and try to prove the conclusion.

• The first case is “immediate by assumption” which alludes to the hyp rule.

• The second one follows by absurdity, which alludes to ⊥E.

For those of you who are not familiar with writing rigorous computer science proofs, this may help
to give you a sense of what a proof should roughly look like: the structure of the proof is guided by the
structure of the theorem that you are trying to prove. We will see more examples as we go along, and
if helpful, we can try to make connections between our informal proofs, and the more formal models of
these proofs. There may be something a little vertigo-inducing about using informal logic to reason about
a formal model of logic itself. That takes some getting used to.

References

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic, vol-
ume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland,
1977.

D. van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994. ISBN 978-3-540-57839-0.

Page 8

	Inductive Definitions
	Example: Propositional Logic
	Syntax
	Entailment and a Discussion of Side-conditions

