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1. Introduction.

lol. There is one sense in which the problems of the descriptive phrase 

"the so-and-so" are not so important from a logical point of view. 

Recent developments in mathematical logic indicate that descriptions 

are di_:3pensable at least as far as one is just interested in expressing 

truths. Descriptions which do refer to an object seem always to be 

eliminable from sentences containing them. Empty descriptions do not 

seem to be needed either as a means for expressing truths. 

A rigorous proof that descriptions are dispensable within some 

framework must, however, be based on some general theory of descrip­

tions. And if one regards logic as concerned not only with the analysis 

of truth-conditions of sentences but also with analysis of informal 

reasoning and informal proof the situation is different. It is a fact 

that the descriptive phrase occurs frequently in informal reasoning. 

So there is still the problem of interpreting sentences containing 

descriptions. In particular sentences containing empty descriptions 

which we recognize as meaningful and sometimes even as true such as 

the classical example "the present King of France does not exist". 

Under the name of "f ree logic" there has been a renewed interest 

'lf: in the problem of descriptions in recent years. SeveroJ. systems of free

logic have been constructed in which non-referential singular terms in 

general and empty descriptions in particular are treated as genuine 

singular terms. The effort to construct logical systems which admit 

non-referential singular terms has also beon combined with the 

effort to eliminate "existential 

�See e.g. Grandy 1972 and Lambert 1972 and the references therein. 
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presuppositions" implicit in the classical notion of validity in all 

no�empty domains. The motivation for this kind of work is often said 

to be a desire to get logical systems more adequate to capture portions 

of ordinary language and to get insight into the philosophically impor­

time 
tant notion of existence. At the same a free description theory is pro-

posed as a logical analysis of th3 phrase "the object x such that •• x •• 11 

in the same sense as classical quantification theory provides a logical 

analysis of the phrase "there is an object x such that • •X• •" ·

It seems to me that many of tho systems of free logic that have been 

proposed are unsatisfactory to the same extent as it has not been rea1_ 

i!ied that these two aims may be incompatible. To reflect better what is 

said in ordinary discourse is one thing and to provide a logical analysis 

is another, and the former may not always be helpful in carrying out 

the latter. Ordinary usage seems to give little guidance on questions 
the 

of truth or falsity of many sentences containing empty descriptions. 

The large number of (more or less artificial) conventions on this point, 

seems to me to be an indication that there is something in the role 

of the descriptive phrase in informal reasoning which is not understood. 

According to one line of development our use of non-roforontial singular 

terms imposes strong ontological assumptions. In the systems of 

Cocchiarella 1966 and Scott 1970 the bound variables are intended to 

range over two different kinds of objects; "'actual objects" and "possible 

objects". I do not think that our informal use of non-roforontial sh1.G1-J.l:u 
I 

terms has such ontological implications. 

1.2. The purpose of this paper is to present a logical or� rather, a 

proof-theoretical analysis of thG des:0riptive phrase "the (one) object 

x such that ••x••" within the framework of classical first order 

predicate logic. The theory of descriptions to be presented below is 



based not so much on an analysis of truth-conditions of sentences 

containing descriptions (as most theories of descriptions are), but 

rather on an analysis of the role of descriptions in informal reasoning. 

As the starting point for explaining the ideas behind the theory I 

shall consider the classical theories of descriptions of Frege , Russell 

and Hilbert and Bernays 1968. These theories all agree when confined 

to proper descriptions, i.e. descriptions 

Jxl!_x) 

whose existence condition 

3xA(x) 

and uniqueness coNdition 

Vx\ty(A(x) & A(y) ➔ x=y), 

which together can be stated 

3y Vx(A(x) � y=x), 

are valid. They agree in the senso that Jx.A.(x) denotes the uniq,uo 

object x auch that A(x) and the biconditional 

B( lxA(x) � � 3y 'tx(A(x) � y=x& B(y)) 

is valid. Thus the truth oxpraseed by a s0ntonce containing a propor 

description can be expressed by means of a sentence not containing that 



description. In Russell�s theory of descriptions this is an immediate 

consequence of the doctrine of contextual definition of descriptions 

and in the theories of Frege and Hilbert and Bernays it has to be 

verified. This seems to me to be the only reasonable interpretation 

of the descriptive phrase when the existence and uniqueness conditions 

aro satisfied. 

The classical theories differ, however, in their treatment of 

empty descriptions. Both Froge and Russell realized that a sentence 

containing an empty description can bo significant or meaningful. But 9 

according to Frege 1892 onch nnmo-like expression in n precise formal 

language ought to have a reference. Ho therefore adopted tho convention 

of assigning a more or less arbitrary chosen object as the reference 

of oinpty descriptions. This device is perhaps convenient from a 

strictly technical point of view, but it docs not explain how sentences 

containing empty descriptions can be significant. 

For Russell definitions are interpreted merely as typographical 

abbreviations and not as introducing names (in tho object language) 

of tho objects described by the definitions. A descriptive phrase 

denotes nothing at all but has a moaning only in a context; a meaning 

which is explained by eliminating tho description. And, as is wall-known, 

Russell defined the meaning of a sentence o� the form 

P JxA(x) 

to be tho conjunction of the sentences 

and 

3Y Vx(A(x) � x = y) 

\/x(A(x) ➔ Px). 



Russell was forced to this conclusion by his realist view that sentencEIS 

(or propositions as he would have said) are meaningful if true or false 

and true if they express facts and false when they express nothing9 

together with his view that descriptive phrases have no moaning in 

isolation. 

I think, however
9 

that there is somethimg with the classical 

examples like "tho present King of France is bald" which is not 

correctly explained by Russell's account. I think it is reasonable 

to say that the descriptive phrase 

( 1) "the present King of Franco" 

is quite as meaningful as tho sentence 

(2) "tho present King of France is bald". 

(1) and (2) are cGrtainly both meaningful in the sense that they are

understood (by anyone who knows a certain portion of English). Russell 

would perhaps not have denied this either, but I think that this fact 

should be taken seriously. To talk about tho truth and falsity of the 

sentence (2) seems to me to presuppose that the phrase (1) is meaning­

ful in isolation. So I prefer to follow Frege in treating descriptive 

phrases as true singular terms on a pair with proper names. 

Another well-known disadvantage of Russell's theory of descriptions 

is that it becomes necessary to distinguish between different scopes 

of a description. The formula 

can be translated either as 



or as 

-, 3y 'f'x(A(x) ➔ x::: y & Py). 

The formal complications which arise from this circumstance seems to 

me to indicate that there is something wrong with the idea. 

1.3. I shall give another account for what makes sentences containing 

empty descriptions sometimes meaningful. I think that Geach 1950 has 

already indicated the way to do it. 

According to Russell the sentence (2) is defined to mean that 

There is exactly one present King of France 

and 

Whoever is a prosent King of France is bald. 

I shall instead interpret the sentence (2) conditionally: 

(3) 

Assume that the sentence 

"there is exactly one individual which is a 

present King of France" 

is true, then tho sentence (2) is true if the individual of (3) is 

bald and ( 2) is fnlso ·if the individual of (s3) · is not bnld. 

Now since (3) is as a matter of fact false, the question of the 

truth and falsity of (2) (in "the actual world") does not arise, 

i. o. ( 2) has no truth-val uo.

More generally, if Pis a (primitive) predicate then the question 

of the truth and the falsity of the sentence 



( 4) P'fx.A(x) 

arises only under the presupposed truth of tho sentence 

( 5) 3y \.ix(A( x) � y = x). 

Thus 9 on this interp�etation tho truth of the sentence (4) presupposes 

tho truth of (5), while according to Russell tho truth of (4) implies 

the truth of (5). 

Now suppose that (5) happen to be false so (4) has no truth-vo,luo. 

How do we then explain the fact that the sentence (4) can still be 

significant and meaningfully used? The answer is simply that we are 

free to adopt any assumption we want. If we introduce (5) as an 

assumption we are free to treat Jx.A(x) as an ordinary singular 

term with reference, but everything which we are then able to say 

about our assumed reference of JxA(x) does of course depend on our 

assumption and is not true or false in some absolute sense. This is 

how (4) can be meaningful oven though 7xA(x) may be an empty 

description. 

So tho idea is that empty descriptions are to be treated 

precisely like proper descriptions under the assumption of their 

existence and uniqueness conditions or under assumptions which imply 

theso conditions. This is to understood as a kind of operational inter­

pretation of descriptions rather than as an interpretation in terms of 

truth-conditions of sentances containing them. In tho final section I 

shall, however, state what consequences this interpretation has for 

truth-conditions by developing a model theory for tho formal system. 

Ideas closely related to the one just described ha;vo appeared 

elsewhere but, as far as I know, noono has made tho idea precise 



which I shall attempt to do below. 

1.4. Let us finally consider the theory of descriptions of Hilbert and 

Bernays to which my theory is most closely related. In their theory 

empty descriptions are considered meaninglessg They are< 

dismissed altogether from the language. An expression 1xA(x) is a term 

only if the existence and uniqueness condition 3y Vx(A( x) ➔ y = x) has 

already been proved, and PncA(x) is a formula only if JxA(x) is a 

term. So what expressions are terms and sentences depend on what 

formulas are provable. 

There are two main arguments against the Hilbert and Bernays theory 

of descriptions (cf. Carnap 1947 and Scott 1967). Since the formation 

rules depend upon the rules of proof
1 

the class of terms and formulas 

will hardly ever be recursive. What expressions are well-formed or 

meaningful will in general depend on extralinguistic facts. 

Now it is quite obvious that the meaningfulness of a term in the sense 

of Hilbert and Bernays must be understood as its having a reference. 

From this point of view it is obvious that the class of terms must be 

non�ecursive. This is oven true on the informal level. Take an 

arithmetical sentence A(x) such that noone has yet been able to answer 

the question wether 3xll.(x) is true or false. We have no recursive 

method to answer the question wethor the phrase "the number x such 

that A(x)" has a reference or not. Interpreted this way as dealing 

only with referential descriptions, the Hilbert and Bernays theory is 

quite natural. 

According to tho other objection of Scott 1967 the use of descrip­

tions in mathematics (which is Hibert and Bernays # concern) is quite 

common even before the existence and uniqueness conditions have been 



proved. For example in set theory one often defines a function by 

transfinite recursion and only afterwards proves the existence and 

uniqueness conditions by transfinite induction. This objection is 

perhaps not so serious regarded as a criticism of the adequacy of 

Hilbert and Bernays 1 formal system as a codification of arithmetic. 

Because even if it is common to use descriptions in mathematics before 

the existence and uniqueness conditions have been proved, it does not 

follow that it is essential (for expressing mathematical truths). The 

objection is, however, justified in so far as Hilbert and Bernays system 
does 
not adequately codify informal mathematical reasoning. In particular 

containinR descriptions 
it provides no interpretation of sentences wITose existence and unique-

ness conditions are not known to be true and it offers no explanation 

of tho role of such descriptions in informal reasoning. 

The purpose of this paper is to make Hilbert and Bernay� theory 

adequate also in these respects 9 and it will be verified in section 5 

that the use of descriptions is not essential as far as one is just 

interested in expressing truths since descriptions turn out to be 

oliminable. 

1.5. Tho theory of the present paper can be regarded as an extension 

of tho theory of Hilbert and Bernays in the following respect. What 

expressions are formulas and terms will depend on what formulas are 

provable but our class of closed formulas will be wider than theirs. 

Also as in their theory a term has always a reference and a formula 

is either true or false. 

To be able to deal with descriptions whose oxistonce and uniqueness 

conditions have not been proved ( and perhaps never can be proved) I shall 

distinguish between terms and term-expressions and formulas and formula-

expressions. Tho class of term,..oxprossions and formul3-oxprossions are



defined by ordinary recursive formation rules. So wether an expression

. t ... rn-oxprossion or n formula-expression or not is a purely linguistic
is a ,._, -

matter that does not depend on the rules of proof. Each term is a term-

expression and each formula is a formula-expression but the converse is

not true. The intended interpretation is that a term-expression is a

term if it has a reference and a formula-expression is a formula if it

is either true or false. All terrr-oxprossions and fornula-oxprcssions 

are however meaningful in the sense that they can be understood by 

anyone who knows the meaning of the primitive symbols of the langimge. 

Using Frege"s distinction between Sinn and Bedeutung we can say that 

allterr::i-oxpressions andformula-oxpressions have a Sinn but only terms 

and formulas have a Bedeutung. 

It follows that not all formula-oxprossinns hnve a truth-v:'.lue and 

there is in general no mechanical method to find out wether a formula­

expression has a truth-valuoor not. Is this reasonable? I think it is. 

Lot A(n) be an (informal) arithmetical sentence for which it is not 

known wether A(n) is true for exactly one natural number n. If a 

mathematician
9 

confronted with the question wother the sentence 

"the natural nuraber n such th2,t _:\._(n) is a prime number" 

is true or false
9 

finds out that there is no n such that A(n) 9 it seems 

likely that his answer will not be "it is true" or "it is false" but 

rather that the problem was not well-defined. And we have no mechanical 

method to decide which questions of this form formulates well-defined 

problems even tholl@'.l the questions are perfectly "well-defined" from a 

grammatical point of view. 

The formulas nre not simply (as in the theory of Hilbert and Bernay� 

those formula-expressions whose descriptions (if any) have provable 



existence and uniqueness conditions. There are certainly formula­

expressions containing descriptions which we recognize as true only

by virtue of their form. A simple example is 

::t,'7'x(A(x) Hy= x) ➔ A()xA(x)) 

which will be among our theorems for any formula A(x). And it is a 

formula since, as will be verified, only formulas are theorems. 

As already pointed out the present theory of descriptions is 

developed within classical first order logic. From an intuitionistic 

point of view descriptions seem to be less problematic. The reason is 

that the notion of proof rather than the notion of truth is basic 

intuitionistically. Proofs are treated as objects. The descriptive 

phrase receives a stronger interpretation intuitionistically. For 

example�the number n such that A(n) is given not only as a number 

but as a number n together with a proof of the proposition 

v'x(A(x) ➔ x = n). (Cf. the codification of intui tionistic abstractions 

of Martin-Lof 1972). On this interpretation the problems of the 

descriptive phrase disappears. 

The deductive system that will be presented in section 3 is such 

that only formulas valid in all domains including the empty domain 

are derivable as theorems (if not axioms to the contrary are introd­

used of course). This is achieved not simply by the introduction of 

some (suitable) formal restrictions that give us this class of 

theorems. It results rather as a biproduct from a more general and 

natural formulation of the inference rules for quantification. I shall 

give a device for introducing and cancelling assumptions of the form 

"let x be an individual ••• "• In section 4 I shall try to explain what 

this means for the notion of existence and how it makes clear the 



logical role of variables and names. 

2. Language.

We consider a language of first order predicate logic based on 

the following primitive logical symbols; 

➔ (material implication)

& (conjunction)

.L ( absurdity)

V (universal quantification)

1 (description operator)

= (identity).

Thora may be a list of n-place function symbols, n � o. If n = o, the 

function symbols are called individual constants or names. There is a 

list of n-place predicate symbol� and an infinite list of individual 

variables. 

We shall often assume that the language contains only one one­

place function symbol f and only one one-place predicate symbol P 

(other than identity). When this is done there will be no loss of 

generality. As syntactical notations for individual variables we 

shall use x,y,z,u,v,w, ••• • 

2.1. The term-expressions and the formula-expressions are defined 

by a simultaneous induction: 



2.1.1. Each individual variable is a term-expression. 

2.1.2. If t1
, ••• 9 tn 

arc term-expressions and if f is an n-place

function symbol, then ft1 ••• tn is a term-expression.

2.1.3. If t1, ••• ,t
n 

nre term-expressions and Pis an n-place predicate

symbol, then Pt
1 ••• t

n 
is a formula-expression. In particular 

t = s is a formula-expression if t and s are term-expressions. 

2.1.4. � is a formula-expression and if A and B are formula-expressions, 

then so are (A & B) nnd (A➔ B). 

2.1.5. If A is a formula-expression and x an individual variable, then 

'efx.A is n formula-expression and ?xfi. is a term-expression. 

2.2. Wo shall use A
9 

B, c, ... as syntactical notations for formula­

oxprossions and t, s, u, ••• as syntactical notations for term­

expressions. The formula-expressio� � and those of 2.1.3 are the 

atomic formula-expressions, the others are composite. 

Frae and bound variables are defined as usual and we shall adopt 

the convention of not distinguishing between formula-expressions and 

and tcr·m-expressions that differ only in the naming of their hound 

variables. We shall write 

to indicate that some (possibly none) of the free variables in the 

formula-expression A are among the variables in the list x
1

, ••• ,x
n

. 

If t
1, ••• ,t

n 
are term-expressions, then A(t

1
, ••• ,t

n
) denotes the

result of simultaneously substi t,.1ting tho term-expressions t
1

9 ••• 
9 
t

n 

for all free occurcnces of the variables x
1, •. ,,xn 9 respectively, in

A. The described substitutions are defined provided that no free

variable of t
1

, ••• ,tn becomes bound in A(t
1

,.,.,tn
). This can always



be accomplished by renaming the bound variables. We shall always 

assume that such renamings have been made when we indicate a substi­

tution. 

2.3. We shall also adopt tho following abbreviations: 

,A for A➔ l. 

AV B for -,(-,A&-,B) 

AHB for (A➔ B) & (B � A) 

3xA for -,'r/x -,A 

3ixA for 3xA& 'v'x\fy(A(x) & A(y) ➔ x=y). 

•WJ shall also adopt the usual conventions f'or omitting parenthesis.

In particular

is to be understood as 

�A 
n 



-., 

3. Rules of inference.

3.1. I shall now present a formal deductive system which will codify 

the ideas described informally in the introduction. In order to do 

that I introduce the following (metalogical) symbols 

The derivations of the system are certain tree arrangements of 

expressions of the form 

where t is a term-expression and A is a formula-expression. Tho rules 

of inference allow us to infer expressions of each of those 

forms. The informal meaning of t EI is that t denotes an individual 

or t has a reference. A E F means informally that A is either true or 

false and when we have a derivation ending with A we interpret this 

as meaning tho.t the proposition (expressed by the formula) A has been 

proved. A derivation will be said to codify a piece of reasoning, an 

informal proof or an argument. 

The system of inference rulos is an extension and a modification 

of the system of natural deduction described in Prawitz 1965, to which 

the reader is referred for a more complete and rigorous presentation. 

As in systems of natural deduction a derivation is started from an 

�iom or by making an assumption and proceeds downwards by means of 

the rules of inference. Some of the rules of inference are such that 

when one passes from the premisses to the conclusion, certain assump­

tions are discharRed or cancelled. I shall indicate this by enclosing 

the assumptions in question in square brackets. In order to make more 



explicit at what stage in a derivation a certain assumption is dis-

charged, I shall sometimes uso the device of indexing the assumptions 

as in Prawitz 1965. The assumptions are of two forms. Either it is 

of the form 

X E I 

where x is an individual variable or else, if we h�ve a doriv�tion 

(possibly from other assumptions) of A E F, then we may introduce 

A 

as an assumption. A derivation is closed if all of its assumptions 

have been discharged. Otherwise it is open. 

If there is a closed derivation of 

t EI 

we say that the term-expression t is a�. If there is a closed 

derivation of 

A € F 

we say that A is a formula and, finally, if there is a closed deriva-

tion with the conclusion 

A 

we say that A is a (forQal) theorem. 

3.2. I shall divide the rules of inference into three groups: the 



I-rules the F-rules and tho remaining rules which include the

introduction and the eliminetion rules for the logical symbols. 

It should be noted, however 9 that rules within different groups 

can be linked with each other in a derivation. 

3.2.1. The I-rules are the followingg 

(f-rule) 
t

1 
E I 9 • • •  , tn E I

ft1 ••• tn€ I

( JI-rule) 
)x.A € I 

It is to be understood that when f is a 0--place function symbol
9 

i.e. 

an individual constant then the f-rule is the axiom 

f (: I. 

3.2.2. The F-rules are the followingi 

( J.) 

(P-rul0s) 

(&-rule) 

l. E F

t
1

f I 9 " " . , t
n 

E. I

Pt
1 

••• t
n 

e F 

A E F, B t F 

.A& B € F 

t E. I, s EI 

t = s E F 



(A] 

A E F BE F 

("""'7-rule) 

(x E I] 

A(x) E F 
(\?'-rule) 

'vx A(x) €_ F 

The 'v'-rule is subject to the restriction that x must not occur 

free in any assumption in the derivation of A(x) E F other than 

XE I. 

3.2.4. Among the remaining rules we have first the following rule 

for descriptions� 

( /-rule) 
31xA(x)

A(7xll(x)) 

and the rulo of indirect proofi 

[, A] 

A 

. 

. 

l 

The remaining rules are the introduction and elimination rules 

for the logical symbols (including identity): 



.A B 

A & B 

A E F 

A➔ B 

[x E IJ 

A(x) 

'dx A( x) 

t EI

t = t 

(A] 

B 

A &. B 

A 

ft ➔ B 

B 

A & B 

B 

A 

\fxA(x) t EI

11.(t) 

t = s .A(t) 

A( s) 

The introduction rule for\:/ is subject to the restriction that x 

must not occur free in any assumption in the derivation of A(x) 

other than x EI. Note that in the ➔-rule and the introduction rulle 

for ➔
9 

when passing to the conclusion A➔ BE F and A➔ B
9 

respectively
9 

all occuronces of the assumption A become discharged 

and the conclusion becomcsdepondent on the assumptions in the deriva­

tion of A E F (if any)a The same thing is true in the case of the 

assumption -,A of the rule of indirect proof. 

3.2.5. When disjunction and existence are defined as in section 2.3
9 

the introduction and elimination rules for disjunction and existence 

hold as derived rules in the following forms: 



A BEF A E F 

A V B AVB 

t EI A(t) 

3xA(x) 

B A V B 

C 

�xA(x) 

C 

£A] [BJ 

C C 

C 

It is easy to see that terms and formulas as we have defined them 

are always closed. As already pointed out when we have a derivation 

of A E F we interpret this as meaning that A is true or false and 

when we have a derivation ending with A 9 it means informally that 

we have a proof of A and hence A is true. If A is true 9 then A is 

true or false, so we must req_uire that if we have a derivation of 

A we must also have a derivation of A E F. In other words only 

formulas are theorems. That our deductive system is adequate in 

this respect follows from the following stronger result. 

3.2.6. THEOREM, 1£ �have.§:. derivation of A 9 then we can find n 
---· ------

derivation of A E F. 

Proof. The proof is by induction on the length of the derivation 

of A. 

Caso 1. A is an assumption. Then the result is immediate since wo 

cannot introduce A as an assumption unless we have a derivation of 

A E F .• 



Cas0 2. 

3i xA(x) 

A( 7xA(x)) 

By the induction hypothesis we have a derivation of :\xA(x). This 

implies in particular that 

3xA(x) E F 

.., \ix -, A( x) E. F. 

It is easy to see that A E F iff -, A E F. Hence 'efx, A( x) E F, so 

we have derivations 

X f: I 

7 A�x) E F 

and 
XE I 

A(x)EF. 

Substituting lxA(x) for x everywhere in this derivation we obtain 

3
1
xA(x) 

}x.A(x) E I 

A( }xA(x)) E F 

and the result follows. 



Case 3. 

j_ 

A 

Immediate, since A € F iff -, A E F. 

Case 4. 
• • 
• • 

A B 

A & B 

By the induction hypothesis wo have derivations 

A E F 
and 

BE F 

Hence, A & BE F follows by the &-rule. 

Case 5. 

A&. B 

A 

By the induction hypothesis we have a derivation of A & BE F, 

which must look like this 

A E F B E F 

and tho result follows. 



Case 6. 
. 

. 

. 

A E F 

A➔B 

[A] 
. 

• 

B 

By the induction hypcthesis we have a derivation 

A 

B E. F 

which together with the given derivation 

A E F 

gives us A ➔ B E F by the ➔ -rule. 

Case 7. 

B 

By the induction hypothesis we have a derivation of A➔ BE F
1 

which must look like this 

[A] 

A E F BE F 



The derivation 

B E. F 

taken together with the given dQrivation 

A 

gives us 

A 

B E. F 

and the result follows. 

Case 8. 
[x E I] 

.A(x) 

'v/xA(x) 

By the induction hypothesis we have a derivation 

XE I 

A(x) E F 

Which by the Y-rule gives the desired result. 



Case 9. 
--

\jxA(x) t E I 

A(t) 

By the induction hypothesis we have a d0rivation of 'ixA(x) E. F, 

which must have the form 

tx EI] 

A(x) E F 

Vx.ll.(x)E F 

Substituting t for x in this derivation and using the given derivation 

t EI 

wo have 

t E I 

A(t) E F. 

Case 10. t E I 

t = t 

Since we have t E 1
9 

the result follows immediately by the P-rule. 



Case 11. It remains only to consider a derivation whjch ends like 

this 

• 

• 

t = s 

A( s) 

• 

• 

. 

A(t) 

By the induction hypothesis we have derivations 

t= s E F 
and 

A( t) E. F • 

The former derivation must have the form 

t E I s E. I 

so we have derivations 

t E. I 
and 

s E. I. 

We shall prove that A(s) E F by induction over A(x), using the 

following result. 

LEMMA. If we have derivations of t = s, t E I, s E I and u(t) E I 

from certain assumptions, then we can find a derivation of 

u(s) EI from the same assumptions. 



We first prove this lemma by induction over u(x). 

(i) u(x) is an individual constant. Then u(t)

is nothing to prove.

(ii) u(x) is a variable. The re3ult is immediate.

u(s) and there 

(iii) u(x) is fJ(x). Now
9 

fti(t) f I means that J(t) €. I. By the

induction hypothesis J( s) ( I, so u( s) = fti( s) E I •

(iv) u(x) is lyB(y,x). Then u(-t) E I means that we have a derivation

hence 

t = s 

u( s) E. I 

. 

. 

and the lemma follows. We now continue case 11. 

Subcase 11..L A(x) is Pu(x). Pu(t) E F means that u(t) t I and 

by tho l'.)r;i□a u(s) E I, so Pu(s) E F follows by the P-rule. 

Subcase 11.2. A(x) is L .  Nothing to prove. 

Subcaso 11.3. A(x) is B(x) & C(x) • A(t) E F means that we have 

derivations 



B( t) E F and 

By the induction hypothesis we can find derivations 

. 

• 

B( s) f F and C(s) E F 

and the result follons by the &-rule. 

Subcasc 11. 4. A(x) is B(x) -� C(x). Since 

derivations 

B(t) 
• 

B( t) E F and c( t) E F •

By the induction hypothesis we h1ve 

B( s) E F 

and, hence 

B(t) 

and C(s) E. F 

t = s B(s) 

B(t) 

C ( s) E. Ji' 

and the result follows by the ➔ -rule. 

A( t) E F, we hav0 

Subcasc 11.5. A(x) is \:fyB(y,x). Since A(t) E F
9 

wo have a derivation 

j,'. 



y E I 
. 

• 

By the induction hypothesis we have 

y EI 

B(y,s) E F 

and the result follows by the '-i/-rule. 

This completes the proof of theo�em 3.2.6. 

4. Examples and discussion.

4.1. The purpose of this section is to explain the meaning and the 

significance of the deductive system of section 3 by means of sor,1e 

examples. 

4.1.1. The following is a derivation of the formula \lx(Px ➔ Px). 

(1) 
[x E. I] 

Px E. F 

Px ➔ Px 
( lJ 

\fx(Px ➔ Px) 

(2)



Here we have assigned a number to tho two assumptions in the order 

in which they are introduced anc we have indicated at what step in 

the derivation they are discharced. Both assumptions in this deriva­

tion are discharged so we have e, closed derivation of the formula 

\lx(Px ➔ Px). The truth of the formula does not depend on the truth 

of some other formulas. Its truth does neither rest on any existential 

assumptions (that there is at lEast one individual) nor on any 

assumption about what is the case (that certain individuals9 if they 

exist, have a certain property). The formula is true in all domains 

including tho empty one. In this respect there is nothing special 

about the formula \lx(Px ➔ Px). It will be prov1d in section 6 that 

there is a closed derivation of a formula A if and only if it is 

valid in all domains including the empty domain. Since we also permit 

terms with no reference to occur both in our language and in deriva­

tions, the deductive system of section 3 can be said to be a 

"quantification theory without existential presuppositions" (Cf. 

Hintikka 1959), or, rather, a deductive system where all (existential) 

assumptions have to be made explicit. 

4.1.2. To take another example. Let Px mean that x is a present King 

of France and let Qx mean that x is bald. Since P is a primitive 

predicate we can easily find a closed derivation 

[x EI] 

We can therefore introduce 31xPx as an assumption and obtain 9 for

example9 the following derivation 



(1) 

31xPx

JxPx E I 

Q1xPx E F 

which means that under the assumption that there is exactly one 

present King of France, the sentence "the present King of France 

is bald" is either true or false. We can continue the reasoning 

codified by the derivation (1) as follows 

(2) 
(1) �xPx

[x EI] 

: ( 1) 
}xPx EI

( 3) (2) 3ixPx" E F Q JxPx € F [Q 7xPx} 
- (3)

Q1xPx ➔ Q7xPx 

which means that under the assumption that there is exactly one 

present King of France, the present King of France is bald only if 

the present King of France is bald. It is important to note that the 

derivation (2) in not closed because the assumption �2) is not dis­

charged. The closed formula-expression 

( 3) Q 7xPx ➔ Q 7xft

is not derivable from no assumptions. On the informal level this 

mGans that the formula is true in those "worlds" where the formula 

3
1
x Px is true. In other "possible worlds" it has no truth-value. 

As already pointed out in the introduction, the meaningfulness 

of empty descriptions or descriptions whose existence and uniqueness 

conditions are not known to be true, I take to be their role in 

arguments like (1) and (2). On Russell's interpretation a descriptive 



phrase has a meaning only in the context of a (true or false) sentence 

while on this interpretation its meaningfulness comes from its role 

in arguments whoro tho corrospondintxistence and uniqueness conditions 

are assumed to be true. 

An argument involving a description which as a matter of fact has 

no reference, such as the argument codified in tho derivation (2), is 

of course vacuous and useless. It can never be used to infer truths 

about reality. Eutnevertheless it is valid as an argument and within 

this argument the description 1xPx behaves like an ordinary proper 

description. 

4.1.3. Inspection shows that the I-rules and the F-rules almost 

coincide with the formation rules of section 2.1 except for the rules 

that involve the description operator. It follows that all closed 

formula-expressions that do not contain terms of the form 7xA(x) 

f 1 B . t d t . th . t d t · th9re 1 f 1 are ormu as. ut as pain e ou in e in ro uc ion are a so ormu as

and even theorems containing descriptions whose existence and unique­

ness conditions are not derivable. An example is the formula 

(4) 

A derivation to the effect that it is a formula goes as follows 

( 1) 
[x E I] 

: ( 1) 
3

1
xPx" E F PJxPx -� F 

--------(2)
( 31xPx ➔ P?xPx) EF

A derivation of the formula (4) as a theorem is as follows 



(2) 
(JixPx J 

P7xPx 
(2) 

The existence and un.iqueness co::1di tions 3
1 
x Px of tho de:::cription 

JxPx is certainJ.y not derivab:::_e. It will be true on some intc::-­

pretations and false on others. 

4. 2. Des:pi te the inference rule:'3 which gover11 the description

operator, there is another feat·1re of our formulation of ·Gl:i.e in.for-•

ence rules of section 3 w�1.ich is more satisfactory from a thcon::ti­

cal point of view than usual fo::-mulations. Ne..mely, that \i-in.-�i:o(.V>·

tion is formulated as follows

[x � I] 

A(x) 

\:/xA(x) 

with x E I as an assumptio�'l which is discharged by this inference 

and \/-elimination has t EI as an additional premiss. 

4.2.1. First of all this corre�Jonds more closely to tho m3�ni�c 

meaning of the quantifiers in informal reasoning. For e:rnmplo 
9 

suppose tha::b our individuals ar: natural numbers and that we want 

to prove a universal ari thmctic-11 statement 

VxA(x). 



Such an argument might begin like this 

(5) 
Suppose that xis an arbitrary natural number ••• 

•• , then • • • hcnco A( x) 

This is what we symbolize by writing 

XE I 

A(x) • 

When the argument ends with the conclusion 

(6) A(x) for all natural numbers x

it does no longer depend on the assumptiom made in (5). The con­

clusion (6) means that whenever we encounter a natural number x 

we can carry out the argument in (5). It does not mean that if there 

exists a natural number x, then, whenever we encounter a �atural 

number x we can etc. 

Conversely, when we pass from \;ixA(x) to A( t) by \]'-elimination 

this inference is incompletely specified without t EI as an addi­

tional premiss. 

Corresponding remarks apply to tho derived forms of j -introduc­

tion and �-elimination in section 3.2.5. 

4.2.2. Another theoretical advantage of our formulation of the 

inference rules for quantification is that we obtain full generality: 

The formulas of which there is a closed derivation are precisely 

those which are valid in all domains including the empty domain':: 

��Tho first system of natural deduction with this property was con­

structed by Jaskowski (cf. Prawitz 1965, p 99).



To see how our deductive system works in this respect consider the 

formula 

( 7) \;/xPx➔ 3xPx 

which by the usual formulations of Gentzen's rules of natural 

da:rl.uction can be derived as follows 

(1) 
[\fxPx] 

Px 

( 8) 3xPx 

'r/xPx ➔ 3x Px 
( 1) 

Using our rules of inference we have 

( 1) (2) ( 3) 
(x E I] [\;/xPx] X C I

( 3) 
Px E. F Px XE I 

\;/x 'P-v:. E F 
( 1) 

::!xPx 

'dxPx� 3xPx 
(2) 

Since there is an undischarged assumption, namely 

XE I 

we have not a closed derivation of the formula (7). The assumption 

x EI is precisely the (existential) assumption that there is at 

least one individual. 

We can of course get the sar,1e class of theorems as in usual 

formulations of the (classical) predicate calculus. We have only 

to introduce an individual constant e and 



e € I 

as an axiom. Putting e EI for the assumption x EI in the derivation 

(8) we have a closed derivation of the formula (7). The resulting

class of formulas fat' which there is a closed derivation are precisely 

those which are valid in all non-empty domains. So to introduce an· 

individual constant with e EI as an axiom is to restrict one's 

attention to non-empty domains. 

It is sometimes maintained that the effort to remove existential 

assumptions implicit in the classical notion of validity in non-empty 

domains has philosophical relevance for the notion of existence. I do 

not want to make such a claim. Validity in the empty domain is trivial 

and rather uninteresting and to include it in ones notion of validity 

involves certain technical complications. So one have had good 

reason not to include it in classical formulations of quantification 

theory. 

With the formulation of the rules of quantification of section 3 

I only hope to have made more clear how the assumption of non-empty­

ness is introduced in tho deductive cystem. It shows that it is a 

matter of convention and convenience rather than based on some 

philosophical doctrine of necessary existence. 

4.2.3. Still another theoretical advantage of our formulation of 

quantification is that it reflects very clearly the difference 

between tho role of variables and individual constants or names. 

Variables are used to make assumptions within an argument and thes0 

assumptions are discharged when tho variables are bound by a quanti­

fier. Individual constants or nnmos on tho other hand are used to 



refer to individuals. Thus e � I is an axiom when e is a name. This 

role of names in logic was pointed long ago by Russell 1919, p 179. 

The introduction of names presupposes the corresponding existence 

and uniqueness conditions. 

The difference between the existence assumptions in the case of 

names and those we make by noans of variables is the following: In 

the case of names the assumptions are made on the meta-level. They 

are presupposed by the theory we have docidod to consider and 2r0 

implicit in the intended interpretation of the language. TheJ impose 

a restriction on tho individual domains which aro possible models. 

The existential assumptions implicit in tho introduction of name3 

are thus not discharged but stay as long as we do not change tho 

intended interpretation. 

The assumptions made by means of variables on the other hand are 

made within an already presupposed universe of discourse and for the 

sake of an argument. Variables do therefore not denote or refer to 

individuals
9 

they are only a tool for making assumptions in arguments 

and, when they are bound
9 

for expressing propositions. 

In standard formulations of the predicate calculus this difference 

between tho role of variables ani names is often confused. Variables 

play here a double role. They are treated as variables when they are 

bound, but as free variables they figure also as names. The reason 

for this is of course that when a variable is used as a "dummy symbol" 

in a derivation it is actually used as an individual constant because 

when the variable is bound one has no device for discharging the 

(tacit) assumption x EI. This assumption then stays as an axiom 

which means that tho (free) variable is treated as an individual 

constant and one rostrici:sthe possible models to thoso with a non-



empty domain. 

Some logicians also allow for empty names in their systems i.e. 

names without reference. I think that this is a mistake. From a 

logical point of view there are no empty names. The mistake results 

from a confusion of namehood in the grammatical sense and name­

hood in tho referential sense Le. in the sense of "that which 

names". It is only names in the latter referential sense that we should 

construe as names in a logically well-written language. What looks 

like a name from a grammatical point of view can not always be 

construed as a name in the logical sense. As is woll-lmown 

grammatical form does not always coinoide with logical form. 

We could of course allow for empty names in our language. 

This would amount to introducing individual constants e, .,. 

without introducing axioms e e I, ••• • But these names would be 

superfluous in the theory since they could never appear in true or 

also statements and in arguments. If we allowed them to appear in r 

arguments in the form of assumptions, they would still be superfluous • 

since the variables could be used for the same purposes. 

What them about the classical example "Pegasus oxists". Are we 

to treat "Pegasus" as a name or not? The answer depends on the 

intended interpretation. If we intended to make a logical analysis 

of Greek mythology, then certainly''Pegasus" is to be treated as a 

name and "Pegasus exists" is an axiom. Precisely as we introduce 

numerals as namos of numbers in a logical analysis of arithmetic. 

The more lik0ly situation is perhaps that we intend our universe 

of discourse to comprise only beings of flesh �nd blood that have 

actually lived at some time and then the situation is different. 

Quine 1960 has already showcn how to paraphrase the sentenco 



"Pegasus exists" in this case. "Pegasus" is to be construed as a 

general term. 

4.3. As already pointed out the problems of the empty domain and 

empty 'singular terms have often been related to the notion of existence, 

Is (singular) existence as in "Pegasus e'xists" a predicate? If so 9

what kind of predicate? Some authors have introduced existence as 

a predicate and treated it as a predicate of the same sort as other 

primitive predicates. In Schock 1968 this is done explicitly and in 
1970 

Scott it is implicit in the distinction between actual and possible 

objects. This seems to me also to be wronc. Tho mistake comes from a 

confusion of use and mention. 

What corresponds to the existence predicate in our deductive 

system of section 3 is the predicate I
9 

because t EI moans that t 

denotes an individual i.e. there is such a thing as t, and when t EI 

is false there is no such thing as t. Now, couldn't we treat I as 

a primitive predicate in the object language i.e. as an existence 

predicate, writing 

It 

instead of t EI and define It to be a formula-expression whenever 

t is a term-expression. This would be pointless if we did not allow 

It to be a formuJa.(i.e. something true or false) oven when t is a 

term-expression which is not a term. Because otherwise It would be 

true for any t and the predicate I would be superfluous in tho theory. 

So suppose then that we defined It to be a formula whenever t is a 

term-expression, then obviously the formula 

-. IJx(x/- x) 



would be true because there is no object which is not identical with 

itself. Now, if I is to be treatGd as an ordinary primitive predicate 

we are justified in asking: What is the object which does not have the 

property I of existing? We would be forced to admit non-existing 

objects such as the object which is not identical with itself. This 

is clearly nonsense. 

Existence can be thought of as a significant predicate. But it 

is not a predicate of the same type as the primitive predicates 

P 9 Q 9 • " •  of the object language. If it is to be significantly 

asserted or denied of something it must be intorpretod as asserting 

rJforonce of term-expressions. This is precisely what our predicate 

I of section 3 does. A statement t EI is not a statement of the 

object language. It is a metalogical statement about tho term­

expression t and not about the object which t may denote. Otherwise 

expressed, the term-expression t is mentioned but not used in the 

statement t EI. 

When we reason in a specific (formal) language, we are doing this 

relative to an intended universe of discourse. As a matter of fact, 

the choice of the universe proceeds the specification of tho language. 

But it makes no sense to talk about an objects being of not being in 

this universe within the object language. All objects which can be 

"talked about" within the given language are presupposed to belong 

to that universe. Existence, treated as a significant predicate, must 

therefore be thought of as a predicate of singular terms and not of 

the objects which these singular terms may donate. In this respect 

the existence predicate is a predicate of tho same kind as the truth­

predicate and the derivability prod icate with the only difforonce that 

they apply to sentences and not to singular terms. 



The predicate I is, howovor, dispensableas a means for expressing 

truths. �s will bo proved in the next section we can find for each 

term-expression t a  formula I(t) such that 

t € I iff I(t) is deriv�ble 

This does not mean that the "existence predicate" I is definable in 

the object language. It means only that each sentence t EI can bo 

trat nslated into an equivalent sentence in the object language. 

To take an example: Let Px mean that x is a present King of France. 

Then the sentence "the present King of France does not exist" which 

I interpret as 11 ? xPx has no reference" i.e. )xPx ¢ I, can be 

translated as 

1=;_xPx. 

Hintikka 1969 p. 34 has proposed the formula 

]y(x = y) 

as a definition of the existence predicate "x exists".In the system 

of section 3 it can be verified that for each term-expression t, 

t EI holds if and only if 3y(t = y) is derivable. Should we then 

say that the formula ::Jy(t = x) defines the metalogical existence 

predicate I in the object language? No, because what we have is 

only a characterization of the metalogical predicate t EI in terms 

of tho motalogical derivability predicate via tho formula 3y(t = y). 

If we road t EI as "t exists" we havo informally 

(9) t exists iff 11 ]y( t = y)" is true 



but we do not have 

(10) t exists iff 3y(t = y)

which we would require of a definition of the existence predicate. 

But (10) does not even make sense because on tho left hand side t 

is mentioned and on right hand side t is used. If "t exists" would 

be false i.e. if there were no such thing as t in the universe of 

discourse the formula :{y(t = y) would be neither true nor false 

since a formula in the object language can only "talk about" objects 

in that universe. On our interpretation 9 the truth or falsity of 

3Y( t = y) presupposes the truth of "t exists" 
9 

Le. cf t E I. 

The statement ,3y(t = y) does not ascribe the existence property 

to some object. It says of the already presupposed existi1g objects 

in tho universe of discourse (if any) 9 that at least ono of them is 

identical with the object t. 

Henco 9 to find out what objects aro presupposed as existing when 

one is given a language with an intended interprotntion is to find 

out what objects the bound vari�blcs are intended to range over. But 

it makes no sense to talk about the existence or non-existence of 

these objects in the same lamgue,ge. If by a theory we mean a language 

toGether with an intended interpretation we can say that the ontology 

of a given theory does not belong to that theory but to its mota­

theory. What can be talked about in that meta-theory is what term­

expressions of the language refer to objects in the universe. This js 

what we have done by means of the I-rules of section 3. 



5. Eliminability.

5.1. By the description-free system we shall understand the system 

obtained by omitting the clause 11 1xA(x) is a term-expression if A(x) 

is a formula-expression" from the formation rules and by omitting 

the inference rules for the description operator. The description­

free system is of course a subsystem of the original system. When 

we say that a formula is derivable we are in general referring to 

derivability in the original system unless the contrary is not expli­

citly stated. 

As promised in the introduction we shall prove that descriptions 

are eliminable by showing how to associate with each formula A a 

description-free formula A0 such that A is derivable if and only if 

A0 is derivable in the description-free system. 

5.1.1. Let A be a formula-expression .• We define a formula-expression 

A0 by induction on the construction of A as follows: 

(i) ( \;/xA(x))0 
= \JxA0(x) 

(ii) (A➔ B)0 = A0 ➔ Bo 

(iii) (A & B) 0 

= Ao & Bo 

(iv) l0 = l

(v) (Pt1 •.• tn) 0 = Pt1 ..• tn 9 if none of t1, ... tn

contains a term-expression of tho form Jx C •

( vi) If A is Pt1 ••• tn 9 let P( ,xAlx) 9 • • •  , iY Iln(y))

stand for Pt1 ... tn 9 
where JxAlx), .• ,

9 
7yAn(y)

are all outermost term-expressions of tho form



JX C occuring in t1, ••• , tn from left to right.

i.e. 

0 0 C., ' 

at least one occurenco of each of }xA_fx),. 

7y A (y) in Pt1 ••• t is not within a term ofn n 

the form 7xC, and it is these occurences which are 

indicated with x, ••• ,y in P(x, ••• ,y). Then we put 

We first establish the following result. 

5.1.2. THEOREM. Given.§:_ derivation of! in _lli original system,� 

� � .§:. derivation of AO 
J!!. � dcscripti.2!!_-free system. 

Proof. The proof is by induction on the length of the proof of A. 

Since the 0-transformation is compatible with the logical constants 

i, &
1 

➔, V, the result follows immediately by the induction hypo­

thesis for all inference rules except the following ones: 

( a) 

(b) 

( c) 

::\ xll.(x) 

A( }xA(x)) 

\:/xA(x) t E. I 

A(t) 

t = s A(t) 

A(s) 

where t and s contain at least one occurence of a term-expression 

of the form 7xC (otherwise the result follows immediately in tho 

case of (b) and (c), too). 



Instead of d0aling with (c) we shall replace it by each instance 

of the following fcrnula-arprcssion 

z 'dx \:7'y(x = y ➔ A(x) ➔ A(y))
n 

where z11 . a .
9
zn are all free variables in A(x) distinct from x and

y. Having (c') the rule (c) can now be derivo1 using only \-I-elimina­

tions and ➔-eliminations. It is also easy to see that each instance 

of (c') in the description-free system is derivable in that system. 

Since the a-transform of the formula-expression (c') has the same 

form, i.e. is an instance of (c') 9 it remains for us only to consider 

the rules (a) and (b) in the case where t of (b) contains at least 

one term-expression of the form 1x R. We may in fact assume that t 

always has this form. Suppose for example that t has the form 

f :,x. B(x), then an application of 

\qxA(x) 

could be replaced by 

• 

. 

7xB(x)E. I 

f)x B(x) E I

A(f,xB(x)) 

[z E I] 

\txA(x) fs E. I 

A(fz) 

\/zA(fz) 7x B(x) E. I 

A(f7xB(x)) 

This example can clearly be Beneralized. It remains for us to consider 



the rule (a) and the rule 

\?'x A(x) ;xB(x) E I 

A(7xB(x)) 

Instead of treating the rules (a) and (b') it is convenient to treat 

the following rule 

( d) 

whore z19 ••• ,zn are all free variables in A(x) and B(x) other than x.

( For simplicity we shall in general ignore the variables z1, •. ,,zn

below). From the rule (d) 9 the �ule (a) follows immediately by 

putting A( x) for B( x) and noting that \jx(A( x) ➔ A( x)) is provable 

from no assumptions other than those on which 3
1

xA(x) depends.

The rule (b') can be derived as follows: Assume that we have deriva-

tions 

\/xA(x) and 

then we must have derivations 

XE I 
. 

. 

B(x) E. F and 

Then we proceed as follows 

7xB(x) E.. I 



[x E I] 

B(x) E F 

'efxA(x) (x E. I] 

[B(x)] A(x) 

.J(x) ➔ A(x) 

\;/x(B(x) ➔ A(x)) 

3:txB(x) 

\ix(B(x) ➔ A(x)) � A(JxB(x)) 

Vx(B(x) ➔ A( x)) -> A( 7x B(x)) 

A( 7x B(x)) 

So it remains for us to prove that if we have a derivation in the 

description-free system of 

then there is a description-free derivation of 

The proof is by induction on the number of logical symbols in B(x)
7

counting the description operator as a logical symbol. 

Case 1. Bis an atomic formula-expression. 

Case 1.1. B(x) contains no logical symbols. Then 

B(7xA(x) )0 

:: \fx(A 0 (x) ➔ B(x)) 

which is 

and the result follows. 

Caso 1.2. B(x) contains at least one description none of which is 

JxA(x) and none of which contains the variable x free. 



Then 7xA(x) is an outermost description in B( 1x.A(x)) which can be 

written 

B( JxA(x), }Y C (y)) 

Where B(x,y) is a description-free atomic formula (assuming for 

simplicity that B(x) contains only one description ). Then we have 

In the description-free system this is clearly interdeducible with 

which is 

\ix(A 0 (x) ➔ \fy( c 0 (y) ➔ B(x,y))

\fx(A0 (x) ➔ B0 (x)).

Case 1.3. B(x) contains at least one description one of which coin­

cides with 1xA(x) but none of which contains x free. 

Let 

where JxA(x) and Jy C(y) co inside. Then Vx ( A 0 (x) � B0 (y)) is

which is interdeducible with 

(1) \fx \fy \f z(A 0 (x) & A 
0 (y) & D

0
( z) ➔ B(x,y, z))

The formula-expression B( 7xA(x) )0 is 

(2) \Ix \f z(A 0 ( x) & D0
( z) ➔ :S(x,x, z)).



By the induction hypothesis we have 

'3ix11.0(x) 

from which we can derive A0

(x) & A 0(y) ➔ x = y, and since 

we have 

by means of which the interderivability of (1) and (2) is easy. 

Case 1.4. B(x) contains at least one descri ption and xis free only in 

at least one of these descri ptions none of which coinsides with 7xA(x). 

Then we can write 

B(x) == B(7yC(y,x),JzD(z)). 

Then \fx(A0 (x) ➔ B0(x)) is 

or equivalently 

( 3) 

and B( 7xA(x) )0 is 

(4) 

By the induction hypothesis a�pliad to C(y,x) we have 



Tho formula-expression (3) is interdcrivable with 

'efy'vz(]x(A0(x) & c
0

(y,x)) & D
0(z) ➔ B(y,z))

so to establish the interderivability of (3) and (4) it is sufficient 

to have 

which follows from 3ixA 0 (x).

Case 1.5. B(x) contains at least one description and x is free in at 

least one of these and in at least one occurcnce not in one of these 

descriptions (none of which coinsides with 7x A(x) ). 

Then we can write 

B(x) = B(x,7y C(y ,x), :,z D( z)) 

and Vx(A0(x) ➔ B0(x)) is 

or equivalently 

and B( JxA(x) )0 is 

By the induction hypothesis we have 



so it is sufficient to prove that 

which follows easily using 3
1xA(x) and the elimination rule for

identity. 

Case L.6. B(x) contains at least one description and xis free in at 

least one of those and one of the descriptions in B(x) coincides with 

"fX. A( x). If we put 

B(x) = B(7yC{y,x), JzD(z)) 

it is clear that the description 7yC(y,x) can not coinoi de with 

7xA(x)9 so it must be 7zD( z). The result follows then by a combination 

of case 1.3 and 1.5. 

Case 2. B(x) is composite. 

Case 2.1. B(x) is B1(x) & B2(x). We have a description-free

derivation of 31xA 0(x) and we want to derive

By the induction hypothesis we have 

and 

and the result follows then easily. 



case 2.2. B(x) is B1(x) ➔ B2(x). We have a description-free deri­

vation of 3i,xA0(x) and we want to give a description-free derivation 

of 

By the induction hypothesis we have 

and 

The formula-expression \lx(A0(x) ➔ B�(x) ➔ B�(x)) is interderivable 

with 

Using ]1xA 0(x) we can derive

and the result follows. 

Case 2.3. B(x) is \;/yBly 9 x). We want to prove that 

this follows easily by tho induction hypothesis: 

This completes tho proof of theorem 5.1.2. 



5. 1. 3. THEOREM. For each formula-expression A 9 if � have 2:, deriva­

tion of A E E,, th..£!! YQ_ _2£g find a dorivation of A �AO
• 

Proof. The proof is by induction on the number of logical symbols in A. 

Case 1. A is atomic. If A does not contain descriptions the result is 

immediate. Let 

A = .K( 7x:B(x)) 

where ?x:B(x) is the outermost description in A (assuming for simpli­

city that A contains only one such description, which is no 

restriction). Then 

By the induction hypothesis there is a derivation of 

(5) B(x) � B0( x).

We have a derivation of A(7xB(x)) E F. This derivation must contain 

a derivation of 3
1

xB(x). We can then derive 

B(x) � x = 7x B(x) 

as follows 

x = 7xB(x)E F [x = 7xB(x)] 

B(x) 

x = 7xB(x) ➔ B(x) 

)1xB(x)

B(}x B(x)) 



and in the other direction we have 

31xB(x)

B( ?x B(x)) 

By (5) we have 

'31xB(x)

\fx\fy(B(x) & B(y) ➔ x=y) x EI ]1xB(x)

\iy(B(x) & B(y) ....;. :x: =y) JX B(:x:) E I 

B(x) & B( ]X B(x)) -� X = JX B(x) 

B ( 7X B ( X) ) ➔ ( B ( X) --:> x -· ;n: ]3 ( X) ) 

B(x) ➔ x = 7x B(x) 

By this and the elimination rulo for indentity we have 

or 

which is 

f(x) ➔ (A( 7x B( x)) -} i(x)) 

() A➔ A • 

0 Conversely assume A, i.e. 

'efx(B(x) -,> i(x)) 

By the induction hypothesis (5) we can find a darivation cf .:'.:1
1
}:B�x).

Hence we can derive 1x:B1x) E. I and then, using \f-eli!llinatj_on 9 we 

have 



By the J-rule,modus ponens A follows, hence 

Case 2. A is composite. The result follows in these cases immediately 

by the induction hypothesis and the proof is complete. 

Using theorem 5,1,2 and 5.1.3 we now havo the promised result. 

From theorem 5.1.3. it follows that A is derivable in the original 

system iff f is so derivable and from theorem 5,1.2 it follows that 

A0 is derivable in the original system iff A0 is derivable in the 

description-free system, Hence, we have: 

5.1.4. THEOREM (Eliminability), If there is,!:. 9-erivation of A€. F, 

t� A� derivable in the original system if and only if !:_
0

is derivable in� descrip�ion-fxee system. 

5,2. As mentioned in section 4, it is possible to give a characteriza­

tion of the meta-logical predicate I in terms of the doriv2bility 

predicate. In this section we shall prove more than that. We shall 

associate with each term-expression t a  description-free formula­

expression I(t) and with each formula-expression A a description-

free formula-expression F(A) such that 

t E. I 

and 
A EI 

iff I(t) is derivable 

iff F(A) is derivable. 

By the result on eliminabili ty it follows that dorivabili ty can 

here be understood to refer to derivability in tho description-free 



system. 

We define I(t) and F(A) by induction on the construction oft 

and A as follows: 

5.2.6. 

I(t) = (t = t), if t is a variable or an individual constant, 

I(ft1 ••• tn) = I(t1) & ••• & I(tn)

I(Jx A(x)) = � x F(A(x)) & °3ixA0( x) 

F( L ) = (l. ➔ .L) 

F(Pt1 ••• tn) = I(t1) & ••• & I(tn)

F(A & B) = F(A) & F(B) 

F(A ➔ B) = F(A) & (A0 

➔ F(B)) 

F( VxA(x)) = \txF(A(x) ). 

It is easy to see that I(t) and F(A) are always description-free. 

5.2.9. THEOREM. For any term-e?!J>ressi.£E_ ! and a1!Y f'ormula-expression 

! � have

and 
! E 1 iff lL!J.. � derivable

A E ! ill !fil is deri v�.

Proof. The proof is by induction over t and A. 

Case 1. tis a variable or an individual constant. If we have a deri-

vation 

t E I , 



the following is a derivation of I(t) 

•• • 

t E I 

t = t • 

Conversely, assume that we have a derivation of I(t) = (t = t). By 

theorem 3.2.6 we can find a derivation of t = t E F. This derivation 

must end like this 

t € I t E I 

and the result follows. 

Case 2. Suppose that we have a derivation of ft
1 
••• t

n 
EI. This 

derivation must look like this 

. 

. 

. . . t EI
n 

so we have t1E I, ••• , tn
E I. By the induction hypothesis we have

derivations 

. 

• 
• 

• 
• 
• 

I(t) 
n 

and I(ft1 ••• tn
) is derivable by &-introductions.

Conversely, if we have a derivation of I(ft1 ••• tn), we can derive



I(t1), ••• ,I(tn) by &-eliminations. By the induction hypothesis we

have t1 E I, ••• , tn EI and ft1 ••• tn EI follows by the f-rule.

Case 3. If we have a derivation of ;xA(x)E.I, it must end like this 

. 

0 

. 

3
1
xA(x)

JxA(x) c I 

so we have a derivation of ]1xA(x). By theorem 5.1.4, we have then

a derivation 

By theorem 3.2.6, we have also a derivation 

which must contain a derivation 

X E I 

A(x) f F • 

By the induction hypothesis we have a derivation 

X E I 

F(A(x)). 



r(lxA(x)) is now derived as follows 

3ixA 0(x) 

[x EI] 

F(A( x)) 

\efxF(A( x)) 

Jix.A0 (x) & 'v'xF(A(x)) • 

of 
Conversely, assume that we have a derivation I(1xA(x)). By &-elimi-

nation we have derivations 

We want to use theorem 5.1.4 to find a derivation of 3
1
xA(x) in 

order to conclude that 7xA(x) E I. But to be able to use theorem 

5,1.4 1 we must first have a derivation of 3ixA(x) E F, or, what 

amounts to the same thing 1 a der�_vation of \;lxA(x) E F from no new 

assumptions. We can find such a derivation as follows • 

. 

. 

\ixF(A(x)) 

F(A(x)) 

XE I 

By the induction hypothesis we h8ve then a derivation 

X E: I 

A(x) E F 



and \;/ x A( x) E. F follous by the 'v-rule .. 

Case 4. A is .L • Immediate. 

�e 6. A is B & C. The result follows as in c�se 2 easily by the 

induction hypothesis. 

Case 7. Suppose we have a derivatio!1 of A➔ BE F. This derivation 

must ond like this 

A 

A E F BE F 

so we have derivations 

A 

A E F and BE F 

By the induction hypot�esis we have then derivations 

A 

F(A) and F(B) 

Since A0 E F, we can use theorem 5.L3 to derive F(B) from tho 

assumption of A0 like this 



A 

F(B) 

and A0 ➔ F(B) follows by ➔-introduction. A &-introduction then 

gives us F(A -7' B). 

Conversely, assume that we have a derivation of 

F(A) & (A
0 ➔F(B)). 

By &-elimination we have derivations 

F(A) and A
0 

➔ F(B)

By the induction hypothesis we have A� F
9 

so we can use A as an 

assumption to derive F(B) as follows 

F(B) 

By the induction hypothesis we have a derivation 

A 

B E. F 

and the result follows by the ➔�ule, 



Case 8. If we have a derivation of \i'xA(x) E F 9 we must have a deri­

vation 

XE I 

A(x) E F 

and by the induction hypothesis we have 

XE I 

F(A(x)) 

and V x F(A( x)) follows by r/ -introduction. 

Conversely 9 if we have a derivation of \J'xF(A(x)), we can derive 

F(A(x)) from the assumption of x c I as follows 

\z'xF(A(x)) xE:I 

F(A(x)) 

By the induction hypothesis we have a derivation 

X E. I 

A(x) E F 

and VxA(x) E F follows by the V-rule. 

This completes the proof. 



6. Model theor:r

6.1. The purpose of this final section is to develop a model theory 

for the formal system of section 2 and 3. We shall introduce the 

notion of a structure and define what it means for a closed term-

expression to�� reference in a structure and what it means for 

a closed formula-expression to have a truth-value and to be valid 

in a structure. 

For simplicity we shall assume that the language has only one 

one-place function symbol f and only one one-place predicate symbol 

P. The development can be generalized in an obvious way so this is

no loss of generality. 

With respect to this language, a structure 

consists of the following things; 

6.1.1. A (possibly empty) set I of individuals. 

6.1.2. An assignment to the function symbol f of a function 

f:I ➔I. (If f were an individual constant we would of course 

assign to f an individual f EI). 

6.1.3. An assignment to the predicate symbol P of a set P �I. 

We extend our language by introducing names of the individuals 

in I. To each individual we introduce exactly one name. We use a 1 b
1 

c, ... as syntactical notations for these names. a,b,c, ••• denote tbo 



the individuals whose names are a,b,c, ••• • These names arc individual 

constants so we also add tho following axioms 

a EI 

for each namo a, to the axioms and rules of section 3. The notions 

of a term-expression, formula-expression, derivation, term, formula 

and theorem will, unless '�thorwise stated, refer to this enlarged 

language which we call .1.!l£, Janguage of§_. Tho language of section 2 

will be called tho original language. 

We shall define a partial function VS on the set of all closed 

term-expressions and formula-expressions. The values of VS will be 

either individuals or one of the truth-values 1 (truth) or O \�alsity). 

The definition of v5 is by induction on the construction of the term­

expressions and the formula-expressions. 

6.1.4. v8(a) =a, for each individual constant a.

6.1.5. v8(ft) is defined iff v8(t) is defined. If v8(ft) is defined,

then 

6.1.6. v
8

(7xA(x)) is defined iff v
8

(A(a)) is defined for all a E 1

and {aj v8(.A(a)) = 1} is a singleton set. If v8()xil.(x)) is

defined, then 

6.1.7. v8(Pt) is defined iff v8(t) is defined. If v8(t) is defined,

then 



and 

v8(t = s) is defined iff v8(t) and v8(s) are both defined
9 

and

if this is the case, then 

and 
v8(t = s) = O otherwise.

6.1.9. v
8

(A & B) is defined iff v
8

(A) and v
8

(B) are both defined. If

v8(A & B) is defined, then

and 

6.1.10. v8(A ➔ B) is defined iff

(i) v8(A) is defined

and 

If v8(A ➔ B) is defined, then

and 
v8(A ➔ B) = 0 otherwise.

6.1.11. vs(VxA(x)) is defined iff vs(A(a)) is defined for all a EI.

If v8( VxA(x)) is defined, then



and 

v
8

('v'xA(x)) = 1 if V
5

(A(a)) = 1 for all a EI,

v8(\fxA(x)) = O otherwise.

6.1.12. A closed term-expression t is said to�� reference in� 

if V
5

(t) is defined; a closed formula-expression A is said to��

truth-value in S if VS(A) is defined and Sis said to be valid in S

if Vs(A) is defined and= 1.

The soundness and tho completeness of the deductive system of 

section 3 then means the following three things (where we refer to 

the original language). 

6.2. THEOREM. For� closed term-expression�� closed formula-

expression� have 

6. 2. 1. i i.s � term iff i has � reference 1.£ each structure S

6.2.2. A is � formula ill A has a truth-value in each structure S 
------------------

6.2.3. !. is� theorem iff A is valid in� structures. 

6.2.4. Remark. Let us for the moment confine our attention to the 

description-free system. In this system each closed term-expression 

is a term and each closed formula-expression is n formula. Hence 9 VS

becomes a total function when restricted to this system. All talk of 

V
5

:s being defined or not becomes superfluous and the definition of

VS above is a definition of a standard valuation function (despite

the fact that we also include tho empty domain). The propositions 

6.2.1 and 6.2.2 become trivially true and tho truth of 6.2.3 is also 

well-known. The fact that we permit the empty domain offers no special 

difficulty. An ordinary Henkin-style completeness proof goes through. 



In what follows I shall therefore take the completeness of the descrip­

tion-free system for granted. 

In order to prove the soundness we need the following result. 

6.2.5. Substitution property. Lot S be a structure and let t be a 

closed term-expression in the language of S. Let u(x) and A(x) 

be a term-expression and a formula-expression 9 respectively, in 

the language of S containing only x free. 

If v
5

(t), v
5

(u(t)) and v
5

(A(t)) are all defined and if 

V8(t) = a, then so are v8(u(a)) and v5(A(a)) and

and 

The proof, by induction over u(x) and A(x), is straightforward and 

will be omitted here. 

In order to exhibit more fully tho meaning of the deductive rules 

of section 3, I shall give the proof of the soundness in detail. 

6.2.6. Proof of soundness. We prove the statements 

If t EI is derivable 9 then v
5

(t) is defined for all s

If A E F is derivable, then v8(A) is defined for all S

If A is derivable, then v
5

(A) = 1 for all S 

simultaneously by induction on the lengths of the derivations of 

t EI, Ac F and A. 

Let S be a fixed structure and consider closed term-expressions 



and formula-expressions in the language of s.

Case 1. tis a name, then VS(t) is defined by 6.1.4. 

Case 2. t E I 

ft E I 

By the induction hypothesis v
8

(t) is defined and hence, so is v
8

(ft) 

by 6. 1.5. 

Case 3. 3
1
xA(x) 

7xA(x) E I 

By the induction hypothesis VS( 3ixA(x)) is defined and= 1. This 

means in :particular that v8(-, \lx -, A(x)) is defined, so VS(A(a)) is

defined for all a EI. v
8

( 3
1

xA(x)) = 1 means also that the set 

{a I v8 (A( a)) = 1} contains exactly one member, so VS ( 1xA(x)) is

defined by 6.1.6. 

defined by 6.1.8. 

Case 5. t E I 

Pt EI 

By the induction hypothesis VS(t) is defined and hence so is VS(Pt) 

by 6.1. 7. 

'fhe rule 

t E. I s E I 



is treated similarly. 

Case 6. 
A E F BE F 

A&BEF 

v
8

(A) and v
8

(:s) are defined by the induction hypothesis
1 

hence so

is v8(A & B) by 6.1.9.

Case 7. 
[A] 

AEF B E. F 

By the induction hypothesis v8(A) is defined. Also, since we have a

derivation 

A 

B E F 

it follows by the induction hypothesis that v8(A) = 1 only if v8(:s)

is defined. Hence, v
8

(A ➔ B) is defined by 6.1.10.

Case 8. 
(x EI] 

A(x) E F 

\i:x:A(x)E F 

For an arbitrary name a, we have a derivation 



a E I 

11.(a) E F 

By the induction hypothesis it follows that v8(a) is defined for all

a E I, hence vs( Vx1t(x)) is defined by 6. 1. 11.

Case 9. 3
1
xA(x)

A(JxA(x)) 

Using the substitution property this case follows like case 3. 

Tho cases in which tho result follows by &-introduction, &-elimination 

or ➔-elimination, the result follows immediately by the induction 

hypothesis. 

Case 10. 
(11.] 

AE.F B 

A➔B 

By the induction hypothesis VS(A) is defined and VS(A)= 1 only if

Vs(B) is defined and= 1. By 6.1.10 it follows that VS(A ➔ B) i�

defined and== 1. 

Case 11. (x EI) 

A(x) 

'ix A(x) 

For oach name a, we have a derivation 



a E I 

A(a) 

so by the induction hypothesis v8(A(a)) is defined and = 1 for all

a€ I which means that v8('\fx A(x))= 1.

Case 12. \/x A(x) t E I 

A(t) 

By tho induction hypothesis v8(t) is defined. Suppose that v8(t) =

= a EL AlS0 9 vs(Vx A(x)) = 1 which means that vs(A(b)) = 1 for

all b EI. By tho substitution property we have v8(A(t)) = v8(A(a)) =

1, and tho result follows. 

Case 13. 

A 

. 

. 

By the induction hypothesis V8(-, A) is defined 9 hence so is v8(A).

The assumption that v8(A) = 0 implies that v8(¼) = 1 which contra­

dicts 6.1.8. Hence v8(A) = 1.

Caso 14. 
t E. I 

t = t 

By the induction hypothesis v8(t) is defined and since v8(t) = v8(t),

v8(t = t) = 1 follows.



C'.3-SG 15. t = s A(t) 

A( s) 

By the induction hypothesis v
5

(t = s) = 1 and v
5

(A(t)) = 1. The 

former means that v
5

(t) = v
5

(s) = a EI for some name a. Hence 

v
5

(A(s)) = v
5

(A(a)) = v8(A(t)) = 1 by the substitution property.

This completes the proof. 

The following lemr.i.a gives us (non-constructively) the other half 

of 6.2.3. 

6. 2. 7. LEMMA.. If A l!:!_ i:. formula which � .£2i !!:_ theorem, � th�_

is a structure in which A is not valid. 
------

Proof. Assume that A is a form·da which is not derivable. By the 

eliminability theorem 5.1.4, A0 is not derivable in the description­

free system. By the completeness of the description-free system 

there is a structure S such that 

By theorem 5.1.3 �nd the soundness result we have 

and the lemma follows. 

6.3. In order to prove 6.2.1 and 6.2.2 from right to left wo need 

the following result which is a model theorcti0 analogue of theorem 



6.3.1. LEMMA. Let 2, be an arbitrary structure. E£E, �closed�­

expression i � each closed formula-expression!� have 

and 

v
8

(t) is defined iff vs(I(t)) = 1

VS (A) is def� iff VS (F(A)) = 1.

The proof of this lemma by induction over t and A is straightforward 

and is left to the reader. 

With the following lemma y the proof of theorem 6.2 is complete. 

6.3.2. LEMMA. Let i� � closed �-expression and A a closed formula-

expression. If .!_ € 1 is not derivable
9 

� there is !:!:. structure 

§_ � � v
5 

( t) � not defined
9 

and if A E E_ is not derivable 9

� �� is E:_ structure §_ � that v
8 

(A.) � not defined.

Proof. Suppose that t € I is not derivable. By theorem 5.2.9 it 

follows that I(t) is not derivable. Since I(t) is description-free 

it is not derivable in the description-free system. By the complete­

ness of the description-free system, there is a structure S such that 

v
5

(I(t)) = o. By lemma 6.3.1 it follows that v
8

(t) is undefined. 

The case in which A E Fis not derivable is treated similarly 

and the lemma follows. 
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