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1. Introduction.

1.1, There is one sense in which the problems of the descriptive phrase
"the so-and-so" are not so important from a logical point of view.
Recent developments'in mathematical logic indicate +that descriptions
are dispensable at least as far as one is just interested in expressing
truths, Descriptions which do refer to an object seem always to be
eliminable from sentences containing them. Empty descriptions do not
seem to be needed either as a means for expressing truths.

A rigorous proof that descriptions are dispensable within some
framework must, however, be based on some general theory of descrip-
tions., And if one regards logic as concerned not only with the analysis
of truth-conditions of sentences but also with analysis of informal
reasoning and informal proof the situation is different. It is a fact
that the descriptive phrase occurs frequently in informal reasoning.

So there is still the problem of interpreting sentences containing
descriptions. In particular sentences containing empty descriptions
which we recognize as meaningful and sometimes even as true such as
the classical example "the present King of France docs not exist",

Under the name of '"f ree logic" there has been a renewed intcrest
in the problem of descriptions in reccent yoargf Several systems of free
logic have been constructed in which non-referential singular terms in
general and empty descriptions in particular are treated as gcnuine
singular terms, The ceffort to construct logical systcems which admit
non-referential singular terms has also beon combincd with the

effort to eliminate "existential

-

al(See e.g. Grandy 1972 and Lambert 1972 and the references therein,
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presuppositions” implicit in the classical notion of wvalidity in all
nowempty domains. The motivation for this kind of work is often said
to be a desire to get logical systems more adequate to capture portions
of ordinary language and to get insight into the philosophically impor-
tant notion of existence, At the samgigefree description theory is pro-

posed as a logical analysis of thz phrase "the object x such that -.%X.."

in the same sense as classical quantification theory provides a logical
analysis of the phrase "there is an object x such that -.x..",

It seems to me that many of the systems of free logic that have been
proposed are unsatisfactory to the same extent as it has not been reai..
ized that these two aims may be incompatible, To reflect better what is
said in ordinary discourse is one thing and to provide a logical analysis
is another, and the former may not always be helpful in carrying out
the latter. Ordinary usage seems to give little guidance on gquestions
o}hiruth or falsity of many sentences containing empty descriptions.

The large number of (more or less artificial) conventions on this point,
seems to me to be an indication that there is something in +the role

of the descriptive phrase in informal reasoning which is not understood.
According to one line of development our use of non-rofecrential singular
terms imposes strong ontological assumptions., In the systems of
Cocchiarella 1966 and Scott 1970 the bound variables are intended to
range over two different kinds of objects; ™actual objects" and '"possible
objects", I do not think that our informal use of non-rcfercntial singular

terms has such ontological implications.

1.2. The purpose of this paper is to present a logical or, rather, a
proof-theoretical analysis of the descriptive phrase "the (one) object
X such that --xe." within the framework of classical first order

predicate logic., The theory of descriptions to be prcescnted below is



based not so much on an analysis of truth-conditions of sentences
containing descriptions (as most theories of descriptions are), but
rather on an analysis of the role of descriptions in informal reasoning.
As the starting point for explaining the ideas behind the theory I
shall consider the classical theories of descriptions of Frege , Russell
and Hilbert and Bernays 1968. These theories all agree when confined

to proper descriptionsy, i.e. descriptions

2xA(x)

whos® existence condition

IxA(x)

and unigueness condition

WxVy(A(x) & A(y) - x=y),

which together can be stated

Jy Vx(A(x) & y=x),

are valid, They agree in the sensc that )xA(x) denotes the unigue

object x auch thet A(x) and the biconditional

B( xA(x), & 3y Vx(A(x) © y=x&B(y))

is valid. Thus the truth expressed by a ssntcnce containing a proper

description can be expressed by means of a sentence not containing that



description. In Russell’s theory of descriptions this is an immediate
consequence of the doctrine of contextual definition of descriptions
and in the theories of Frege and Hilbert and Bernays it has to be
verified. This scems to me to be the only reasonable interprctation
of the descriptive phrase when the existence and uniguceness conditions
arc satisficd.,

The classical theories differ, however, in their treatment of
cmpty descriptions. Both Frege and Russell rcalized that a scentence
containing an empty description can be significant or meaningful, But,
according to Frege 1892 cach namc-like oxpression in a precisc formal
language ought to have a referecnce. Hc thcrefore adopted the convention
of assigning a more or less arbitrary chosen object as the reference
of empty descriptions, This dcvice is perhaps convenient from a
strictly technical point of view, but it does not explain how sentences
containing cmpty descriptions can be significant,

For Russell definitions are interprcted merely as typographical
abbreviations and not as introducing names (in the object language)
of the objects described by the definitions. A descriptive phrase
denotes nothing at all but has a meaning only in a context; a meaning
which is explained by eliminating the description. And, as is well-known,

Russell defined the meaning of a sentence of the form

P)xA(x)

to be the conjunction of the sentences

Jy vx(A(x) = x=y)
and
x(A(x) — Px).



Russell was forced to this conclusion by his realist view that sentences
(or propositions as he would have said) are meaningful if true or falsc
and true if they express facts and false when they express nothing;
together with his view that descriptive phrases have no meaning in
jsolation.

I think, however, that there is somethimg with the classical
examples like "the present King of France is bald" which is not
corrcctly explaincd by Russell’s account, I think it is reasonable

to say that the descriptive phrase

(1) "the present King of France"

is quitc as meaningful as thc sentence

(2) "the present King of France is bald",

(1) and (2) are certainly both meaningful in the sense that they are
understood (by anyone who knows a certain portion of English), Russell
would perhaps not have denied this eithery, but I think that this fact
should be taken seriously. To talk about the truth and falsity of the
sentence (2) seems to me to presuppose that the phrase (1) is meaning-
ful in isolation. So I prefer to follow Frege in trcating descriptive
phrases as true singular terms on a pair with proper names.

Another well-known disadvantage of Russcell’s theory of descriptions
is that it becomes necessary to distinguish between different scopes

of a description. The formula

— Poxa(x)

can be translated either as



Iy Vx(A(x) = x=y & —=Py)
or as

— Iy ¥x(A(x) = x=y & Py).

The formal complications which arise from this circumstance seems to

me to indicate that there is something wrong with the idea.

1.3. I shall give another account for what makes sentences containing
empty descriptions sometimes meaningful., I think that Geach 1950 has
already indicated the way to do it.

According to Russell the sentence (2) is defined to mean that

There is cxactly one present King of France
and

Whoever is apresent King of France is bald,
I shall instead interpret the sentence (2) conditionallys:

Assume that the sentence

(3) "there is exactly one individual which is a

present King of France"

is true, then thc sentcnce (2) is true if the individual of (3) is

bald and (2) is falsc if the individual of (:3) ‘is not bald.

Now since (3) is as a matter of fact false, the question of the
truth and falsity of (2) (in "the actual world") does not arise,
i.e. (2) has no truth-valuc.

Hore generally, if P is a (primitive) predicate then the question

of the truth and the falsity of the sentence



(4) P 7xA(x)

arises only under the presupposed truth of the sentence

(5) Iy Vx(a(x) & y=x).

Thus, on this interpretation the truth of the sentence (4) presupposes
the truth of (5), while according to Russell the truth of (4) implies
the truth of (5).

Now suppose that (5) happen to be false so (4) has no truth-valuc.
How do we then cxplain the fact that the sentence (4) can still be
significant and meaningfully used? The answer is simply that we arc
free to adopt any assumption we want. If we introduce (5) as an
assumption we are frec to treat #xi(x) as an ordinary singular
term with reference, but everything which we are then able to say
about our assumed reference of ?xA(x) does of course depend on our
assumption and is not true or false in somc absolute scnse. This is
how (4) can be meaningful cven though 7xA(x) may be an empty
description,

So the idea is that empty descriptions are to be treated

precisely like proper descriptions under the assumption of their

existence and unigueness conditions or under assumptions which imply

these conditions. This is to undcrstood as a kind of operational inter-

pretation of descriptions rather than as an interpretation in terms of

truth-conditions of sentences containing them. In the final section I

shall, however, state what consequences this interpretation has for

truth-conditions by developing a model theory for the formal system.
Ideas closely related to the one just described hawvc appearcd

elsewhere but, as far as I know, noonc has made the idea precise



which I shall attempt to do below.

1.4, Let us finally consider the theory of descriptions of Hilbert and
Bernays to which my theory is most closely related. In their theory
empty descriptions are considered meaningless: They are «

dismissed altogether from the language. An expression ?xA(x) is a term
only if the existence and uniqueness condition 3y Vx(A(x) — y=x) has
already been proved, and PrxA(x) is a formula only if IxA(x) is a
term. So what expressions are terms and sentences depend on what
formulas are provable,

Therc are two main arguments against the Hilbert and Bernays theory
of descriptions (cf. Carnap 1947 and Scott 1967). Since the formation
rules depend upon the rules of proof, the class of terms and formulas
will hardly ever be recursive. What expressions are well-formed or
meaningful will in general depend on extralinguistic facts.

Now it is quite obvious that the meaningfulness of a term in the sense
of Hilbert and Bernays must be understood as its having a reference.
Prom this point of view it is obvious that the class of terms must be
non-recursive, This is even true on the informal level. Take an
arithmetical sentence A(x) such that noonc has yet been able to answer
the question wether 3IxA(x) is true or false. We have no recursive
method to answer the question wether the phrase "the number x such
that A(x)" has a reference or not. Interpreted this way as dealing
only with refercential descriptions, the Hilbert and Bernays thcory is
quite natural,

According to thc other objection of Scott 1967 the use of descrip-
tions in mathematics (which is Hibert and Bernays”® concern) is quite

common even before the existence and uniguencess conditions have been



proved. For example in set theory one often defines a function by
transfinite rccursion and only afterwards proves thce existence and
uniqueness conditions by transfinite induction. This objection is
perhaps not so serious regarded as a criticism of the adequacy of
Hilbert and Bernays® formal system as a codification of arithmetic.
Because even if it is common to use descriptions in mathematics before
the existence and unigueness conditions have been proved, it does not
follow that it is essential (for expressing mathematical truths). The
objection is, however, justified in so far as Hilbert and Bernays system

does
not adcquately codify informal mathematical reasoning. In particular

it provides no interpretation of segggggégiﬁﬁéggSg£%§%égg§ and uniquec—
ness conditions are not known to be true and it offers no explanation
of the role of such descriptions in informal reasoning.

The purpose of this paper is to make Hilbert and Bernays theory
adequate also in these rcespects, and it will be verified in section 5
that the usc of descriptions is not essential as far as one is just

interested in expressing truths since descriptions turn out to be

eliminable,

1.5, The thecory of the present paper can be regarded as an extension
of the theory of Hilbert and Bernays in the following respect. What
expressions are formulas and terms will depend on what formulas are
provable but our class of closed formulas will be wider than theirs.
Also as in their theory a term has always a reference and a formula
is either true or false.

To be able to deal with descriptions whose existence and uniqueness

conditions have not been proved (and perhaps never can be proved) I shall

distinguish between terms and term—expressions and formulas and formula-—

expressions. The class of term-cxprossions and formula-cxpressions are




dofined by ordinary recursive formation rules. SO‘WGther an expression
e s torm-cxpressionor a formula-cxpression or not is a purely linguistic
matter that does not depend on the rules of proof. Each term is a term-
oxpression and each formula is aformula-expression but the converse is
not true. The intended interpretation is that a term-expression is a
term if it has a reference and aformula-cxpression is a formula if it
is either true or false. All term-cxprcssions and fornula-czpressions
are however meaningful in the sense that they can be understood by
anyone who knows the meaning of the primitive symbols of the language.
Using Frege’s distinction between Sinn and Bedeutung we can say that
alltermn-cxpressions andformula-cxpressions have a Sinn but only terms
and formulas have a Bedeutung.

It follows that not all formula-cxpressions have a truth-vnlue and
there is in general no mechanical method to find out wether a formula-
expression has a truth-valuc or not. Is this reasonable? I think it is.
Let A(n) be an (informal) arithmetical sentence for which it is not
known wether A(n) is true for exactly onc natural number n. If a

mathematician, confronted with the question wether the sentence

"the natural number n such that i(n) is a primc number"

is true or false, finds out that there is no n such that A(n), it seems
likely that his answer will not be "it is true" or "it is false" but
rather that the problem was not well-defined. And we have no mechanical
method to decide which questions of this form formulates well-defined
problems even though the questions are perfectly "well-defined" from a
grammatical point of view,.

The formulas are not simply (as in the theory of Hilbert and Bernays)

those formula-expressions whose descriptions (if any) have provable




existence and uniqueness conditions. There are certainly formula-
expressions containing descriptions which we recognize as true only

by virtue of their form. A simple example is

Fy Vx(A(x) & y=x) = A()=xA(x))

which will be among our theorems for any formula A(x), And it is a
formula since, as will be verified, only formulas are theorems.

As already pointed out the present theory of descriptions is
developed within classical first order logic. From an intuitionistic
point of view descriptions seem to be less problematic. The reason is
that the notion of proof rather than the notion of truth is basic
intuitionistically, Proofs are treated as objects. The descriptive
phrase receives a stronger interpretation intuitionistically. For
example, the number n such that A(n) is given not only as a number
but as a number n together with a proof of the proposition
V&(A(x)-e x==n).(Cfa the codification of intuitionistic abstractions
of Martin-L&f 1972). On this interpretation the problems of the
descriptive phrase disappears.

The deductive system that will be presented in section 3 is such
that only formulas valid in all domains including the empty domain
are derivable as theorems (if not axioms to the contrary are introd-
used of course). This is achieved not simply by the introduction of
some (suitable) formal restrictions that give wus this class of
theorems, It results rather as a biproduct from a more general and
natural formulation of the inference rules for quantification. I shall
give a device for introducing and cancelling assumptions of the form
"let x be an individuval ...'". In section 4 I shall try to explain what

this means for the notion of existence and how it makes clear the



logical role of variables and names.

2. Language.

We consider a language of first order predicate logic based on

the following primitive logical symbols:

— (material implication)

&

(conjunction)

1 (absurdity)

A4 (universal quantification)
? (description operator)

= (identity).

There may be a list of n~place function symbols, n 2 0. If n=0, the

function symbols are called individual constants or names. There is a

list of n-place predicate symbols and an infinite list of individual

variables,

We shall often assume that the language contains only one one-
place function symbol f and only one one-place predicate symbol P
(other than identity). When this is done there will be no lass of
generality. As syntactical notations for individual variables we

shall use Xyy42,UyVyWy 200 o

2.1. The term-expressions and the formula-cxpressions are defined

by a simultaneous induction:



2,1,1, Bach individual variable is a term—cxpression,

2,1,2, If tl,na,,tn arc term-expressions and if f is an n-place

function symbol, then ftlanatn is a term-cxpression.

2.1.3. If tl,,qa,t are term-cxpressions and P is an n-place predicate
n

symbol, then Pt t._ is a formula-cxpression. In particular

1&5'! n
t=s i1s a formula-cxpression if t and s arc term—-exprcssions.
2.1.4. 1 is a formula-expression and if A and B are formula-expressions,

then so arc (A & B) and (A — B),

2.1.5, If A is a formula—cxpression and x an individual variable, then

Vx4 is o formula-expression and ?xA is a term—expression.,

2,2, We shall use Ay, B, Cy ... as syntactical notations for formula-
cxpressions and ty, s, uy; ... as syntactical notations for term-
cxpressions, The formula—expressior § and thosc of 2.1.3 are the
atomic formula-expressions, the others are composite,

Frce and bound variables are defincd as usual and we shall adopt

the convention of not distinguishing between formula-expressions and
and term-expressions that differ only in the naming of their hound

variables. We shall write

A(xl,aao,xn)

to indicate that some (possibly none) of the free variables in the
formula-expression A are among the variablecs in the list Xy9oonsX o
If t1’°°°’tn arc term-expressions, then A(tl,oa,,tn) denotes the
result of simultancously substituating the term—cxpressions tl,an,,tn
for all free occurcnces of the variables XygnnosXys respectively, in
A, The described substitutions are defined provided that no free

variable of tl’°“”’tn becomes bound in A(tl,n,a,tn). This can always



be accomplished by renaming the bound variables. We shall always
assume that such renamings have been made when we indicate a substi-

tution,
2.3, We shall also adopt the following abbreviations:

—4A for A — 1

AV B for —.(—.A&qB)

A e B for (L > B) & (B — 1)
IxA for VA

ale for Ixa & Ve Vy(a(x) & A(y) = x=y).

W> shall also adopt the usual conventions for omitting parenthesis,

In particular

Al % A2 '_) erae ——) A.n
is to be understood as

(Al —)(A2 o (An_le An) —



3. Rules of inference.

3.1, I shall now present a formal deductive system which will codify
the ideas described informally in the introduction., In order to do

that I introduce the following (metalogical) symbols

The derivations of the system are certain tree arrangements of

expressions of the form

telI, A€EF, A,

where t is a term—expression and A is a formula-expression., The rules
of inference allow us to infer expressions of each of these
forms. The informal meaning of t € I is that t denotes an individual
or t has a refcrence, A € F means informally that A is either true or
false and when we have a derivation ending with A we interpret this
as meaning that the proposition (exprossed by the formula) A has becn
proved. A derivation will be said to codify a piece of reasoning, an
informal proof or an argument,

The system of inference rulcs is an extension and a modification
of the system of natural deduction described in Prawitz 1965, to which
the reader is referred for a more complete and rigorous presentation.,
As in systems of natural deduction a derivation is started from an
aziom or by making an assumption and proceeds downwards by means of
the rules of infercnce. Some of the rules of inference are such that
when one passes from the premisses to the conclusion, certain assump-

tions arc discharged or cancelled. I shall indicate this by enclosing

the assumptions in question in square brackets., In order to make more



*
explicit at what stage in a derivation a certain assumption is dis-

charged, I shall sometimes use the device of indexing the assumptions
as in Prawitz 1965, The assumptions are of two forms. Either it is

of the form

x€I

where x is an individual variable or else, if we have a derivation

(possibly from other assumptions) of A € F, then we may introduce

as an assumption. A derivation is closed if all of its assumptions
have been discharged. Otherwise it is open.,

If there is a closed derivation of

t€1I

we say that the term—expression t is a term. If therc is a closed

derivation of

A€F

we say that A is a formula and, finally, if there is a closcd deriva-

tion with the conclusion

we say that A is a (formal) theorem,

3,2, I shall divide the rules of inference into three groups: the



J-ruleos the F-rules and the remaining rules which include the

introduction and the eliminetion rules for the logical symbols.

It should be noted, however, that rules within different groups

can be linked with each other in a derivation.

3.2.1, The I-rules are the following:

t 6 Iy 2009 t € I
(f-rule) L L2
f‘tl,“'tne I
xA
(7I-rule) —Ell-——-———
xA €T

It is to be understood that when f is a O-place function symbol, i.e.

an individual constant then the f-rule is the axiom

fel,

3.2.2, The F-rules are the following:

(1) LEF
tlé-I’ aao ’tnEI telgséI
(P-rules)
Ptlg,,tn.€ F t =s €F

LeF, BETF

(&=rule)
A&B E€F



A}
AgeF BeEF
(_;-rule)
A — BEF
[x € 1]
A(x)€E F
(V-rule)

Vza(x)€ F

The \fLrule is subject to the restriction that x must not occur
free in any assumption in the derivation of A(x) € F other than

x € I,

3,2.4. Among the remaining rules we have first the following rule

for descriptions:

Jyxa(x)

(7-rule) _—
A(7xA(x))

and the rule of indircct proofs

[—4]

L
L]

—~bE F L

A

The remaining rules are the introduction and elimination rulesg

for the logical symbols (including identity):



A B A & B A& B

A& B A B
(al
A€F B N —= B A
A — B B
[x € I]
A(x) \fo(x) t €1

The introduction rule for ¥ is subject to the restriction that x
must not occur free in any assumption in the derivation of A(x)

other than x € I, Note that in the — —rule and the introduction rule
for —, when passing to the conclusion A — B € F and A — By
respectively, all occurcnces of the assumption A become discharged
and the conclusion becomesdependent on the assumptions in the deriva-
tion of A € F (if any). The same thing is true in the case of the

assumption = A of the rulec of indirect proof.

3,2,5. When disjunction and cxistence are defined as in section 2.3,
the introduction and elimination rules for disjunction and existence

hold as derived rules in the following forms:



A BeF AeF B A v 3B C C
A v B A VB C

[x € IJ9[A(X)]

o

t €I A(t) SxA(x) C

3xA(x) C

It is casy to see that terms and formulas as we have defined them
are always closed. As already pointed out when we have a derivation
of A € F we interpret this as meaning that A is true or false and
when we have a derivation ending with A, it means informally that
we have a proof of A and hence A is true, If A is true, then A is
true or false, so we must require that if we have a derivation of

A we must also have a derivation of A € F., In other words only
formulas are theorems., That our deductive system is adequate in

this respect follows from the following stronger result.

3.2.6. THEOREM, If we have a derivation of A, thon we can find a

derivation of A & F,

Proof, The proof is by induction on the length of the derivation

of A,

-
Case 1, A is an assumption. Then the result is immediate since wo
cannot introduce A as an assumption unless we have a derivation of

A EF,



Case 2.

31;1;(;[)

A(1xA(x))

By the induction hypothesis we have a derivation of ngA(x),This

implies in particular that

IxA(x) er
ii.\.aé

~Vx— A(x) € F.

It is easy to see that A € F iff A € F. Hence Vx— A(x) € F, so

we have derivations
and

Substituting 7xA(x) for x everywhere in this derivation we obtain

L]
L

3 xa(x)

JxA(x) € I

A()xA(x)) €EF

and the result follows,



Case 3.

[~4]

—A€EPF L

a

Immediate, since A € F iff A € F.

Case 4.

L3
-

A& B

By the induction hypothesis we have derivations

pAep ond BEF

Hence, A & B € F follows by the &-rule.

Case §.

By the induction hypothesis we have a derivation of A & B € F,

which must look like this

L]
L]

AE€EPF BEF

A& BEDR

and the result follows.



Case 6. [a]

By the induction hypcthesis we have a derivation

-

L]

BEPF

which together with the given derivation

AEF

gives us A —> B € F by the — -rule.

Case 7.

a
a

By the induction hypothesis we have a derivation of A — B € F,

which must look like this

[a3

AEF BEPF

A—=BEF



The derivation

BeF

talken together with the given dorivation

A
gives us

i
and the result follows,
Case 8, [x€ 1]

o
®

Alx)
VxA(x)

By the induction hypothesis we have a derivation

x el

A(x)E F

Which by the W-rule gives the desired result.



Case 9.

\/xA(x) t €1

A(t)

By the induction hypothesis we have a derivation of WxA(x) € F,

which must have the form

[x € 1]

v
o
-

A(x) € F
Vxalx) € F

Substituting t for x in this derivation and using the given derivation

t €1
we have
t €1
A(t) e F
Case 10, teT
t =1

Since we have t € I, the result follows immediately by the P-rule.



Case 11, It remains only to consider a derivation which ends like

this

The former derivation must have the form

L L]
] L]
] a

tel s €1

t=s€ F

so we have derivations

t €1 e s € I.

(Y

We shall prove that A(s) € F by induction over A(x), using the

following result.

LEMMA, If we have derivations of t = s, t € I, s € I and u(t) € I
from certain assumptions, then we can find a derivation of

u(s) € I from the same assumptions.



We first prove this lemma by induction over u(x).

(i) u(x) is an individual constant. Then wu(t) = u(s) and there

is nothing to prove.
(ii1) wu(x) is a variable. The rasult is immediate.

(1ii) u(x) is fu(x). Now, fu(t) ¢ I means that U(t) € I. By the

induction hypothesis d(s) ¢ I, so u(s) = fu(s) € I.

(iv) u(x) is )y B(ysx). Then u(+t) € I means that we have a derivatior

(]
o

31}"}3(3’9t)

hence

t=s 31y°l3(y9t)

313’ B(yys)

u(s) € I
and the lemma follows, We now continue case 11.

Subcase 11,1. A(x) is Pu(x). Pu(t) € F means that u(t) € I and

by the lomma u(s) € I, so Pu(s) € F follows by the P-rule.

Subcase 11.2. A(x) is L . Nothing to prove.

Subcase 11.3. A(x) is B(x) & C(x) . A(t) € F means that we have

derivations



C o
L] o
L L

B(t)e F and c(t) &€ F.

By the induction hypcthesis we can find derivations

L] L
o @
o o

B(s)€ F and C(s) ¢ F

and the result follows by the &-rule,

Subcase 11.4. A(x) is B(x) —> C(x). Since A(t) € F, we have

derivations
B(t)
B(t) € F and c(t) € F .,
By the induction hypothesis we hive
B(t)
B(s)€E F and C(s)C F
and, hence
t = s B(s)
B(t)
C(s) € I

and the result follows by the — —ule,

Subcase 11.5. A(x) is Yy E(y,x). Since A(t) € F, we have a derivation




vyel

L4
o
o

B(y,t) € F
By the induction hypothesis we have

yeI

o
L]
L]

B(y,s) eEF

and the result follows by the \7—rule.

This completes the proof of theowem 3.2.6,

4, BExamples and discussion.

4,1. The purpose of this section is to explain the meaning and the

significance of the deductive system of section 3 by means of sone
examples,

4.,1.1, The following is a derivation of the formula \7&(Px — Px).

(1)
[x € I)

Px g F [é%
(2)

Px — Px
(1

\7’X(Px = Px)



Here we have assigned a number to the two assumptions in the order

in which they are introduced anc. we have indicated at what step in
the derivation they are discharged. Both assumptions in this deriva-
tion are discharged so we have e closed derivation of the formula
Vx(Px — Px). The truth of the formula does not depend on the truth
of some other formulas, Its truth does neither rest on any existential
assumptions (that there is at least one individual) nor on any
assumption about what is the cacse (that certain individuals, if they
exist, have a certain property). The formula is true in all domains
including the empty one, In this respect there is nothing special
about the formula ‘v&(Px — Px)., It will be provid in section 6 that
there is a closed derivation of a formula A if and only if it is
valid in all domains including the cmpty domain., Since we also pernmit
terms with no reference to occur both in our language and in deriva-
tions, the deductive system of section 3 can be said to be a
"gquantification theory without existential presuppositions" (Cf.
Hintikka 1959), or, rather, a deductive system where all (existential)

assumptions have to be made explicit,

4,1.,2, To take another example. Let Px mean that x is a present King
of France and let Qx mean that x is bald. Since P is a primitive

predicate we can easily find a closed derivation

[x ¢ 1]

ElXPX &F

We can therefore introduce Hlxlﬁc as an assumption and obtain, for

example, the following derivation



Hlex
)xPxeI

(1)
Q)xPxe F

which means that under the assumption that there is exactly one
present King of France, the sentence "the present King of France
is bald" is either true or false., We can continue the reasoning

codified by the derivation (1) as follows

[x € 1]
E(l) 1xPx €1 (3)
(2) HleXE F QIXPx € F [QmxPx]

(3)
QM1xPx — Q1xPx

which means that under the assumption that there is exactly one
present King of France, the present King of France is bald only if
the present King of France is bald., It is important to note that the
derivation (2) in not closed because the assumption (2) is not dis-

charged. The closed formula-expression

(3) Q1xPx =» Q)1xkX

is not derivable from no assumptions. On the informal level this
means that the formula is true in those "worlds" where the formula
Hlex is true. In other "possible worlds" it has no truth-value.
As already pointed out in the introduction, the meaningfulness
of empty descriptions or descriptions whose existence and uniqueness
conditions are not known to be true, I take to be their role in

arguments like (1) and (2). On Russell’s interpretation a descriptive



phrase has a meaning only in the context of a (true or false) sentence
while on this interpretation its meaningfulness comes from its role

in arguments whero tho corrospondinééxistence and uniqueness condition
are assumed to be true,

An argument involving a description which as a matter of fact has
no reference, such as the argument codified in the derivation (2), is
of course vacuous and useless, It can never be used to infer truths
about reality., Butnevertheless it is valid as an argument and within
this argument the description »xPx behaves like an ordinary proper

description,

4.1,3., Inspection shows that the I-rules and the F-rules almost
coincide with the formation rules of section 2.1 except for the rules
that involve the description operator. It follows that all closed
formula—expressions that do not contain terms of the form 7xA(x)

. . . . there
are formulas, But as pointed out in the introduction are also formulas
and even theorems containing descriptions whose existence and unique-

ness conditions are not derivable. An example is the formula

(4) EEXPX — P1xPx .

A derivation to the effect that it is a formula goes as follows

(2)

[ (1) ] [3,xPx]
x €1 ——

o(l) 1xPx - T
31xPx EF PixPx £ F

(2)
(Hlex — P1xPx)EF

A derivation of the formula (4) as a theorem is as follows



(1)
[z ¢ 1l

(2)
1y  [SxP=]
:jllex P1xPx

- e (2)

le Pz - P1xPx

The existence and uniqueness coaditions Elex of thz degcription
}xPx is certainly not derivablzs, It will be true on some intexm-

pretations and false on others,

4.2, Despite the inference rules which goverir the description

operator, there is another featire of our formulation of the infer-
ence rules of section 3 which is more satisfactory from a theoreti-
cal point of view than usual formulations. Namely, that ‘Y-inirodua-

tion is formulated as follows

[x ¢ 1]

VxA(x)

with x ¢ I as an assumption which is discharged by this inference

and V-elimination has t € I as an additional premiss.

4,2,1, FPirst of all this corresmhonds more closely to the meaning
meaning of the quantifiers in informal reasoning, For cxzample,
supposc that our individuals ar: nasural numbers and that we want

to prove a universal arithmeticil statement

Vxa(x),



Such an argument might begin like this

Suppose that x is an arbitrary natural number ...
(5) ooy then .,. henco A(x)

This is what we symbolizc by writing

When the argument ends with the conclusion
(6) A(x) for all natural numbers x

it does no longer depend on the assumptiom made in (5), The con-
clusion (6) means that whenever we encounter a natural number x

we can carry out the argument in (5), It does not mean that if there
cxists a natural number x, then, whenever we cncounter a natural
number x we can etc.,

Conversely, when we pass from “/xA(x) to A(t) by ‘Y-elimination
this inference is incompletely specified without t € I as an addi-
tional premiss.

Corresponding remarks apply to the derived forms of E—dntroduc—

tion and H-climination in section 3.2.5.

4,2.2, Another thecorotical advantage of our formulation of the
inference rules for quantification is that we obtain full generality:
The formulas of which there is a closed derivation are precisely

those which are valid in all domains including the empty domain%

¥Dho first system of natural deduction with this property was con-

structed by J4skowski (cf. Prawitz 1965, p 99).



To see how our deductive system works in this respect consider the

formula

(1) VxPx — JxPx

which by the usual formulations of Gentzen’s rules of natural

defluction can be derived as follows

(1)
['VxPx]

Px

(8) :—.]xPx

(1)
VxPx — JxPx

Using our rules of inference we have

(1) (2) (3)

[xe 1] [z Px] xe I (3)
Px € F Px xe I
e 1)
\’/XPXG ) ijx

VxPx — E[xPx

Since there is an undischarged assumption, namely

x€ I

we have not a closed derivation of the formula (7)° The assumption
X € I is precisely the (existential) assumption that there is at
least one individual,

We can of course get the same class of theorems as in usual
formulations of the (classical) predicate calculus. We have only

to introduce an individual consiant e and



ecl

as an axiom., Putting e € I for the assumption x € I in the derivation
(8) we have a closed derivation of the formula (7). The resulting
class of formulas for which there is a closed derivation are precisely
those which are valid in all non-empty domains. So to introduce an
individual constant with e € I as an axiom is to restrict one’s
attention to non-empty domains.

It is sometimes maintained that the effort to remove existential
assumptions implicit in the classical notion of validity in non—emﬁty
domains has philosophical relevance for the notion of existence. I do
not want to make such a claim, Validity in the empty domain is trivial
and rather uninteresting and to include it in one’s notion of validity
involves certain technical complications. So one have had good
reason not to include it in classical formulations of gquantification
theory.,

With the formulation of the rules of gquantification of section 3
I only hope to have made more clear how the assumption of non-empty-—
ness is introduced in the deductive gystem. It shows that it is a
matter of convention and convenience rather than based on some

philosophical doctrine of necessary existence.

4,2,3, Still another theoretical advantage of our formulation of
quantification is that it reflects very clearly the difference
between the role of variables and individual constants or names.
Variables are uscd to make assumptions within an argument and thesc
assumptions are discharged when the variables are bound by a gquanti-

fier. Individual constants or namcs on thc other hand are used to



refer to individuals. Thus e £ I is an axiom when e is a name. This
role of names in logic was pointed long ago by Russell 1919, p 179,
The introduction of names presupposes the corresponding existence
and unigueness conditions.

The difference between the existence assumptions in the case of
names and those we make by mcans of variables is the following: In
the case of names the assumptions are made on the meta-level. They
are presupposed by the theory we have decided to consider and arn~
implicit in the intended interpretation of the language. They imposec
a restriction on the individual domains which arc possible models.
The existential assumptions implicit in the introduction of names
are thus not discharged but stay as long as we do not change the
intended interpretation,

The assumptions made by means of variables on the other hané are
made within an already presupposed universc of discourse and for the
sake of an argument., Variables do therefore not dcnote or refer to
individuals, they are only a tool for making assumptions in arguments
and, when they are bound, for expressing propositions,

In standard formulations of the predicate calculus this difference
between the role of variables and names is often confused. Variables
play here a double role. They are treated as variables when they are
bound, but as free variables they figure also as names. The reason
for this is of coursc that when a variable is used as a "dummy symbol"
in a derivation it is actually used as an individual constant because
when the variable is bound one has no device for discharging the
(tacit) assumption x & I. This assumption then stays as an axiom
which means that the (free) variable is treated as an individual

constant and one rcestricts the possible models to those with a non-



empty domain.,

Some logicians also allow for empty names in their systems i.e.,
names without reference. I think that this is a mistake, From a
logical point of view there are no empty names. The mistake results
from a confusion of namehood in the grammatical sense and name-
hood in the referential sense i.e. in the scnse of "that which
names", It is only names in the latter referential sense that we should
construc as names in a logically well-written language. What looks
like a name from a grammatical point of view can not always be
construed as a name in the logical sense. As is wecll-known
grammatical form does not always coinpide with logical form.

We could of course allow for empty names in our language.

This would amount to introducing individual constants ey .-

without introducing axioms e € I, ... . But these names would be
superfluous in the theory since they could never appear in true or
alse statements and in arguments, If we allowed them to appear in

arguments in the form of assumptions, they would still be superfluous
sincce the variables could be used for the same purposes.

What then about the classical cxample "Pegasus cxists"., Are we
to treat "Pegasus" as a name or not? The answer depends on the
intended interpretation., If we intended to make a logical analysis
of Greck mythology, then certainly'Pegasus'" is to be treated as a
name and '"Pegasus exists" is an axiom. Precisely as we introduce
numerals as namos of numbers in a logical analysis of arithmetic.
The more likely situation is perhaps that we intend our universe
of discourse to comprise only beings of flosh and blood that have
actually lived at somc time and then the situation is different.

Quine 1960 has already showen how to paraphrase the sentence



"Pegasus exists" in this case. "Pegasus" is to be construed as a

general term,

4.3. As already pointed out the problems of the empty domain and

empty singular terms have often been related to the notion of existence.
Is (singular) existence as in "Pegasus exists" a predicate ? If SOy

what kind of predicate? Some authors have introduced existence as

a predicate and treated it as a predicate of the same sort as other
primitive predicates. In Schock 1968 this is done explicitly and in
Scot%gzg is implicit in the distinction between actual and possible
objects. This seems to me also to be wrong. Thc mistake comes from a
confusion of use and mention,

What corresponds to the existence predicate in our deductive
system of section 3 is the predicate I, because t € I means that t
denotes an individual i.e, there is such a thing as t, and when t €I
is false there is no such thing as t. Nowy; couldn’t we treat I as

a primitive predicatc in the object language i.e. as an existence

predicate, writing

It

instead of t € I and define It to be a formula-cxpression whenever

t is a term-cxpression., This would be pointless if we did not allow
It to be a formula (i.e. something true or false) cven when t is a
term-expression which is not a term. Because otherwise It would be
true for any t and the predicate I would be superfluous in the theory.
S o suppose then that we defined It to bc a formula whenever t is a

term-cxpression, then obviously the formula

—11)x(x74 x)



would be true because %here is no object which is not identical with
itself, Now, if I is to be treated as an ordinary primitive predicate
we are justified in askings: What is the object which does not have the
property I of existing? We would be forced to admit non-existing
objcects such as the object which is not identical with itself., This

is clearly nonsense.,

Existence can be thought of as a significant predicate. But it
is not a predicate of the same type as the primitive predicates
P, Q; ... of the object language, If it is to be significantly
asserted or denied of somcething it must be interpretcd as asserting
roference of term—expressions. This is precisely what our predicate
I of section 3 does. A statement t € I is not a statement of the
object language. It is a metalogical statcement about the term-
expression t and not about the object which t may denote. Othcerwise
expressed, the term-expression t is mentioned but not used in the
statement t € I,

When we reason ina specific (formal) language, we arc doing this
rclative to an intended universe of discourse, As a matter of fact,
the choice of the universe prcceeds the spccification of the language.
But it makes no scnse to talk about an objects being of not being in
this universe within the object language., All objects which can be

"talked about" within the given language are presupposed to belong
to that universe. Existence; treated as a significant predicate, must
therefore be thought of as a predicate of singular terms and not of
the objects which these singular terms may dcecnote. In this respect
the cxistence predicate is a predicate of the same kind as the truth-
predicate and the derivability predicate with the only difference that

they apply to sentences and not to singular terms.



The predicate I is, however, dispensable as a means for expressing
truths. As will be proved in the next section we can find for each

term—-expression t a formula I(t) such that

t €I iff I(t) is deriyable

This does not mean that the "existencc predicate" I is definable in
the object language. It means only that each sentence t € I can be
tret nslated into an equivalent sentence in the object language.

To take an example: Let Px mean that x is a present King of France,
Then the sentence '"the present King of France does not cxist'" which
I interpret as " ?xPx has no refercnce" i.e. )xPx:¢ I, can be

translated as
—1ngPx,

Hintikka 1969 p, 34 has proposed the formula

Fy(x = y)

as a definition of the existcnce predicate "x exists".In the system
of section 3 it can be verificd that for each term-expression t,

t € I holds if and only if an(t = y) is derivable. Should we then
say that the formula :Ey(t = x) defines the metalogical existence
predicate I in the object language? No, because what we have is
only a characterization of the metalogical predicate + € I in terms
of the metalogical derivability predicate via the formula :Hy(t =3).

If we rcad t € I as "t exists" we have informally

(9) t exists iff "dy(t = y)" is true



but we do not have
(10) t exists iff an(t =y)

which we would require of a definition of the existence predicate.
But (10) does not even makec sensc because on the left hand side t
is mentioned and on right hand side t is used., If "t cxists" would
be false i.e, if there were no such thing as t in the universe of
discourse the formula _:_(y('t = y) would be neither true nor false
since a formula in the object language can only "talk about" objects
in that universe. On our interpretation, the truth or falsity of
:3y(t = y) presupposes the truth of "t exists", 1,e. cf t € I.

The statement :}y(t = y) does not ascribe thec existence property

to some object, It says of the already presupposed existiig objects
in the universe of discourse (if any), that at least onc of them is
identical with the object t.

Hence, to find out what objccts arc presupposed as existing when
one is given a language with an intended interpretation is to find
out what objects the bound varisbles are intended to rangec over., But
it makes no scense to talk about the existence or non-existence of
these objects in the same lamguzge. If by a theory we mean a language
together with an intended intorpretation we can say that the ontology
of a given theory does not belong to that thecory but to its meta-
theory, What can be talked about in that meta-thcory is what term-
expressions of the language refer to objects in the universe. This is

what we have done by means of the I-rules of scction 3.



5. Eliminability.

5.1, By the description~free system we shall understand the system
obtained by omitting the clause "7IxA(x) is a term—expression if A(x)
is a formula-expression" from the formation rules and by omitting
the inference rules for the description operator. The description-
free system is of course a subsystem of the original system. When
we say that a formula is derivable we are in general referring to
derivability in the original system unless the contrary is not expli-
citly stated.

As promised in the introduction we shall prove that descriptions
are eliminable by showing how to associate with each formula A a
description-free formula A® such that A is derivable if and only if

A° is derivable in the description-free system.

5.1.,1. Let A be a formula-expression. We define a formula-expression

A° by induction on the construction of A as follows:

(1) (Wxa(x))’ = Yxi(x)

(ii) (A > B)® = 4° -5 B8°
(1i1) (o & B)°® = A° & B°
(iv) 1° = 1
(o] ;
(v) (Ptl”,tn) = Ptj...t , if none of t,,...%,

contains a term-expression of the form }xC .

(vi) If A is Pt...t , let P( )xAl(x),,“,;yAn(y))

stand for Pt ...t , whero )XAJKX),QQ,,)yAYSy)

are all outermost term-cxpressions of the form



x C occuring in tl,,,a,tn from left to right.

i.e. at least one occurence of each of ;fox),°
coos 7y1&£y) in Ptl,,,tn is not within a term of
the form 7xC; and it is these occurences which are

indicated with X,...,y in P(X;...,y). Then we put
(Ptl,.,tn)o = Vx .“Vy(Ai(x)& ,,,&Afl(y) = P(x,.0,3)

We first establish the following result,

5.1.2, THEOREM, Given a derivation of A in the original system, we

can find a derivation of A° in the description-free system,

Proof., The proof is by induction on the length of the proof of A,
Since the O~transformation is compatible with the logical constants
1, &, —9,‘{, the result follows immediately by the induction hypo-

thesis for all inference rules except the following ones:

Eth(x)

A()xA(x))

(a)

\fo(x) te I

(p)

where t and s contain at least one occurence of a term-expression
of the form JxC (otherwise the result follows immediately in the

case of (b) and (c), to0).



Instead of dealing with (c) we shall replace it by cach instance

of the following feraula-~expression
(e¢”) ‘V’zlw. zanVy(x =y = A(x) = A(y))

where ZyyecogZ, arTe all freec variables in A(x) distinct from x and

y. Having (c”) the rule (c) can now be derived using only \/-climina~
tions and = -eliminations, It is also easy to see that each instance
of (c¢”) in the description-free system is derivable in that system.
Since the O—-transform of the formula-expression (c') has the same
formy, i.e., 1s an instance of (¢c’), it remains for us only to consider
the rulcs (a) and (b) in the case where t of (b) contains at least
one term-cxpression of the form 1xB. We may in fact assume that t
always has this form. Suppose for example that t has the form

f 7 B(x), then an application of

a
L
o

2xB(x) € I
Vxa(x) f)xB(x) € I

A(f2xB(x))

could be replaced by

[ze I]

\xA(x) fs eI

A(fz) F

Yz A(fz) 7xB(x) e I

A(fpr(x))

This cxample can clearly be generalized. It remains for us to consider



the rule (a) and the rule

x A(x) )xB(x) € I

A(7xB(x))

(v7)

Instead of treating the rules (a) and (b”) it is convenient to treat

the following rule

EIXA(X)
‘V’zln, Vzn( Vx(A(x) = B(x)) & B(1xA(x)))

(d)

where z,;...,2 are all free variables in A(x) and B(x) other than x.
( Por simplicity we shall in general ignore the variables ZysocnsZ,
below), From the rule (d), the »ule (a) follows immediately by
putting A(x) for B(x) and noting that ‘yx(A(x) — A(x)) is provable
from no assumptions other than those on which EIXA(X) depends.,

The rule (b”) can be derived as follows: Assume that we have deriva-

tions

L] L]
L] o
"

7= A(x) and 1xB(x) € I

then we must have derivations

xé I

°
° -
e L]

B(x) € F and :‘!lx-B(x) .

Then we proceed as follows



[x € 1]

. vxa(x) fx e I] .
B(x) € F [B(x)]  A(x) 3% 3(x)
3(x) — A(x) Vx(B(x) = A(x)) <> A(1xB(x))
\Vx(B(x) — a(x)) Vx(B(x) - A(x)) - 4(2x3B(x))
A(7xB(x))

So it remains for us to prove that if we have a derivation in the

description-free system of

EHIXAP(X)

then there is a description-free derivation of
WVx(a%(x) - B°(x)) & B(xa(x))

The proof is by induction on the number of logical symbols in B(x),

counting the description operator as a logical symbol.

Case 1. B is an atomic formula-expression.

Case 1.1, B(x) contains no logical symbols. Then

B(7xA(x))’ = Vx(2%(x) - B(x))
which is

Vx(2%(x) = 3°(x))
and the result follows,

Caso 1.2. B(x) contains at least one description nonc of which is

7xA(x) and none of which contains the variable x frec.



Then )xA(x) is an outermost description in B()xA(x)) which can be

written

B(1xA(x),72y C(y))

Where B(x,y) is a description-free atomic formula (assuming for

simplicity that B(x) contains only one description). Then we have

B(7xA(x),75C(y)) = Yx W(a%(x) & c°(y) - B(x,y))

In the description-free system this is clearly interdeducible with

Ve(1%(x) = Wy(c(y) = B(x,y))
which is

Vx(1%(x) = B°%(x)) .

Case 1,3. B(x) contains at least one description one of which coin-
cides with yxA(x) but none of which contains x free.

Let

B(7xA(x)) = B(7xA(x),7yC(y), 712D(2))
where 7xA(x) and 7yC(y) coinside. Then Vx(A%(x) — B%(y)) is
Vx(a°(x) = YyVz(c®(y) & D°(z) — B(x,y,2,)))
which is interdeducible with
(1) Vx Vy Va(a°(x) & 4%(y) & D°(2) — B(x,y,2))
The formula-cxpression B(7xA(x))° is

(2) Vx Vz(0°%(x) & D°(z) — B(x,%,2)).



By the induction hypothesis we have

Ehxﬂo(x)

from which we can derive A°(x) & A°(y) = x = y, and since

!
X=y = (B'(X,X,Z) > B(X’Y9Z))

we have

1
AO(X) & Ao(y') —2 (B’(X,X,z) > B(x,¥,2))
by means of which the interderivability of (1) and (2) is easy.

Case 1.4, B(x) contains at least one description and x is free only in
at least one of these descriptions none of which coinsides with 1xA(x),

Then we can write
B(x) = B(iyC(y,x), 12%z)).
Then \fx(Ao(x) - Bo(x)) is

Vx(4%(x) —»VyVz(c(y,x) & D°(z) = B(y,z2)))
or equivalently

(3) VxVy Vz(1°(x) & ¢°(y,%) & D°(z) — Bl(y,z))

and B(?xA(x)f is

(4) Xy Vz(C(y,724(x))° & D°(z) — B(y,2)).

By the induction hypothesis applied to C(y,x) we have

Vx(4°%(x) = ¢°(y,x)) & C¢°(y,7x4(x))



The formula-expression (3) is interderivable with

VyVa(dx(2%(x) & ¢°(y,x)) & D°(2) = B(y,2))

so to establish the interderivability of (3) and (4) it is sufficient

to have

Ax(2°(x) & ¢°(y,%)) & Vx(a°(x) = ¢°(y,x))
which follows from HIXAO(X).

Case 1.5, B(x) contains at least one description and x is free in at
least one of these and in at least one occurcence not in one of thesec
descriptions (none of which coinsides with >xA(x)).

Then we can write
B(x) = B(x,7yC(y,x),22D(z))
and \7&(Ao(x) — Bo(x)) is

Vx(4%(x) -V Va(c(y,x) & D°(z) — B(x,y,2)))
or equivalently

VxVy V2(4%(x) & c°(y,x) & D°(2) - B(x,¥,2)),
and B()xA(x))° is

VxVyVz(a%(x) & ¢(y,7xa(x))° & D°(z) - B(x,y,2))
By the induction hypothesis wec have

\/x(4%(x) = ¢%(y,%)) & C(y,ixaA(x))°



so it is sufficient to prove that
2%(x) & c%(y,x) #» 2%(x) & Vx(a°(x) = ¢%(y,%))

which follows easily using leA(x) and the elimination rule for

identity.

Case 1.6, B(x) contains at least one description and x is free in at
least onc of these and one of the descriptions in B(x) coincides with

7xA(x)., If we put
B(x) = B(yyc(y,x),12D(z2))

it is clear that the description 7yC(y,x) can not coineide with
7xA(x), so it must be )zD(z). The result follows then by a combination

of case 1.3 and 1.5.

Case 2, B(x) is composite,

Case 2.1. B(x) is B‘i(x) & Bz(x) » We have a description-free

derivation of leAo(x) and we want to derive
Vx(%(x) > B(x)&B3(x)) & B,(1xA(x)) & B,(7xA(x)
By the induction hypothesis we have

¥x(4°(x) — B](x)) & B (7xA(x))

and
Vx(a%(x) = B3(x)) & B,(1xa(x))

and the result follows then easily.



—

case 2.2. B(x) is Bl(x) _— B2(X)° We have a description-free deri-
vation of Eleo(x) and we want to give a description-free derivation

of

V2(4%(x) = (83(x) -» BY(x)) & (B,(7xa(x)f—> B,(7xA(x)))
By the induction hypothesis we have

Vx(8°(x) — BJ(x)) ¢3 B, (1x4(x))°
and

Nx(4%(x) — BJ(x)) &> B,(xa(x))"

The formula-expression VX(AO(X) - Bg(x) — Bg(x)) is interderivable

with

Fx(1°(x) - B(x)) = V=(4%(x) - B3(x)).
Using Eion(x) we can derive
x(1%(x) - B3(x)) & Fx(2%(x) - B(x))

and the result follows,

Case 2,3. B(x) is VyBl(y,x), We want to prove that

Vx(8%(x) =1 VyB(y,x) ¢ VB (v, 4(x) )

this follows easily by thce induction hypothesis:
Vx(4°(x) = B](y,%)) ¢ B (v, 1x4(x)).

This completcs the proof of theorem 5,1.2.



5.1.3. THEOREM, For each formula-expression A, if We have a deriva-

tion of A € F, thcn we can firnd a dorivation of A < A° 0

Proof. The proof is by induction on the number of logical symbols in A.

Case 1l. A is atomic, If A does not contain descriptions the result is

immediate. Let

A= H£(7xB(x))

where 7?xB(x) is the outermost description in A (assuming for simpli-—
city that A contains only one such description, which is no

restriction). Then

2% = ¥ x(3°(x) » A(x)).

By the induction hypothesis there 1is a derivation of

(5) B(x) < B%(x).

We have a derivation of A(?xB(x)) € F., This derivation must contain

a derivation of 313( B(x), We can then derive

B(x) & x = 7xB(x)

as follows

EIXB(X)
1xB(x) € I eI Ele(x)

x = 7xB(x) & F [x= ]XB(X)] B(»xB(x))




and in the other direction we have

Hle(x)
Ve Vy(B(x) & B(y) - x=y) x¢€I E{le(I)
r(B(x) & B(y) = x=y) »zB(x) €1
B(x) & B(»xB(x)) —» x = 7xB(x)
J,x3B(x)
B(xB(x))  B(7xB(x)) — (B(x) - x = 7xB(x))

B(x) = x = 7xB(x)

By (5) we have

B°(x) > x = 7xB(x)
By this and the elimination rule for indentity we have

ﬁ(x) — (4(1xB(x)) = #(x))

£(7xB(x)) = (B°(x) — A(x))

which is

Conversely assume AO, ic.e.
ox(B(x) —> A(x))

By the induction hypothesis (5) we can find a derivation cf jl}:ﬁz),
Hence we can derive 7x):ﬂx) € I and then, using Y-elimination, we

have

B°(»xB%(x)) = A



By the ?~ruleymodus ponens A follows, hence

ﬁ)—a A,

Case 2. A is composite, The result follows in these cases immediately

by the induction hypothesis and the proof is complete.

Using theorem 5,1.2 and 5.1.3 we now have the promisced result.
From theorem 5.1.3, it follows that A is derivable in the original
system iff £ is so derivable and from theorem 5.1.2 it follows that
A° is derivable in the original system iff A® is derivable in the

description-free system., Hence, we have:

5.1.,4., THEOREM (Eliminability)., If therec is a derivation of A & F,

then A is derivable in the original system if and only if AO

is derivable in the description-free system,

5.2, As mentioned in section 4, it is possible to give a characteriza-
tion of the meta~logical predicate I in terms of the dorivability
predicate. In this section we shall prove more than that, We shall
associatc with each term-expression t a description-free formula-
expression I(t) and with each formula-expression A a description—

free formula-expression F(A) such that

t €I iff 1I(t) is derivable

and
A €I iff F(a) is derivable.

By the result on eliminability it follows that derivability can

here be understood to refer to derivability in the description-free



system.
We define I(t) and F(A) by induction on the construction of t

and A as follows:

5.2.1, I(t) = (t = t), if t is a variable or an individual constant
562024 I(ftl,,.tn) = I(tl) & coo & I(tn)

5,2.3, I10xa(x)) = VxP(a(x)) & I x0(x)

5u8utls F(L) = (L >1)

5.2.5. F(Ptl.,,tn) = I(tl) & o0 & I(tn)
5.2.6, F(A & B) = F(a) & F(B)

5.2.7. F(A — B) = PF(a) & (A° — F(B))

5.2.8, P(VxA(x)) = \fo(A(x)%
It is easy to see that I(t) and F(A) are always description-free.

5.2.9. THEOREM, For any term—expression t and any formula-expression

A we have
t €1 iff I(t) is derivable

and

A€ iff PF(a) is derivable.

]

Proof, The proof is by induction over t and A,

Case 1. t is a variable or an individual constant, If we have a deri-~

vation

t €1,



the following is a derivation of I(t)

LN Y

Conversely, assume that we have a derivation of I(t) = (t = t). By
theorem 3.2.6 we can find a derivation of t = t € F. This derivation

must cend like this

t=t€F
and the result follows.

Case 2, Suppose that we have a derivation of ftl...tn € I, This

derivation must look like this

° e
. "
o -

‘t1€ E ... tnEI

1

lﬁiﬂtné I

so we have t1€ iS00 tne I. By the induction hypothesis we have

derivations

L) [
e L]
o o

I(tl) ¥ Rl I(tn)

and I(ftl...tn) is derivable by &-~introductions.

Conversely, if we have a derivation of I(ftl...tn), we can derive



I( tl)"’”’I(tn) by &—eliminations. By the induction hypothesis we
have tlé I, toraiosy tne I and ftl.,”tné I follows by the f-rule,

Case 3, If we have a derivation of ;xA(x) & I, it must end like this

4
L]
°

31XA(X)
ixA(x) €1

so we have a derivation of :';le(x). By theorem 5.1.4, we have then

a derivation

BIXAO(X) ‘
By theorem 3.2.6, we have also a derivation

L
]
]

HIXA( x)€EF

which must contain a derivation

x€el

a
L]
L]

A(x)E F,

By the induction hypothesis we have a derivation

x €I

F(a(x)).



I(;xA(x)) is now derived as follows

[z € 1]

: F(A(x))

Fx2%(x) YxF(a(x))
aleo(x) & VxF(A(x)) .

of
Conversely, assume that we have a derivation I(1xA(x)), By &-elimi-

nation we have derivations
e o

Hleo(x) and ‘V,:CF(A(X))

We want to use theorem 5.,1.4 to 7ind a derivation of Ele(x) in
order to conclude that »xA(x) & I. But to be able to use theorem
5.1.4, we must first have a derivation of Hle(x) € F, or, what

amounts to the same thing, a derivation of VXA(X) & F from no new

assumptions. We can find such a derivation as follows.

o
e

7xF(a(x)) xel
F(a(x))

By the induction hypothesis we have then a derivation



and VxA(x) € F follous by the Y -rule.

Case 4. A is L . Immediate.

Case 5. A is Ptl°°"tn° Like case 2,

Case 6, A is B & C. The result follows as in czse 2 easily by the

induction hypothesis,

Case 7. Suppose we have a derivation of A — B € F, This derivation

must cnd like this

A
AL EeET BeEPFR
so we have derivations
A
AéeEF and BerFr

By the induction hypotaesis we have then derivations

A

Ll
L =
L] L]

F(A) and F(B)

Since A° € F, we can use theorem 5.1.3 to derive F(B) from the

assumption of A® like this



F(B)

and A° — F(B) follows by —-introduction. A &-introduction then
gives us F(A — B).

Converscly, assume that we have a derivation of
F(a) & (4° = F(B)).
By &—elimination we have derivations

o "
L) o
o L]

F(a) and A° — F(B)

By the induction hypothesis we have A € F, so we can use A as an

assumption to derive F(B) as follows

A— 4% A

A° 5 P(B) A°

F(B)

By the induction hypothesis we have a derivation

A

L]
L
L]

BePF

and the result follows by the — -rule.



case 8, If we have a derivation of Vxﬂ(x)e F, we must have a deri-
vation

x €I

L
a
L]

A(x)E F
and by the induction hypothesis we have

x € I

P(a(x))

and YxF(A(x)) follows by \V'—introduction,

Conversely, if we have a derivation of W=xF(A(x)), we can derive

F(A(x)) from the assumption of x € I as follows

/xF(A(x)) xel
F(A(x))

By the induction hypothesis we have a derivation

~
m
=

" aa

A(x)€ F

and 'UxA(x) € P follows by the X/-rule,

This completes the proof,



6. Model theory

6.1, The purpose of this final section is to develop a model theory
for the formal system of section 2 and 3. We shall introduce the
notion of a structure and define what it means for a closed term-

expression to have a referencc in a structure and what it means for

a closed formula-expression to have a truth-value and to be valid

in a structure,

For simplicity we shall assume that the language has only one
one-place function symbol f and only onc one~placc predicate symbol
P. The development can be generalized in an obvious way so this is
no loss of generality.

With respect to this language, a structure
consists of the following things:

6,1.1, A (possibly empty) set I of individuals.

6.1.2. An assignment to the function symbol f of a function
F:I — I, (If £ were an individual constant we would of course

assign to f an individual T € I),

6.1.3. An assignment to the predicate symbol P of a set PC T,

We extend our language by introducing names of the individuals

in I. To each individual we introduce exactly onc name. We use a,b,

Cs..0 as syntactical notations for these names. a,b,c, ... denote the



the individuals whosc names are ay;byCy;... o These names are individual

constants so we also add the following axioms

a €1

for each name a, to the axioms and rules of section 3. The notions
of a term-expression, formula-expression, derivation, term, formula
and thecorem will, unless btherwisc stated, refer to this enlarged

language which we call the language of S. The language of scction 2

will be called the original language.

We shall define a partial function VS on the set of all closed

term—expressions and formula-expressions., The values of VS will be
either individuals or one of the truth-values 1 (truth) or O (falsity).
The definition of VS is by induction on the construction of the term-

expressions and the formula-expressions.

6.1.4, Vs(a) = a, for each individual constant a,

6.1.5. Vs(ft) is defined iff VS(t) is defined. If VS(ft) is defined,

then
Vs(ft) = ?(Vs(t)),

6.1.6. VS(7xA(x)) is defined iff VS(A(a)) is defined for all z € I
and { &} Vg(a(a)) = 1} is a singleton set. If Vs(xa(x)) 1s

defined, then
Vo (xA(x)) =B ifr {B}= {3 ] V4 (a(a)) - Lk

6.1 VS(Pt) is defined iff VS(t) is defined. If Vs(t) is defined,

then
VS(Pt) =1 if Vs(t) € P



6.1.8,

6.1.9.

6.1.10.

6,1.11,

and

Vs(Pt) = 0 if Vg ¢ B.

VS(t = s) is defined iff VS(t) and Vs(s) are both defined, and

if this is the case, then

vs(t =s) =1 if Vs(t) = vs(s)
and
Vs(t = s) = 0 otherwise.

VS(A & B) is defined iff VS(A) and VS(B) are both defined. If

VS(A & B) is defined, then

]

VS(A & B) = 1 if VS(A) = VS(B) =1

and
VS(A & B)

O otherwise,
VS(A — B) is defined iff

(1) VS(A) is defined

and
(ii) VS(A) =1 only if VS(B) is defined.

If VS(A —3 B) is defined, then

1]

VS(A — B) =1 if VS(A) =0 or VS(B) =1

O otherwise,

i}

VS(A — B)

VS(\fo(x)) is defined iff VS(A(a)) is defined for all a € I.

If VS(\%xA(x)) is defined, then



VS(‘V'xA(x)) =1 if VS(A(a)) =1 for all 2 € T,

and )
VS(\'/xA(x)) = O otherwise.

6.1,12. A closed term—expression t is said to have a reference in S

if Vs(t) is definedj a closed formula-expression A is said to have a
truth-value in S if VS(A) is defined and S is said to be valid in S
if VS(A) is defined and = 1.

The soundness and the completeness of the deductive system of
section 3 then means the following three things (where we refer to

the original language).

6,2, THEOREM, For each closed term—expression and each closed formula-

cxpression we have

6.2.1. t is a term iff +t has a reference in each structure §

6.2,2, A is a formula iff A has a truth-value in each structure S

6.2.3, A is a theorem iff A is valid in each structure S.

6.2.4., Remark. Let us for the momecnt confine our attention to the
description~free system. In this system cach closed term—expression
is a term and each closed formula-expression is a formula. Hence, VS
becomes a total function when restricted to this systcm. All talk of
VSss being defined or not becomes superfluous and the definition of
VS above is a definition of a standard valuation function (despite
the fact that we also include thce empty domain), The propositions
6,2,1 and 6.2.2 become trivially true and the truth of 6.2.3 is also

well-known, The fact that we permit the empty domain offers no special

difficulty. An ordinary Henkin-style completeness proof goes through.



In what follows I shall therefore take the completeness of the descrip-

tion-free system for granted.

In order to prove the soundness we need the following result,

6.2.5. Substitution property. Let S be a structure and let t be a

closed term-expression in the language of S. Let u(x) and A(x)
be a term—expression and a formula-expression, respectively, in
the language of S containing only x free,

If VS(t), VS(u(t)) and VS(A(t)) are all defined and if

Vs(t) = a, then so are VS(u(a)) and VS(A(a)) and

Ty(u(t)) = V(u(a))

and

]

T (A(4)) = Vg(a(+)).
The proof, by induction over u(x) and A(x), is straightforward and
will be omitted hecre.

In order to exhibit more fully the meaning of the deductive rules

of section 3, T shall give the proof of the soundness in detail.

6.2.6. Proof of soundness. We prove the statements

If t € T is derivable, then VS(t) is defined for all S
If A€ F is derivable, then VS(A) is defined for all S

If A is derivable, then VS(A) = 1 for all S

simultaneously by induction on the lengths of the derivations of

t €I, A €F and A,

Let S be a fixed structure and consider closed term—expressions



and formula-expressions in the language of S.
Case 1. t is a name, then Vs(t) is defined by 6.1.4.
Case 2.

t €1

ft €I

By the induction hypothesis VS(t) is defined and hence, so is VS(ft)

by 6ala5D

Case 3. :31XA(X)

1xA(x) € I

By the induction hypothesis Vé( E%}CA(X)) is defined and = 1, This
means in particular that VS(-1&fx-1 A(x)) is defined, so VS(A(a)) is
defined for all a € I. VS( ZBIXA(X)) =1 means also that the sect
{5 IVS(A(a)) = 1} contains exactly one member, so VS( xA(x)) is

defined by 6.1.6,
Case 4. VS(L) is defined by 6.1.8,
Case 5,

tel

Pt €1

By the induction hypothesis VS(t) is defined and hence so is VS(Pt)
by 6.1.7,
The rule

telI se I

t=s€PF



is treated similarly,

Case 6. AEF BEF

A& B€ETF

VS(A) and VS(B) are defined by the induction hypothesis, hence so

is VS(A & B) by 6.1.9,

Case 70 [A]
AgEPF Be F
A—>BEPF

By the induction hypothesis VS(A) is defined. Also, since we have a

derivation

A

BEF

it follows by the induction hypothesis that VS(A) = 1 only if VS(B)

is defined. Hence, VS(A — B) is defined by 6.1.10.

Case 8.

(x € 1]

]
L

A(x) € F
VIA(X) EF

For an arbitrary name a, we have a derivation



ae I

A(a) € P

By the induction hypothesis it follows that VS(E) is defined for all

2 €T, hence Vg(VxA(x)) is defined by 6,1.11.

Case 9. HIXA(X)
A()xA(x))

Using the substitution property this case follows like casc 3.

The cases in which the result follows by &-introduction, &-eclimination

or —» —<limination, the result follows immediately by the induction

hypothesis.

Case 10,

—_— [a]
AeP B

By the induction hypothesis VS(A) is defined and VS(A)= 1 only if
VS(B) is defined and = 1. By 6.1.10 it follows that VS(A — B) is

defined and = 1,

Case 11, ix e Il

Ll
L]

A(x)

Vx A(x)

For ocach name a, we have a derivation



so by the induction hypothesis VS(A(a)) is defined and = 1 for all

a2 € T which means that VQ(VXA(X)) = dl;

Case 12, \fo(x) t €T

A(t)

By the induction hypothesis VS(t) is defined. Suppose that Vs(t) =
-3 €T, Also, vs(k/xA(x)) = 1 which means that Vg(A(b)) = 1 for

all b € T, By the substitution property we have VS(A(t)) VS(A(a)) =

1, and the result follows,

Case 13, [ Al
=== e -y

°
L]

—SAETF 1

By the induction hypothesis VS(—1A) is defined, hence so is VS(A).

The assumption that VS(A) = O implies that VS(i) = 1 which contra-

dicts 69198- Hence VS(.A) = ls
Case 14, t €T
t =t

By the induction hypothesis VS(t) is defined and since VS(t) = VS(t),

V.

S(t = 1t) = 1 follows.



gase 12. t =s A(t)
A(s)

]

By the induction hypothesis Vs(t =s) =1 and VS(A(t)) = 1, The

former means that VS(t) = VS(s) = a € T for some name a. Hence
VS(A(S)) = VS(A(a)) = Vé(A(t)) = 1 by the substitution property.

This completes the proof.

The following lemma gives us (non-constructively) the other half

of 6.2,3,

6.,2.7. LEMMA, If A is a formula which is not a theorem, then there

is a structure in which A is not valid,

Proof, Assume that A is a formuvla which is not derivable. By the
eliminability theorem 5.1.4, A° is not derivable in the description~
free system, By the completeness of the description-free system

there is a structure S such that
o
VS(A ) = 0.
By theorem 5.1,.,3 gnd the soundness result we have

V() = v (0°) =0

S

and the lemma follows.

6.3. In order to prove 6.2.1 and 6.2.2 from right to left we need
the following result which is a model theorctic analogue of theorem

502-9.



6,3,1. LEMMA. Let S be an arbitrary structure. For each qlosed term-

expression t and each closed formula-expression A we have

[
=

vs(t) is defined iff VS(I(t))

and

I
]
L)

VS(A) is defined iff VS(F(A))

The proof of this lemma by induction over t and A is straightforward
and is left to the reader,

With the following lemma, the proof of theorem 6,2 is complete.

6.3.2. LEMMA, Let t be a closed term-expression and A a closed formula.

expression., If t € I is not derivable, then there is a structur

S such that VS(t) is not defined, and if A € F is not derivable

then there is a structure S such that VS(A) is not defined,

Proof., Suppose that t € I is not derivable., By theorem 5.2.9 it
follows that I(t) is not derivable. Since I(t) is description-free
it is not derivable in the description-free system. By the complete-
ness of the description-free system, there is a structure S such that
VS(I(t)) = 0. By lemma 6.3.1 it follows that Vs(t) is undefined.

The case in which A € F is not derivable is treated similarly

and the lemma follows.
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