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Standard ML: dynamically typed?

datatype nat = Zero | Succ of nat

case X : nat of
Zero = ...

| Succy = ...

Adapted from Jafery and Dunfield [POPL17] 9
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case X : nat of
Zero = ...

| Succy = ...

But the Definition requires compilers to accept
nonexhaustive matches:

case X : nat of

sSuccy = ...

If x = Zero, then the exception Match is raised.

This nonexhaustive match is fine,
if we know that x will never be Zero.
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A widely employed style of programming,
which impose no discipline of types

Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs

. Well, actually Milner [1978] said that (about LISP) too

Adapted from Jafery and Dunfield [POPL17] 13



Refined Standard ML

Datasort refinements [Freeman & Pfenning 1991, Davies 2005, ... ]
push the knowledge that x is not Zero into the type system.

case X : nonzero of

sSuccy = ...

This is exhaustive, because x has datasort nonzero.

Frank Pfenning

Adapted from Jafery and Dunfield [POPL17] 14
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push the knowledge that x is not Zero into the type system.
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sSuccy = ...

This is exhaustive, because x has datasort nonzero.
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The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small, the programming languages are only listed (in
alphabetical order).
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» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.
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Gradual Typing is a Relative Concepit!



I always assumed gradual types were to help those poorsch ucks using untyped languages

to migrate to typed languages. I now realise thate 4 L one of the poor Schmljck

Gradual Typing is a Relative Concepit!

. [Wadler SNAPL2015]
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T'yping Fr—t:T
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I'ty - Ty1—T 't : T
1 11 12 2 11 (T-APP)

'ty t & T
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If you are shown a
word on a screen in a
language you know, you
will read it....

Baniel Kahneman
e JaThinking! Fast'and Slow
Informally ascribe behavioural meaning to it
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Type Safety

THEOREM |PROGRESS]: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

“Well-typed programs don’t go wrong”
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...and t2 yields
T11s...

Typing 't T
x:TeT \\
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"Well-typed (whole) programs don't go wrong”

T

_ program fragments go right?/

=——=

e — - __ ______
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Semantic Soundness
\Milner 78]

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e, iI'Fe:T thenl =e€e:T.

[Milner 1978] 73
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Semantic Soundness
[Milner 78]

antic Soundness Theorem)based on a formal semantics for the language)

states that well-type-programs—canmnot “go wrong”’

THEOREM 1 (Semantic Soundness). If % respects p and%! d, is well typed then
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e, if 'ke:T thenl'Ee:T.
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Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e., it I'

<€ : 1 then I

—very proof of type assignment
says something meaningful about code
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Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

Modular
. Reasoning

~ Compositional
Reasoning /
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Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e., it I'

<€ : 1 then I'

As a corollary, under the conditions of the theorem we have

Eldly + wrong, &e—=

‘Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 77



Semantic Soundness

implies
P\ A Semantic Soundness Theorem (based on a formal semantics for the language)
_ﬁtef that well-type programs cannot ‘‘go wrong”’

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e, I' ke :T then I

s a corollary,Junder the conditions of the theorem we have

Eldly + wrong, &=

‘Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 78



Milner Award Lecture: The Type
Soundness Theorem That You Really
Want to Prove (and Now You Can) -
POPL 2018

Type systems—and the associated concept of “type...

POPL18.SIGPLAN.ORG

As a corollary Junder the conditions of the theorem we have

it iy 2. wrong, e _Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 79



Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*
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Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DerFINITION (Weak Soundness). If = e : 1 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its
primary goal of preventing type errors, it is often possible to demonstrate
a stronger property that relates the answer produced to the type of the
program. If we view each type t as denoting different subsets ¥'* of the set
of all answers V, then strong soundness states that an answer v produced
by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"
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Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DerFINITION (Weak Soundness). If = e : 1 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its
primary goal of preventing type errors, it is often possible to demonstrate
property that relates the answer produced to the type of the—>
~ programyIl We view eact Type : different subsets ¥~ ol the set
“of all answers ¥, then strong soundness states that an answer v produced

by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"

Behavioural

Fragment Soundness
\_ Nvariant

is often(*) a Corollary
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Syntactic Thinking

ApplicationO
Application

Application?

Librar
Librar @

N/

Two Typing Judgments = Two “Behavioural Contracts”
Conflicts Signal Runtime Errors (go wrong!)

81



Semantic Thinking

ApplicationO
Application

Application?

Librar
Librar

(Semantically) Sound Gradual Typing
Semantic Judgments Denote “Behavioural Contracts”

“Appropriate Linking” Enforces Contracts
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Outline

Motivating Example (In Two Acts)

Gradual Typing For All!

Strands and Related Works
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Gradual Typing
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“Gradual” in which sense?

6.1 Gradual Typing

In the broad sense, the term gradual
typing has come to describe any type system that allows some amount of dynamic typing. In the
precise sense of Siek et al. [67], a gradual typing system includes:

|Greenman & Felleisen ICFP18]
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Typing Gradually

def £f(x) = x + 2
def h(g) = g(l)
h(f)

Mixed Checking



Typing Gradually

def f(x) = x + 25—
def h(g) = g(1)

iNnferred”
h ( f ) [Siek and Vachharajani DLS08]
|Garcia and Cimini POPL15]

Mixed Checking
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Gradual Enforcement

def f(x:bool) = x + 2
def h(g) = g(true)

h(f)

static

error
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error




Gradual Enforcement

def f(x:int) = x + 2
def h(g) = g(true)

h(f)—x
runtime
error a
7

I




Gradual Enforcement

def f(x:int) = x + 2
def h(g) = g(true)

h(f)—y

runtime




Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*
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Refined Criteria for Gradual Typing*

e Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
T —~<_Tang Boyland*
Common N
: ) J
.. Language Runtime®™ _~

_ — &

Compositional

Translation Injection

Dynamic Static
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/ Gradual Type AN
‘Common Structure Determines |
. Appropriate Linking

— %

. Language Runtime” _~

—— i
— ——— -
——

Compositional

Translation Injection

Dynamic Static
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Simple Gradual Types

Static Types (Type) [’ -:= B ‘ 1T — T

Gradual Types (GType) [/ ::= ? | B ‘ U — U

TYyPE C GTYPE
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Gradual Type Precision

?

L
o ULRU

\ N\

(Int — 7) — Bool Int — Int — 7
(Int — Int) — Bool Int — Int — Int — 7

N

“Static Type Information” ordering relation
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Consistent Lifting(*)

Gradual Type
NN\
U]. U2 Consistency

(*) Reformulation of original definition
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Consistent Lifting(*)

Gradual Type
U]. i U2 Consistency
if and only if | ] ‘ || |
- Static Type
T]. o T2 Equality

For some Tl and T2

(*) Reformulation of original definition
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Static Checking

static type equality gradual type consistency

Int = Int Int ~ Int

extend
Bool = Bool q Bool ~ Bool

Int — Bool # Bool — Int Int — Bool «¢ Bool — Int
? ~ Bool

? — Bool ~ Bool — 7

Consistency conservatively extends equality
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Static Checking
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Consistent Lifting(*)

Consisten
U]. U2 Subty|1:;ingt
if and only if | ] ‘ || |
T 1 < T2 Static

Subtyping

For some Tl and T2

(*) Reformulation of original definition
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Consistent Lifting

Int < Int
Int ¥ Bool
Int ST
% Int
Int <7

7 < Int




Consistent Lifting

nt < Int
Int € Bool

Conservatively
Extends




Consistent Lifting

Int < Int
Int € Bool

“unknown’
is not the
“tOP” t)lpe



Lift Typing Rules

Static Type System Gradual Type System
I'-t1:17y T7 = Int I'-t1: U7 Uj ~ Int
'ty :175 To = Int 'ty :Us U ~ Int

I'Ft1 + 1o : Int —/ 'ty +1t: Int
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Dynamic Semantics

Static

. Gradual Language
Checking

Type-Directed
Translation

s e 9 =
- ~. N

Runtime (- s A
. —_ Insftrume‘nt_atim’f-’tanggag_\-
ChECklng = _\:,\:’7 — -

—_—

“Cast Calculus”
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‘—l—,_:;’ T T e =
— -

——

‘Common Language ™\
Runtime”

e

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U
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~ _

~

Also Works as a
. Surface Language!

= —::'T':H‘:’/—’ =

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U
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Also Works as a
. Surface Language!

————

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U

Much of the Literature
s Written This Way
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Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

.||IIIIII[“““((((@»)mm”llllllm

®

Varying The Type Precision of a Program
Monotonically Changes only
static and dynamic type errors
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Robust Theoretical
Framework

“Dynamic” “ “Static”
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Robust Theoretical
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Unityped [Siek and Taha 06] Simple
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Challenge: Dynamics

StatIC:‘ Gradual Language
Checking
Type-Directed
Translation
Runtime o — ;

LT e LR S FTE Lo “Cast Calculus™

’—/ ==

—

A‘ =
~
-

Checking [

=
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Given the name “‘gradual typing”, one might think that the most
interesting aspect 1s the type system. It turns out that the dynamic
semantics of gradually-typed languages 1s more complex than the
static semantics, with many points in the design space

|Siek and Garcia 2012]



Challenge: Dynamics

Stat"f Gradual Language
Checking
Type-Directed
Translation
Runtime . A

. ‘ Insﬂ*dme‘ntaﬂd?l*:‘an ua “Cast Calculus”
Checking =SS Pi—— &
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static type system & interpretation of
type safety proof gradual types

Abstracting Gradual Typing

Ronald Garcia*  Alison M. Clark f Eric Tanter !
Software Practices Lab PLEIAD Laboratory
Department of Computer Science Computer Science Department (DCC)
University of British Columbia, Canada University of Chile, Chile
{rxg,amclark1}@cs.ubc.ca etanter@dcc.uchile.cl

POPL 2016

N4

gradual language

TYPE | DYNAMIC

SYSTEM | SEMANTICS
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Breadth of AGT

Applications of AGT so far

records with subtyping

POPL'16
gradual rows (a la row polymorphism)
security typing j TOPLAS18
effect typing j ICFP’14 (statics)
refinement types j DOPL 17
set-theoretic types j CFP'17 (statics)

parametric polymorphism ongoing work



Outline

Motivating Example (In Two Acts)
Gradual Typing For All!
Typing in Small Pieces

Meat

Strands and Related Works
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] Typing Jor Functional Languages

2=

Jeremy G. Siek Walid Taha
University of Colorado Rice University
siek@cs.colorado.edu taha@rice.edu
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Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
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111



Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111



Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111



Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111



Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
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Retrospective

Migratory Typing: Ten Years Later”

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler,
Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent
St-Amour, T. Stephen Strickland, Asumu Takikawa'

1 PLT *@racket-lang.org

—— Abstract

In this day and age, many developers work on large, untyped code repositories. Even if they
are the creators of the code, they notice that they have to figure out the equivalent of method
signatures every time they work on old code. This step is time consuming and error prone.

Ten years ago, the two lead authors outlined a linguistic solution to this problem. Specifically
they proposed the creation of typed twins for untyped programming languages so that developers
could migrate scripts from the untyped world to a typed one in an incremental manner. Their
programmatic paper also spelled out three guiding design principles concerning the acceptance
of grown idioms, the soundness of mixed-typed programs, and the units of migration.

This paper revisits this idea of a migratory type system as implemented for Racket. It explains
how the design principles have been used to produce the Typed Racket twin and presents an
assessment of the project’s status, highlighting successes and failures.

112



Wed 26 Sep

13:00 - 14:30: Research Papers Gradual Typmg and Provmg at Stlfel Theatre

I Chair(s): Eric Tanter UniygzsiywomCfifie ¢ nfa Paris
13:00 - 2 §:22 ¢ A Spectrum of Type Soundness and Performance
Talk - Ben Greenman Northeastern University, USA, Matthias Felleisen Northeastern University, USA
~— & DOI
13:22 - 13:45 7 Casts and Costs: Harmonizing Sarety and Performance in Gradual
Talk Typing
John Peter Campora ULL Lafayette, Sheng Chen University of Louisiana at Lafayette, Eric
Walkingshaw Oregon State University
$ DOl
13:45 - 14:07 3¢ Graduality from Embedding-Projection Pairs
Talk Max S. New Northeastern University, Amal Ahmed Northeastern University, USA
$ DOI
.
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A Practical Soft Type System for Scheme
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Set-Based Analysis

Catching Bugs in the Web of Program Invariants

Cormac Flanagan Matthew Flatt Shriram Krishnamurthi Stephanie Weirich
Matthias Felleisen

PLDI96

Componential Set-Based Analysis

CORMAC FLANAGAN
Compaq Systems Research Center

and
MATTHIAS FELLEISEN

Rice University

TOPLAS99

Not Types!
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Set-Based Analysis

Catching Bugs in the Web of Program Invariants
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=

Cormac Flanagan Matthew Flatt_~ riram Krishnamurthi
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Step Weirich

\Rice University

Not Types!
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Set-Based Analysis

Willlam Bowman

» of Program Invariants

e —

= =

ram Krishnamurthi Step Weirich
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Migration By Inference

The Ins and Outs of Gradual Type Inference

Aseem Rastogi Avik Chaudhuri  Basil Hosmer
Stony Brook University Advanced Technology Labs, Adobe Systems
arastogi@cs.stonybrook.edu {achaudhu,bhosmer}@adobe.com

POPL 2012
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Migrating Gradual Types
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Dynamic lyping

Dynamic typing: syntax and proof theory*

Fritz Henglein**
University of Copenhagen, Universitetsparken 1, 2100 Copenhagen &, Denmark

Received July 1992; revised March 1993
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INnfluence

Herman, et al. [TFP 2007/}

Siek, Garcia, Taha [ESOP 2008]
Siek and Wadler [POPL 2010]
Garcia [ICFP 2013]

Siek et al. [PLDI 2015]
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| 13:22 - 13:45 Casts and Costs: Harmonizing Safety and Performance in Gradual
O
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Outline

Motivating Example (In Two Acts)
Gradual Typing For All!
Typing in Small Pieces

Meat
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— / Gradual Type AN
‘Common Structure Determines |
. Appropriate Linking

—

.

i

. Language Runtime” _~

- ——

Dynamic

129



"‘Dear Today Ron,
You went one slide too far.
Go back one slide.”

—Yesterday Ron
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Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

.||IIIIII[“““((((@»)mm”llllllm

®

Varying The Type Precision of a Program
Monotonically Changes only
static and dynamic type errors
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Blame



Theorems about Blame

Tobin-Hochstadt and Felleisen 2006
Wadler and Findler 2008

Dimoulas et al.

Dimoulas ...

Takikawa ...
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Racket Contract Blam

Ly ot

point-in?: contract wviolation
expected: real?
given: #f£
in: the 2nd argument of
(-> pict? real? real? boolean?)
contract from: point-in-module
blaming: top-level
(assuming the contract is correct)

Roblby Findler

172

Findler PLMW@ICFP15
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Wherein Shriram
Unwittingly Writes My
Blame Schpiel For Me



, ShriramKrishnamurthi
' @ShriramKMurthi

mv

;

Replying to @ShriramKMurthi @madeofmistak3

Error messages come from _languages_, but
errors are made In _programs_. By definition,
there's a big semantic gulf between the
language and program. Fixes have to be at
the level of the program. How can the
_language_ make "obvious" the program's
problem? »

6:02 AM - 21 Sep 2018
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(@ ShriramKrishnamurthi m y
\ ' @ShriramKMurthi

Replying to @ShriramKMurthi @madeofmistak3

This also assumes that there is "the’
problem. Many times an error is the result if
an *inconsistency” (trivial example: f takes
two args and is given three; not clear
whether caller or callee is to blame). In our
research we found ...»

6:03 AM - 21 Sep 2018
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@ . ShriramKrishnamurthi
' @ShriramKMurthi

mv

\

Replying to @ShriramKMurthi @madeofmistak3

... error messages often blamed one party
rather than both, which resulted in people
fixing the wrong thing, thinking the
omniscient computer had told them where to
fix. By making things point to inconsistency,
we made things less "obvious" in return for
not misleading users. »

6:04 AM - 21 Sep 2018
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Racket Contract Blame

point-in?: contract wviolation
expected: real?
given: #f£f
in: the 2nd argument of
(-> pict? real? real? boolean?)
contract from: point-in-module
blam:l. S e A A e

- ———— .

RobE)y Findler

—— -~

=Passuming the contract is correct‘\\

—

_— _
—— _
= e — o _ _
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Findler PLMW@ICFP15
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