-

=" Gradua Typing

A

Ronald Garcia
University of British Columbia

Static vs. Dynamic”?

stakice

‘early error detection
 enforced discipline |

Gradual Typing!

*,ﬁ
1

*éarly error detection 1
enforced disl

T e
S ————— x(O
(G 1\

.cO
el
||||| m
::::: T g(am

Outline

Motivating Example (In Two Acts)
Gradual Typing For All!

Typing in Small Pieces

Meat

Strands and Related Works

Motivating Example
Act 1: A New lype

A Dynamic Language

A Dynamic Language

Standard ML

A Dynamic Language

_ﬁ .’)
| Q&
or
)

Standard ML

Standard ML: dynamically typed?

datatype nat = Zero | Succ of nat

case X : nat of
Zero = ...

| Succy = ...

Adapted from Jafery and Dunfield [POPL17] 9

Standard ML: dynamically typed?

datatype nat = Zero | Succ of nat

case X : nat of
Zero = ...

| Succy = ...

But the Definition requires compilers to accept
nonexhaustive matches:

case X : nat of

sSuccy = ...

Adapted from Jafery and Dunfield [POPL17] 10

Standard ML: dynamically typed?

datatype nat = Zero | Succ of nat

case X : nat of
Zero = ...

| Succy = ...

But the Definition requires compilers to accept
nonexhaustive matches:

case X : nat of

sSuccy = ...

If x = Zero, then the exception Match is raised.

This nonexhaustive match is fine,
if we know that x will never be Zero.

Adapted from Jafery and Dunfield [POPL17] 11

Standard ML: dynamically typed?

datatype nat = Zero | Succ of nat

case X : nat of
Zero = ...

| Succy = ...

But the Definition requires compilers to accept
nonexhaustive matches:

case X : nat of

sSuccy = ...

If x = Zero, then the exception Match is raised.

This nonexhaustive match is fine,
if we know that x will never be Zero.

Adapted from Jafery and Dunfield [POPL17] 13

NAspiring the
néx't generation of

cgputer scientists

L

.__
Frank Pfenning

Adapted from Jafery and Dunfield [POPL17] 13

LTy

NASpiring the
nég{t generation of
computer scientists

..\

&,
L —
Frank Pfenning

A widely employed style of programming,
which impose no discipline of types

. Well, actually Milner [1978] said that (about LISP).

Adapted from Jafery and Dunfield [POPL17] 13

ol
\ INspiring the

A A nextigeneration of
A computer scientists

\E
P—
Frank Pfenning

A widely employed style of programming,
which impose no discipline of types

Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs

. Well, actually Milner [1978] said that (about LISP) too

Adapted from Jafery and Dunfield [POPL17] 13

Refined Standard ML

Datasort refinements [Freeman & Pfenning 1991, Davies 2005, ...]
push the knowledge that x is not Zero into the type system.

case X : nonzero of

sSuccy = ...

This is exhaustive, because x has datasort nonzero.

Frank Pfenning

Adapted from Jafery and Dunfield [POPL17] 14

Refined Standard ML

Datasort refinements [Freeman & Pfenning 1991, Davies 2005, ...]
push the knowledge that x is not Zero into the type system.

case X : nonzero of

sSuccy = ...

This is exhaustive, because x has datasort nonzero.

PROBLEM)
SOLVED

Frank Pfenning

Adapted from Jafery and Dunfield [POPL17] 15

Refined Standard ML

Datasort refinements [Freeman & Pfenning 1991, Davies 2005, ...]
push the knowledge that x is not Zero into the type system.

case X : nonzero of

sSuccy = ...

This is exhaustive, because x has datasort nonzero.

Frank Pfenning

Adapted from Jafery and Dunfield [POPL17] 16

Outline

Motivating Example (In Two Acts)
Gradual Typing For All!

Typing in Small Pieces

Meat

Strands and Related Works

17

Motivating Example
Act 2: Adoption

® ®) Harequin.com | Harlequin Ro: x = € TIOBE Index | TIOBE - The So' x Ronald

& C @ Secure https://www.tiobe.com/tiobe-index/ w Gl aniO
We use cookies to analyse our traffic and to show ads. By using our website, you agree to our use of cookies.
41 Apex 0.214%
42 Kotlin 0.213%
43 Bash 0.192%
44 Ladder Logic 0.190%
45 Alice 0.179%
48 Tel 0.172%
47 Clojure 0.152%
48 PostScript 0.152%
49 Scheme 0.150%
50 Awk 0.147%

The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small, the programming languages are only listed (in
alphabetical order).

 4th Dimension/4D, ABC, ActionScript, bc, Bourne shell, C shell, CFML, CL (0S/400), CoffeeScript, Common Lisp, Crystal, cT, Elixir, EIm, Emacs Lisp,
Erlang, Forth, Hack, Icon, Inform, lo, J, Korn shell, LiveCode, Maple, Mercury, ML, Modula-2, Monkey, MQL4, MS-DOS batch, MUMPS, NATURAL,
OCaml, OpenCL, Opentdge ABL, Oz, PL/I, PowerShell, Q, Racket, Ring, RPG, S, Snap!, SPARK, SPSS, Tex, TypeScript, VHDL

This Month's Changes in the Index

This month the following changes have been made to the definition of the index:

» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.

® ® ¢ Harlequin.com | Harlequin Ro: x = € TIOBE Index | TIOBE - The So x Ronald

& C' @ Secure https://www.tiobe.com/tiobe-index/ w @B l."n S 20
We use cookies to analyse our traffic and to show ads. By using our website, you agree to our use of cookies.
41 Apex 0.214%
42 Kotlin 0.213%
43 Bash 0.192%
44 Ladder Logic 0.190%
45 Alice 0.179%
48 Tel 0.172%
47 Clojure 0.152%
48 PostScript 0.152%
49 Scheme 0.150%
50 Awk 0.147%

The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small,_j
alphabetical order). '

' programming languages are only listed (in

« 4th Dimension/4D, ABC, ActionScript, bc, Bourne shell, C shell, CFML, CL (O$ =eoffeeScript, Common Lisp, Crystal, cT, Elixir, EIm, Emacs Lisp,
Erlang, Forth, Hack, Icon, Inform, lo, J, Korn shell, LiveCode, Maple, Mercu ML, Modula-2, Monkey, MQL4, MS-DOS batch, MUMPS, NATURAL,
OCaml, OpenCL, OpenEdge ABL, Oz, PL/I, PowerShell, Q, Racket, Ring, RPG, S, onap!, SPARK, SPSS, Tex, TypeScript, VHDL

This Month's Changes in the Index

This month the following changes have been made to the definition of the index:

» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.

® ® ¢ Harlequin.com | Harlequin Ro- x = € TIOBE Index | TIOBE - The So' x Ronald

& C' @ Secure https://www.tiobe.com/tiobe-index/ w Q'a th 4 'i0
We use cookies to analyse our traffic and to show ads. By using our website, you agree to our use of cookies.
41 Apex 0.214%
42 Kotlin 0.213%
43 Bash 0.192%
44 Ladder Logic 0.190%
45 Alice 0.179%
48 Tel 0.172%
47 Clojure 0.152%
48 PostScript o 0.152%
49 Scheme ' ' - 0.150%
50 Awk 0.147%

The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small,_j
alphabetical order). ‘

£ programming languages are only listed (in

« 4th Dimension/4D, ABC, ActionScript, bc, Bourne shell, C shell, CFML, CL (O$ =eoffeeScript, Common Lisp, Crystal, cT, Elixir, EIm, Emacs Lisp,
Erlang, Forth, Hack, Icon, Inform, lo, J, Korn shell, LiveCode, Maple, Mercu ML, Modula-2, Monkey, MQL4, MS-DOS batch, MUMPS, NATURAL,
OCaml, OpenCL, OpenEdge ABL, Oz, PL/I, PowerShell, Q, Racket, Ring, RPG, S, onap!, SPARK, SPSS, Tex, TypeScript, VHDL

This Month's Changes in the Index

This month the following changes have been made to the definition of the index:

» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.

® ® ¢ Harlequin.com | Harlequin Ro: x = € TIOBE Index | TIOBE - The So x Ronald

& C' @ Secure https://www.tiobe.com/tiobe-index/ w @B l."n S 20
We use cookies to analyse our traffic and to show ads. By using our website, you agree to our use of cookies.
41 Apex 0.214%
42 Kotlin 0.213%
43 Bash 0.192%
44 Ladder Logic 0.190%
45 Alice 0.179%
48 Tel 0.172%
47 Clojure 0.152%
48 PostScript 0.152%
49 Scheme 0.150%
50 Awk 0.147%

The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small,_j
alphabetical order). '

' programming languages are only listed (in

« 4th Dimension/4D, ABC, ActionScript, bc, Bourne shell, C shell, CFML, CL (O$ =eoffeeScript, Common Lisp, Crystal, cT, Elixir, EIm, Emacs Lisp,
Erlang, Forth, Hack, Icon, Inform, lo, J, Korn shell, LiveCode, Maple, Mercu ML, Modula-2, Monkey, MQL4, MS-DOS batch, MUMPS, NATURAL,
OCaml, OpenCL, OpenEdge ABL, Oz, PL/I, PowerShell, Q, Racket, Ring, RPG, S, onap!, SPARK, SPSS, Tex, TypeScript, VHDL

This Month's Changes in the Index

This month the following changes have been made to the definition of the index:

» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.

® ©® & Harlequin.com | Harlequin Ror x = € TIOBE Index | TIOBE - The So' x Ronald

e

C' @ Secure https://www.tiobe.com/tiobe-index/ w Qa Pﬂ éf 4 O
We use cookies to analyse our traffic and to show ads. By using our website, you agree to our use of cookies.
41 Apex 0.214%
42 Kotlin 0.213%
43 Bash 0.192%
44 Ladder Logic 0.190%
45 Alice 0.179%
46 Tel 0.172%
47 Clojure 0.152%
48 PostScript - 0.152%
d |
49 Scheme N o Refl n e M L - 0.150%
50 Awk 0.147%

The Next 50 Programming Languages

The

alphabetical order).

following list of languages denotes #51 to #100. Since the differences are relatively small, 4 programming languages are only listed (in

« 4th Dimension/4D, ABC, ActionScript, bc, Bourne shell, C shell, CFML, CL (O$ =eoffeeScript, Common Lisp, Crystal, cT, Elixir, EIm, Emacs Lisp,
Erlang, Forth, Hack, Icon, Inform, lo, J, Korn shell, LiveCode, Maple, Mercur} ML. odula-2, Monkey, MQL4, MS-DOS batch, MUMPS, NATURAL,
OCaml, OpenCL, OpentEdge ABL, Oz, PL/I, PowerShell, Q, Racket, Ring, RPG, SSnap!, SPARK, SPSS, Tex, TypeScript, VHDL

This Month's Changes in the Index

This month the following changes have been made to the definition of the index:

» There are lots of mails that still need to be processed. As soon as there is more time available your mail will be answered. Please be patient.

Paucity of RML Code

SML Refined ML

Applicationt ApplicationO
Application?

Library
Library?2

*Figures not drawn to scale
24

Refined ML

SML
Application s ApplicationO

Application?

Library
Library?2

*Figures not drawn to scale
25

SML Refined ML

Applicationt

ApplicationO

Application

Application?

Library
Library?2

*Figures not drawn to scale
26

SML Refined ML

Applicationt I ~pplication0

Application

Application?

Library
Library?2

*Figures not drawn to scale
27

SML Refined ML

Applicationt I ~pplication0

Application

Application?

Library
Library?2

*Figures not drawn to scale
28

SML Refined ML
Applicationt - ApplicationO

Application? il Application

Library
Library?2

“Figures not drawn to scale Wholesale Migration?!?

29

“Figures not drawn to scale Wholesale Migration?!?

30

SML Refined ML
Applicationt - ApplicationO

Application? il Application

Library
Library?2

“Figures not drawn to scale Wholesale Migration?!?

31

SML Refined ML

Applicationt ApplicationO
Application2 sl Application

Library
Library?2

Library

“Figures not drawn to scale Wholesale Migration?!?

32

SML Refined ML
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library

“Figures not drawn to scale Wholesale Migration?!?

33

SML

Applicationt
Application?

Library
Library?2

*Figures not drawn to scale

34

Refined ML

ApplicationO
Application

gl Aoplication?

Library

SML Refined ML

Applicationt ApplicationO
Application? Application
' — Application?

Library
Library?2

Library

*Figures not drawn to scale Must We Assimilate?

35

SML

Applicationt
Application?

Library
Library?2

*Figures not drawn to scale

36

Refined ML

ApplicationO
Application

gl Aoplication?

Library

SML Refined ML
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration

*Figures not drawn to scale
37

SML Refined ML
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration

*Figures not drawn to scale
38

SML Refined ML
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration
SML Code (& Guarantees)

Refined ML Code (& Guarantees)
-, Interoperating!

*Figures not drawn to scale

SML
Applicationt

Application?

Library
Library?2

*Figures not drawn to scale

Refined ML

ApplicationO
Application
Application?
Library

Library?2

40 Interoperating!

SML R
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration__
SML_Caods(& Guarantees)

- Free! —=med VL Codé (Rtrmearter?
Figures not drawn to scale
» Interoperating!

“Optional Typing”

V4

SML Re ¢
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration__
SML_Caods(& Guarantees)

- Free! —=med VL Codé (Rtrmearter?
Figures not drawn to scale
i Interoperating!

SML Refined ML
Applicationt ApplicationO
Application? Application

: Application?

Library
Library?2

Library
Library?2

Gradual Migration
SML Code (& Guarantees)

Refined ML Code (& Guarantees)
i Interoperating!

*Figures not drawn to scale

SML Refined ML

Applicationt

ApplicationO

Application? Application

Application?

Library
Library?2

Library
Library?2

Gradual Migration
SML Code (& GQuatantees)

Refined ML Code& Guarantees
» Interoperatine!-

*Figures not drawn to scale

SML Refined ML
Applicationt ApplicationO

Application? Application

' Appl|cat|on2
Library
Library?2

Gradual Migration
SML Code (& GQuatantees)

Refined ML Code& Guarantees
45 Interoperating!-

*Figures not drawn to scale

SML Refined ML

Applicationt

ApplicationO

Application? Application

Appl|cat|on2

Library
Library?2

Gradual Migration
SML Code (& GQuatantees)

Refined ML Code& Guarantees
4 Interoperating!-

*Figures not drawn to scale

SML Refined ML

Applicationt

ApplicationO

Application? Application

Appl|cat|on2

Library
Library?2

Gradual Migration

The Challenge!—_5!VIL Code (& Guaraniees)
Refined ML Cot((& Guarantees
7 Interoperating!-

*Figures not drawn to scale

Sums of Uncertainty: Refinements Go Gradual

Khurram A. Jafery Joshua Dunfield

University of British Columbia
Vancouver, Canada

{kjafery,joshdunf}@cs.ubc.ca

POPL17

Sums of Uncertainty: Refinements Go Gradual

Khurram A. Jafery Joshua Dunfield

University of British Columbia
Vancouver, Canada

{kjafery,joshdunf}@cs.ubc.ca

POPL17

Outline

Motivating Example (|

Gradual Typing For All!
Typing in Small Pieces
Meat

Strands and Related Works

50

Type Spectrum

Refinement

Type Spectrum

Refinement

Type Spectrum

Refinement

Types

FIELDS arrAnGED BY PORITY
FORE PURE

SOCIOLOGY IS PSYCHOLOGY IS BIOLOGY IS WHICH IS JusT
JUST APPUED JUsT APPLIED JUST APPLED APPLIED PHYSICS.

PSYCHOLOGY BIOLOGY. CHEMISTRY TS NICE TO
BE ON TOR

1% %49

OH, HEY, T DIDNT
SEE YOU GUYS ALL
THE \WAY OVER THERE.

L

1

SOC'(;LOGISTS psYcHoLoGISTS B OLé)GlSTS CHEMISTS PHYSl'C‘STS

MATHEMATICIANS

Type Spectrum

Refinement

Types

Untyped “

Languages Typedness
=S ARRANGED By TPORITY

>

SOCIOLOGY IS PSYCHOLOGY IS PIOLOGY IS WHICH IS JusT OH, HEY, T DIODNT

JUST APPUED JUST APPLIED JUSTAPPLED APPLIED PHYS(CS. SEE YOU GUYS ALL

PSYCHOLOGY ~ BIOLOGY. CHEMISTRY TS NICE TO THE WAY OVER THERE.
BE ON TOR k

\ \ " } ,
13 %%)i
¢ | > s . NATHENAT:CIANS

SOCKSLOG!STS PSYCHOLOGISTS BIOLC')GISTS CHEMISTS PHYSI'C'STS

Type Spectrum

Refinement

Gradual yping

55

Type Spectrum

Refinement

Gradul Typing

56

Type Spectrum

ad e
Tvpes
A

Grad uiI; yping

57

Type Spectrum

Tvoes

Gradual yping

e%zual Typing is a Relative Concept!

57

Gradual Typing is a Relative Concepit!

I always assumed gradual types were to help those poorsch ucks using untyped languages

to migrate to typed languages. I now realise thate 4 L one of the poor Schmljck

Gradual Typing is a Relative Concepit!

. [Wadler SNAPL2015]

57

Type Spectrum

gl e — = —r——————
= - . === "

= *

%4 | \\ Refinement
,t
‘ Untypec ML Types | Tlees

- hT"fﬁ‘&i 7
e _

= —— —
—— I

.

Mot
Gradual Typing
Work

58

Type Spectrum

s Y e e ——
- - — — = ————= S

" -_— —
77(—
= —

TN Refinement
,t
‘ Untyped “ ML Types | Types

~— 4-’.?,,—,3‘ e -
\,,, - ; ‘j--e — —~—

= — ——
— = =" —— ==

T

/ ' Static __——7vaVeleliletzli[e]al0

Most Language Application
Gradual Typing
Work

Application?

Dynamic Library1
Languag Library?2

58

Type Spectrum

——

Refinement
Untyped)
Types

Much Recent ™ “Static” __—JNe e etlese

Gradual Typing L anguage -
Work! Application
Application?

"‘Dynamic’ Library

Languag Library?2

59

Outline

Motivating Example (In Two Acts)

Gradual Typing For Alllé&¥7
yping

Typing in Small Pieces
Meat

Strands and Related Works

60

Gradual Types?

Gradual Types?

61

62

What are Types About?

_n T
. JUDGMENT

e .
T "
A o
S b

T'yping Fr—t:T

x:T el (T-VAR)
'—x:T
I x:T{1 -1t : T
T-ABS
' Ax:T1.t0 : T1—-T> ()
I'ty - Ty1—T 't : T
1 11 12 2 11 (T-APP)

'ty t & T

64

Typing

x:T el
I'Ex:T

I x:T{1 -1t : T
' Ax:T1.t2 - T1=T>

'ty : T11—-Too 't & Tqq

I't:T

'ty t & T

Inductive Definition

64

(T-VAR)

(T-ABS)

(T-APP)

Typing 't :T

x:T el (T-VAR)
'—x:T
I x:T{1 -1t : T
T-ABS
' Ax:T1.t2 - T1=T> ()
I'ty - Ty1—T 't : T
1 11 12 2 11 (T-APP)

'ty t & T
Inductive Definition

Grammar on Steroids
(i.e., data structure spec)

64

Typing I'—t:T

x:T el (T-VAR)
'—x:T
I x:T{1 -1t : T
T-ABS
' Ax:T1.t0 : T1—-T> ()
I'ty - Ty1—T 't : T
1 11 12 2 11 (T-APP)

'ty t & T

Inductive Definition
Grammar on Steroids
(i.e., data structure spec)

Informally ascribe behavioural meaning to it

64

P

\ £ R
Daniel Kahneman
(i.e., data structure spec)
Informally ascribe behavioural meaning to it

64

If you are shown a
word on a screen in a
language you know, you
will read it....

Baniel Kahneman
e JaThinking! Fast'and Slow
Informally ascribe behavioural meaning to it

64

Typing I'—t:T

x:T el (T-VAR)
'—x:T
I x:T{1 -1t : T
T-ABS
' Ax:T1.t0 : T1—-T> ()
I'ty - Ty1—T 't : T
1 11 12 2 11 (T-APP)

'ty t & T

Inductive Definition
Grammar on Steroids
(i.e., data structure spec)

Informally ascribe behavioural meaning to it

64

Typing I'—t:T

x:T el
| : (T-VAR)

P Ift1 turns T11s FExoT

into T12s... J
I x:T{1 -1t : T
,/'"\,\"\ | T'ABS
' AX:T;.t : T1—-T> ()
Ity Ty1—T Tt : T

1 11—~ 112 D 11 (T-ApP)

'ty t & T

Inductive Definition
Grammar on Steroids
(i.e., data structure spec)

Informally ascribe behavioural meaning to it

64

...and t2 yields
T11s...

Typing | e |
x:TeTl \\
| : (T-VAR)
P Ift1 turns T11s FExoT
into T12s...
: I, x:T1 = to & To\
' AX:T1.t2 : T1—=
't T11—T1o 'ty & Tqq
! 1 (T-APP)

Inductive Definition
Grammar on Steroids
(i.e., data structure spec)

Informally ascribe behavioural meaning to it

64

...and t2 yields
T11s...

Typing I'—=t:T
x:TeTl \\
| : (T-VAR)
P Ift1 turns T11s FExoT
into T12s... /
: I, x:T1 - 1ttr 2 To\
' AX:T;.t2 1 T1 =1
Tt :Tyu—=Tp TrFt: Ty

'ty t & T

Grammar on Steroids
(i.e., data structure spec)

Informally ascribe behavioural meaning to it

64

Type Safety

THEOREM |PROGRESS]: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

“Well-typed programs don’t go wrong”

65

Gradual Type Safety”

ApplicationO
Application

Application?

Library
Library?

Now You've Got Two Problems!

ApplicationO
Application

Application?

Library
Library?

67

Now You've Got Two Problems!

ApplicationO
Application

Application?

Library
Library?

Two Typing Judgments = Two “Behavioural Contracts”

67

Now You've Got Two Problems!

ApplicationO
Application

Application?

Librar
Librar @

Two Typing Judgments = Two “Behavioural Contracts”
Conflicts Signal Runtime Errors (is that wrong?)

67

Now You've Got Two Problems!

ApplicationO
Application What counts as

Application2 appropriate
Librar Linking?

Librar

P

Two Typing Judgments = Two “Behavioural Contracts”
Conflicts Signal Runtime Errors (is that wrong?)

67

...and t2 yields
T11s...

Typing 't T
x:TeT \\
| — \\ (T-VAR)
[1f 1 turns T11s ExoT
into T12s...
I, x:T1 = tr & ToW
! (T-ABS)

N THAX:T .t @ T

68

...and t2 yields
T11s...

Typing 't T
x:TeT \\
— \\ (T-VAR)
..and t1 turns FExoT
T11s into T12s... /
I, X:T1 - to @ To\
(T-ABS)

N\ EAX:T .t 2 T =

69

...and t2 yields
T11s...

Typing 't T
x:TeT \\
: (T-VAR)
.and tlturns 1§ FEx:T
T11s into T12s... /
I, x:Ty =1ty = To\ (T-ABS)
- -AB
' AX:T;.t2 1 T1 =1
'ty - T11—-T1o 'ty & Tqq
(T-APP)
'ty t & T /

- Typing Judgments are o
/ about program fragments

69

I't:T

(T-VAR)
.and tlturns 1§
Ti1s into T12s... /

-~ Typing Judgments are o
/ about program fragments

69

Type Safety

THEOREM |PROGRESS]: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

“Well-typed programs don't go wrong”

70

Type Safety

THEOREM [PROGRESS]: Suppose t is & osedwell-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

“Well-typed (whole) programs don’'t go wrong”

70

Type Safety

THEOREM [PROGRESS]: Suppose t is & osedwell-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

“Well-typed (whole) programs don’'t go wrong”

70

Outline

Motivating Example (In Two Acts)

Gradual Typing For Al

Typing in Small Pieces
Meat

Strands and Related Works

71

Type Safety

THEOREM |PROGRESS]: Suppose tis sedywell-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with t — t'. O

THEOREM [PRESERVATION]: f 't : Tandt — t',thenT' - t’ : T.

"Well-typed (whole) programs don't go wrong”

T

_ program fragments go right?/

=——=

e — - __ ______

/2

Semantic Soundness
\Milner 78]

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e, iI'Fe:T thenl =e€e:T.

[Milner 1978] 73

Semantic Soundness
Milner 78]

mantlc Soundness Theore n
states that well-tVDe-proprams—ca

based on a formal semantics for the language)
“‘'go wrong”’

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e, ifI'Fe:T thenl'=e:T.

[Milner 1978] 73

Semantic Soundness
[Milner "78]

antic Soundness Theorem)based on a formal semantics for the language)

states that well-type—programs—canmot “go wrong”

THEOREM 1 (Semantic Soundness). If % respects p and%! d, is well typed then
Eldh : . T

ie., if I' H I'=e:T.

[Milner 1978] 73

Semantic Soundness
[Milner "78]

antic Soundness Theorem)based on a formal semantics for the language)

states that well-type—programs—canmot “go wrong”

THEOREM 1 (Semantic Soundness). If % respects p and%! d, is well typed then
fwmz; . T

e, if I'+

o ——

===

e TthenT =e:T.

[Milner 1978] 73

Semantic Soundness
[Milner 78]

antic Soundness Theorem)based on a formal semantics for the language)

states that well-type-programs—canmnot “go wrong”’

THEOREM 1 (Semantic Soundness). If % respects p and%! d, is well typed then
Eldl : +., . T

e, if 'ke:T thenl'Ee:T.

" Behavioural N\
. |nvariant

==

[Milner 1978] 74

Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e., it I'

<€ : 1 then I

—very proof of type assignment
says something meaningful about code

[Milner 1978] 75

Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

Modular
. Reasoning

~ Compositional
Reasoning /

[Milner 1978] 76

Semantic Soundness

A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong”

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e., it I'

<€ : 1 then I'

As a corollary, under the conditions of the theorem we have

Eldly + wrong, &e—=

‘Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 77

Semantic Soundness

implies
P\ A Semantic Soundness Theorem (based on a formal semantics for the language)
_ﬁtef that well-type programs cannot ‘‘go wrong”’

THEOREM 1 (Semantic Soundness). If respects p and p|d, is well typed then
Eld]n : . - -

e, I' ke :T then I

s a corollary,Junder the conditions of the theorem we have

Eldly + wrong, &=

‘Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 78

Milner Award Lecture: The Type
Soundness Theorem That You Really
Want to Prove (and Now You Can) -
POPL 2018

Type systems—and the associated concept of “type...

POPL18.SIGPLAN.ORG

As a corollary Junder the conditions of the theorem we have

it iy 2. wrong, e _Whole-Program
Payoff!

since wrong has no type.

[Milner 1978] 79

Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

80

Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DerFINITION (Weak Soundness). If = e : 1 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its
primary goal of preventing type errors, it is often possible to demonstrate
a stronger property that relates the answer produced to the type of the
program. If we view each type t as denoting different subsets ¥'* of the set
of all answers V, then strong soundness states that an answer v produced
by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"

80

Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DEerFINITION (Weak Soundness). If = e:1 then eval(e) # WRONG.

o goal of preventmg type errors it 1s often possible to demonstrate

a Stronger—property—that—retates the answer produced to the type of the
program. If we view each type t as denoting different subsets ¥'* of the set
of all answers V, then strong soundness states that an answer v produced
by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"

80

Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DerFINITION (Weak Soundness). If = e : 1 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its
primary goal of preventing type errors, it is often possible to demonstrate
property that relates the answer produced to the type of the—>
~ programyIl We view eact Type : different subsets ¥~ ol the set
“of all answers ¥, then strong soundness states that an answer v produced

by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"

Behavioural)
. |nvariant _/

80

Discourse On The Method

A Syntactic Approach to Type Soundness

ANDREW K. WRIGHT AND MATTHIAS FELLEISEN*

DerFINITION (Weak Soundness). If = e : 1 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its
primary goal of preventing type errors, it is often possible to demonstrate
property that relates the answer produced to the type of the—>
~ programyIl We view eact Type : different subsets ¥~ ol the set
“of all answers ¥, then strong soundness states that an answer v produced

by a terminating program of type 7 is an element of the subset V™.

DErFINITION (Strong Soundness). If e :1 and eval{e)=v then ve V"

Behavioural

Fragment Soundness
_ Nvariant

is often(*) a Corollary

80

Syntactic Thinking

ApplicationO
Application

Application?

Librar
Librar @

N/

Two Typing Judgments = Two “Behavioural Contracts”
Conflicts Signal Runtime Errors (go wrong!)

81

Semantic Thinking

ApplicationO
Application

Application?

Librar
Librar

(Semantically) Sound Gradual Typing
Semantic Judgments Denote “Behavioural Contracts”

“Appropriate Linking” Enforces Contracts

82

Outline

Motivating Example (In Two Acts)

Gradual Typing For All!

Strands and Related Works

83

Outli

Nne

Motivating Example (In Two Acts)

Gradual Typing For All!

Strands and Related Works

34

\-x Nty Seasor 3
gardem chick’n scallopini

|

Gradual Typing

85

“Gradual” in which sense?

6.1 Gradual Typing

In the broad sense, the term gradual
typing has come to describe any type system that allows some amount of dynamic typing. In the
precise sense of Siek et al. [67], a gradual typing system includes:

|Greenman & Felleisen ICFP18]

86

“Gradual” in which sense?

6.1 Gradual Typing

, _In the broad sense, the term gradual
typing has come to describe@ay type system that allows some amount of dynamlc typing» In the

prec1se sense of Siek et al. [67] a gradual fy;pgm rinciodesT— , B

|Greenman & Felleisen ICFP18]

86

“Gradual” in which sense?

6.1 Gradual Typing

In the broad sense, the term gradual
typln has come to describe any type system that allows some amount of dynamic typing. In the
o sense of Slek et al. | 6) gradual typlng system 1ncludes

|Greenman & Felleisen ICFP18]

86

o
=
s
xS
v
: G
)
Y
\4
Ny
N
N ~

=t =
Sars e

Jeremy G. Siek
University of Colorado
siek@cs.colorado.edu

1 Typi

Jor Functional Languages

Walid Taha

Rice University

taha@rice.edu

Scheme 2006

37

s
P ~7,

Jor Functional Languages

-
e
s
xS
vV
: G
)
Y
\4
\ 3 -
&
N ~

radual Typi

Jeremy G. Siek Walid Taha
University of Colorado Rice University
siek@cs.colorado.edu taha@rice.edu

Rejected from ICFP 2006

88

Jor Functional Languages

& Gradual Typi

- ex s,
N =% e S =Sl

S

Jeremy G. Siek Walid Taha
University of Colorado Rice University
siek@cs.colorado.edu taha@rice.edu

Rejected from ICFP 2006
>300 citations

89

Typing Gradually

def £f(x) = x + 2
def h(g) = g(l)
h(f)

Mixed Checking

Typing Gradually

def f(x) = x + 25—
def h(g) = g(1)

iNnferred”
h (f) [Siek and Vachharajani DLS08]
|Garcia and Cimini POPL15]

Mixed Checking

91

Gradual Enforcement

def f(x:bool) = x + 2
def h(g) = g(true)

h(f)

static

error

Gradual Enforcement

def f(x:bool) = x + 2
def h(g) = g(true)

h(f)
static X -

error

Gradual Enforcement

def f(x:int) = x + 2
def h(g) = g(true)

h(f)—x
runtime
error a
7

I

Gradual Enforcement

def f(x:int) = x + 2
def h(g) = g(true)

h(f)—y

runtime

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

94

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Injection

Conservative
Embedding

94

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Compositional

Translation Injection

Dynamic Static

Conservative
Embedding

94

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Compositional

Translation Injection

Dynamic Static

94

Refined Criteria for Gradual Typing*

e Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
T —~<_Tang Boyland*
Common N
:) J
.. Language Runtime®™ _~

_ — &

Compositional

Translation Injection

Dynamic Static

94

——

/ Gradual Type AN
‘Common Structure Determines |
. Appropriate Linking

— %

. Language Runtime” _~

—— i
— ——— -
——

Compositional

Translation Injection

Dynamic Static

94

Simple Gradual Types

Static Types (Type) [’ -:= B ‘ 1T — T

Gradual Types (GType) [/ ::= ? | B ‘ U — U

TYyPE C GTYPE

95

Gradual Type Precision

?

L
o ULRU

\ N\

(Int — 7) — Bool Int — Int — 7
(Int — Int) — Bool Int — Int — Int — 7

N

“Static Type Information” ordering relation

96

Consistent Lifting(*)

Gradual Type
NN\
U]. U2 Consistency

(*) Reformulation of original definition
97

Consistent Lifting(*)

Gradual Type
U]. i U2 Consistency
if and only if |] ‘ || |
- Static Type
T]. o T2 Equality

For some Tl and T2

(*) Reformulation of original definition
97

Static Checking

static type equality gradual type consistency

Int = Int Int ~ Int

extend
Bool = Bool q Bool ~ Bool

Int — Bool # Bool — Int Int — Bool «¢ Bool — Int
? ~ Bool

? — Bool ~ Bool — 7

Consistency conservatively extends equality

98

Static Checking

static type equality gradual type consistency
Int = Int extend Int ~ Int
Bool = Bool q Bool ~ Bool
Int — Bool # Bool — Int Int — Bool «¢ Bool — Int
? ~ Bool

? — Bool ~ Bool — 7

Consistency conservatively extends equality

98

Static Checking

static type equality gradual type consistency

Int = Int Int ~ Int

extend
Bool = Bool q Bool ~ Bool
nt — Bool # Bool — Int nt — Bool 4 Bool — Int

7 ~ Bool

? — Bool ~ Bool — 7

Consistency conservatively extends equality

98

Static Checking

static type equality gradual type consistency

Int = Int Int ~ Int

extend
Bool = Bool q Bool ~ Bool

Int — Bool # Bool — Int Int — Bool «¢ Bool — Int
? ~ Bool

? — Bool ~ Bool — 7

Consistency conservatively extends equality

98

Consistent Lifting(*)

Consisten
U]. U2 Subty|1:;ingt
if and only if |] ‘ || |
T 1 < T2 Static

Subtyping

For some Tl and T2

(*) Reformulation of original definition
99

Consistent Lifting

Int < Int
Int ¥ Bool
Int ST
% Int
Int <7

7 < Int

Consistent Lifting

nt < Int
Int € Bool

Conservatively
Extends

Consistent Lifting

Int < Int
Int € Bool

“unknown’
is not the
“tOP” t)lpe

Lift Typing Rules

Static Type System Gradual Type System
I'-t1:17y T7 = Int I'-t1: U7 Uj ~ Int
'ty :175 To = Int 'ty :Us U ~ Int

I'Ft1 + 1o : Int —/ 'ty +1t: Int

101

Dynamic Semantics

Static

. Gradual Language
Checking

Type-Directed
Translation

s e 9 =
- ~. N

Runtime (- s A
. —_ Insftrume‘nt_atim’f-’tanggag_\-
ChECklng = _\:,\:’7 — -

—_—

“Cast Calculus”

102

— = =

——
S

“Common Language |
Runtime”

N

\»‘

Yy
7

- = ————

103

‘—l—,_:;’ T T e =
— -

——

‘Common Language ™\
Runtime”

e

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U

103

——

~ _

~

Also Works as a
. Surface Language!

= —::'T':H‘:’/—’ =

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U

103

———

Also Works as a
. Surface Language!

————

Static Types (Type) T' := B | T — T
Gradual Types (GType) [/ :®‘ B ‘ U — U

Much of the Literature
s Written This Way

103

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

104

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

104

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

(G e

IRIEL i

104

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

.||IIIIII[“““((((@»)mm”llllllm

®

Varying The Type Precision of a Program
Monotonically Changes only
static and dynamic type errors

104

Robust Theoretical
Framework

“Dynamic” “ “Static”

105

Robust Theoretical
Framework

“Dynamic” “ “Static”

Unityped [Siek and Taha 06] Simple

105

Robust Theoretical

Framework
Unityped Siek and Taha 06 Simple

Unityped Siek and Taha 08 Subtyping

105

Robust Theoretical

Framework
“Dynamic” “ “Static”
Unityped Siek and Taha 06 Simple
Unityped Siek and Taha 08 Subtyping

Unityped [Siek and Vachharajani 08] Hindley/Milner

105

Robust Theoretical

Framework
“Dynamic” “ “Static”
Unityped Siek and Taha 06 Simple
Unityped Siek and Taha 08 Subtyping
Unityped [Siek and Vachharajani 08] Hindley/Milner

Simple [Lehmann and Tanter 17] Refinement

105

Robust Theoretical

Framework
“Dynamic” “ “Static”
Unityped Siek and Taha 06 Simple
Unityped Siek and Taha 08 Subtyping
Unityped [Siek and Vachharajani 08] Hindley/Milner
Simple [Lehmann and Tanter 17] Refinement

Simple [Banados et al. 14] vpe&Effect

105

Robust Theoretical

Framework
“Dynamic” “ “Static”
Unityped Siek and Taha 06 Simple
Unityped Siek and Taha 08 Subtyping
Unityped [Siek and Vachharajani 08] Hindley/Milner
Simple [Lehmann and Tanter 17] Refinement
Simple [Banados et al. 14] vpe&Effect

Simple [Toro et al. to appear] Security

105

Robust Theoretical

Framework
“Dynamic” “ “Static”
Unityped Siek and Taha 06 Simple
Unityped Siek and Ta Subtyping
Unityped &“@ “Lﬁnarajam 08] Hindley/Milner
Simple mann and Tanter 17] Refinement
Simple [Banados et al. 14] vpe&Effect

Simple [Toro et al. to appear] Security

105

Challenge: Dynamics

StatIC:‘ Gradual Language
Checking
Type-Directed
Translation
Runtime o — ;

LT e LR S FTE Lo “Cast Calculus™

’—/ ==

—

A‘ =
~
-

Checking [

=

106

Given the name “‘gradual typing”, one might think that the most
interesting aspect 1s the type system. It turns out that the dynamic
semantics of gradually-typed languages 1s more complex than the
static semantics, with many points in the design space

|Siek and Garcia 2012]

Challenge: Dynamics

Stat"f Gradual Language
Checking
Type-Directed
Translation
Runtime . A

. ‘ Insﬂ*dme‘ntaﬂd?l*:‘an ua “Cast Calculus”
Checking =SS Pi—— &

106

static type system & interpretation of
type safety proof gradual types

Abstracting Gradual Typing

Ronald Garcia* Alison M. Clark f Eric Tanter !
Software Practices Lab PLEIAD Laboratory
Department of Computer Science Computer Science Department (DCC)
University of British Columbia, Canada University of Chile, Chile
{rxg,amclark1}@cs.ubc.ca etanter@dcc.uchile.cl

POPL 2016

N4

gradual language

TYPE | DYNAMIC

SYSTEM | SEMANTICS

107

Breadth of AGT

Applications of AGT so far

records with subtyping

POPL'16
gradual rows (a la row polymorphism)
security typing j TOPLAS18
effect typing j ICFP’14 (statics)
refinement types j DOPL 17
set-theoretic types j CFP'17 (statics)

parametric polymorphism ongoing work

Outline

Motivating Example (In Two Acts)
Gradual Typing For All!
Typing in Small Pieces

Meat

Strands and Related Works

109

] Typing Jor Functional Languages

2=

Jeremy G. Siek Walid Taha
University of Colorado Rice University
siek@cs.colorado.edu taha@rice.edu

110

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

111

Retrospective

Migratory Typing: Ten Years Later”

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler,
Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent
St-Amour, T. Stephen Strickland, Asumu Takikawa'

1 PLT *@racket-lang.org

—— Abstract

In this day and age, many developers work on large, untyped code repositories. Even if they
are the creators of the code, they notice that they have to figure out the equivalent of method
signatures every time they work on old code. This step is time consuming and error prone.

Ten years ago, the two lead authors outlined a linguistic solution to this problem. Specifically
they proposed the creation of typed twins for untyped programming languages so that developers
could migrate scripts from the untyped world to a typed one in an incremental manner. Their
programmatic paper also spelled out three guiding design principles concerning the acceptance
of grown idioms, the soundness of mixed-typed programs, and the units of migration.

This paper revisits this idea of a migratory type system as implemented for Racket. It explains
how the design principles have been used to produce the Typed Racket twin and presents an
assessment of the project’s status, highlighting successes and failures.

112

Wed 26 Sep

13:00 - 14:30: Research Papers Gradual Typmg and Provmg at Stlfel Theatre

I Chair(s): Eric Tanter UniygzsiywomCfifie ¢ nfa Paris
13:00 - 2 §:22 ¢ A Spectrum of Type Soundness and Performance
Talk - Ben Greenman Northeastern University, USA, Matthias Felleisen Northeastern University, USA
~— & DOI
13:22 - 13:45 7 Casts and Costs: Harmonizing Sarety and Performance in Gradual
Talk Typing
John Peter Campora ULL Lafayette, Sheng Chen University of Louisiana at Lafayette, Eric
Walkingshaw Oregon State University
$ DOl
13:45 - 14:07 3¢ Graduality from Embedding-Projection Pairs
Talk Max S. New Northeastern University, Amal Ahmed Northeastern University, USA
$ DOI
.

113

Soft Typing

SOFT TYPING

Robert Cartwright, Mike Fagan*
Department of Computer Science
Rice University

Houston, TX 77251-1892
PLDI 1991

A Practical Soft Type System for Scheme

ANDREW K. WRIGHT
NEC Research Institute
and

ROBERT CARTWRIGHT
Rice University

TOPLAS 1997

Soft Typing

SOFT TYPING

Robert Cartwright, Mike Fagan*
Department of Computer Science
Rice University

Houston, TX 77251-1892
PLDI 1991

A Practical Soft Type System for Scheme

ANDREW K. WRIGHT
NEC Research Institute
and

ROBERT CARTWRIGHT
Rice University

TOPLAS 1997
ldea: Use H/M Type Inference to Migrate Dynamic Programs

Set-Based Analysis

Catching Bugs in the Web of Program Invariants

Cormac Flanagan Matthew Flatt Shriram Krishnamurthi Stephanie Weirich
Matthias Felleisen

PLDI96

Componential Set-Based Analysis

CORMAC FLANAGAN
Compaq Systems Research Center

and
MATTHIAS FELLEISEN

Rice University

TOPLAS99

Not Types!

115

Set-Based Analysis

Catching Bugs in the Web of Program Invariants

= ——

=

Cormac Flanagan Matthew Flatt_~ riram Krishnamurthi

€

Step Weirich

\Rice University

Not Types!

116

Set-Based Analysis

Willlam Bowman

» of Program Invariants

e —

= =

ram Krishnamurthi Step Weirich

116

Migration By Inference

The Ins and Outs of Gradual Type Inference

Aseem Rastogi Avik Chaudhuri Basil Hosmer
Stony Brook University Advanced Technology Labs, Adobe Systems
arastogi@cs.stonybrook.edu {achaudhu,bhosmer}@adobe.com

POPL 2012

117

Migration By Inference

The Ins and Outs of Gradual Type Inference

Aseem Rastogi Avik Chaudhuri Basil Hosmer
Stony Brook University Advanced Technology Labs, Adobe Systems
arastogi@cs.stonybrook.edu {achaudhu,bhosmer}@adobe.com

POPL 2012

Migrating Gradual Types

JOHN PETER CAMPORA Ill, University of Louisiana at Lafayette
SHENG CHEN, University of Louisiana at Lafayette

MARTIN ERWIG, Oregon State University

ERIC WALKINGSHAW, Oregon State University

117

Wed 26 Sep

13:00 - 14:30: Research Papers - Gradual Typing and Proving at Stifel Theatre
Chair(s): Eric Tanter University of Chile & Inria Paris

13:00 - 13:22 A Spectrum of Type Soundness and Performance

Talk Ben Greenman Northeastern University, USA, Matthias Felleisen Northeastern University, USA
gool

13:22 - 1348 ' Casts and Costs: Harmonizing Safety and Performance in Gradual

Talk L Typing

", John Peter Campora ULL Lafayette, Sheng Chen University of Louisiana at Lafayette, Eric

aliingshaw Oregon State University

$ DO A ———

13:45 - 14:07 Graduality from Embedding-Projection Pairs

Talk Max S. New Northeastern University, Amal Ahmed Northeastern University, USA
$ DO

118

Dynamic lyping

Dynamic typing: syntax and proof theory*

Fritz Henglein**
University of Copenhagen, Universitetsparken 1, 2100 Copenhagen &, Denmark

Received July 1992; revised March 1993

119

Dynamic lyping

Dynamic typing: syntax and proof theory*

Fritz Henglein**
University of Copenhagen, Universitetsparken 1, 2100 Copenhagen &, Denmark

Received July 1992; revised March 1993

119

INnfluence

Herman, et al. [TFP 2007/}

Siek, Garcia, Taha [ESOP 2008]
Siek and Wadler [POPL 2010]
Garcia [ICFP 2013]

Siek et al. [PLDI 2015]

120

Fresh Influence

Wed 26 Sep

13:00 - 14:30: Research Papers - Gradual Typing and Proving at Stifel Theatre
Chair(s): Eric Tanter University of Chile & Inria Paris

13:00 - 13:22 A Spectrum of Type Soundness and Performance
Talk Ben Greenman Northeastern University, USA, Matthias Felleisen Northeastern University, USA

& DO

Talk Typing
John Peter Campora ULL Lafayette, Sheng Chen University of Louisiana at Lafayette, Eric
Walkingshaw Oregon State University

13:45 #1707 Graduality from Embedding-Projection Pairs
Talk & Max S. New Northeastern University, Amal Ahmed Northeastern University, USA

. O DOI

| 13:22 - 13:45 Casts and Costs: Harmonizing Safety and Performance in Gradual
O

121

Outline

Motivating Example (In Two Acts)
Gradual Typing For All!
Typing in Small Pieces

Meat

122

- e

. . ¢ S 2 P e R A i e - ™ - ad ¥ e ’ g ~ 4
xﬂ"]‘l' —] v N _b.v & » Aa . '0. "‘ - -~ A et : ~ - P —- o

Gratitude

125

It Takes a Village

INspiring the
nextigeneration of
- cgmputer scientists

2 -
Q‘\k

g7

Dan Friedman

Frank Pfenning

N ¢,
Amr Sabry 196

It Takes a Village

INspiring the
nextigeneration of
- cgmputer scientists

2 -
Q‘\k

" | Dan Friedman |
Andy Lumsdaine Frank Pfenning

Amr Sabry 196

t Takes a Village

INspiring the
nextigeneration of
cgmputer scientists

2
Q‘\k

Andy Lumsdaine Frank Pfenning

|\
Amr Sabry 196

It Takes a Village

INspiring the
nextigeneration of
cgmputer scientists

2 -
Q‘\k

Dan Friedman

Frank Pfenning

126

It Takes a Village

INspirfing the

g nextigeneration of

m-l COMpUter scientists

g7

Dan Friedman

\ -
\ e
LA

Amr Sa.bry 196

SInspiring tihe

' ﬂ ﬁ nextigeneration of
/
4

 Clisputer scientists
q’<£ -

Frank Pfenning

’ P o’
¢ =
e X1 {
= &
»

g7

Dan Friedman

\ -
\ e
W N\

Amr Sa.bry 196

127

127

127

127

Students

Students

— / Gradual Type AN
‘Common Structure Determines |
. Appropriate Linking

—

.

i

. Language Runtime” _~

- ——

Dynamic

129

"‘Dear Today Ron,
You went one slide too far.
Go back one slide.”

—Yesterday Ron

130

Bonus lracks

e ———
.

“Common N
.. Language Runtime” _~

=

e

132

. Language Runtime” _~

e ———
.

“Common TSN

e

Injection

Static

132

e ———
.

“Common TSN

. Language Runtime” _~

_ =

Compositional

Translation Injection

Dynamic Static

132

_——
e —

Gradual Type
“Common __~~_ \ Structure Determines)

. Language Runtime” _~ N\ Appropriate Linking _/

= _— —— ——

4 — B}
a — L S
7

Compositional

Translation Injection

Dynamic Static

132

Refined Criteria for Gradual Typing*

Jeremy G. Siek!, Michael M. Vitousek?, Matteo Cimini®, and John
Tang Boyland*

Static and Dynamic Gradual Guarantee!

.||IIIIII[“““((((@»)mm”llllllm

®

Varying The Type Precision of a Program
Monotonically Changes only
static and dynamic type errors

133

Blame

Theorems about Blame

Tobin-Hochstadt and Felleisen 2006
Wadler and Findler 2008

Dimoulas et al.

Dimoulas ...

Takikawa ...

135

Racket Contract Blam

Ly ot

point-in?: contract wviolation
expected: real?
given: #f£
in: the 2nd argument of
(-> pict? real? real? boolean?)
contract from: point-in-module
blaming: top-level
(assuming the contract is correct)

Roblby Findler

172

Findler PLMW@ICFP15

136

Wherein Shriram
Unwittingly Writes My
Blame Schpiel For Me

, ShriramKrishnamurthi
' @ShriramKMurthi

mv

;

Replying to @ShriramKMurthi @madeofmistak3

Error messages come from _languages_, but
errors are made In _programs_. By definition,
there's a big semantic gulf between the
language and program. Fixes have to be at
the level of the program. How can the
language make "obvious" the program's
problem? »

6:02 AM - 21 Sep 2018

138

—_—

(@ ShriramKrishnamurthi m y
\ ' @ShriramKMurthi

Replying to @ShriramKMurthi @madeofmistak3

This also assumes that there is "the’
problem. Many times an error is the result if
an *inconsistency” (trivial example: f takes
two args and is given three; not clear
whether caller or callee is to blame). In our
research we found ...»

6:03 AM - 21 Sep 2018

139

@ . ShriramKrishnamurthi
' @ShriramKMurthi

mv

\

Replying to @ShriramKMurthi @madeofmistak3

... error messages often blamed one party
rather than both, which resulted in people
fixing the wrong thing, thinking the
omniscient computer had told them where to
fix. By making things point to inconsistency,
we made things less "obvious" in return for
not misleading users. »

6:04 AM - 21 Sep 2018

140

Racket Contract Blame

point-in?: contract wviolation
expected: real?
given: #f£f
in: the 2nd argument of
(-> pict? real? real? boolean?)
contract from: point-in-module
blam:l. S e A A e

- ———— .

RobE)y Findler

—— -~

=Passuming the contract is correct‘\\

—

_— _
—— _
= e — o _ _
—— T e~ — s —— = e : p

—_— -

172

Findler PLMW@ICFP15

141

